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Abstract

Variational approximation has been widely used in large-scale Bayesian inference recently, the
simplest kind of which involves imposing a mean field assumption to approximate complicated
latent structures. Despite the computational scalability of mean field, theoretical studies of
its loss function surface and the convergence behavior of iterative updates for optimizing
the loss are far from complete. In this paper, we focus on the problem of community
detection for a simple two-class Stochastic Blockmodel (SBM) with equal class sizes. Using
batch co-ordinate ascent (BCAVI) for updates, we show different convergence behavior with
respect to different initializations. When the parameters are known or estimated within a
reasonable range and held fixed, we characterize conditions under which an initialization can
converge to the ground truth. On the other hand, when the parameters need to be estimated
iteratively, a random initialization will converge to an uninformative local optimum.

Keywords: Variational Approximation, Stochastic Blockmodels, Batch Co-ordinate
Ascent, Local Optima

1. Introduction

Variational approximation has recently gained a huge momentum in contemporary Bayesian
statistics (Jordan et al., 1999; Blei et al., 2003; Jaakkola and Jordon, 1999). Mean field is
the simplest type of variational approximation, and is a popular tool in large scale Bayesian
inference. It is particularly useful for problems which involve complicated latent structure,
so that direct computation with the likelihood is not feasible. The main idea of variational
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approximation is to obtain a tractable lower bound on the complete log-likelihood of any
model. This is, in fact, akin to the Expectation Maximization algorithm (Dempster et al.,
1977), where one obtains a lower bound on the marginal log-likelihood function via the
expectation with respect to the conditional distribution of the latent variables under the
current estimates of the underlying parameters. In contrast, for mean field variational
approximation, the lower bound or ELBO is computed using the expectation with respect to
a product distribution over the latent variables. The Kullback-Leibler divergence is used to
measure how well the product distribution approximates the true posterior.

While there are many advances in developing new mean field type approximation methods
for Bayesian models, the theoretical behavior of these algorithms is not well understood.
There is one line of theoretical work that studies the asymptotic consistency of variational
inference, most of which focuses on the global optimizer of variational methods under
specific models. For example, for Latent Dirichlet Allocation (LDA) (Blei et al., 2003) and
Gaussian mixture models, it is shown in Pati et al. (2018) that the global optimizer is
statistically consistent. Westling and McCormick (2019) connects variational estimators to
profile M-estimation, and shows consistency and asymptotic normality of those estimators.
For Stochastic Blockmodels (SBM) (Holland et al., 1983; Hofman and Wiggins, 2008), Bickel
et al. (2013) shows that the global optimizer of the variational log-likelihood is consistent and
asymptotically normal. For more general cases, Wang and Blei (2019) proves a variational
Bernstein-von Mises theorem, which states that the variational posterior converges to the
Kullback-Leibler minimizer of a normal distribution, centered at the truth.

Recently, a lot more effort is being directed towards understanding the statistical conver-
gence behavior of non-convex algorithms in general. For Gaussian mixture models (GMM)
and exponential families with missing data, Wang and Titterington (2004, 2006) prove local
convergence to the true parameters. The same authors also show that the covariance matrix
from variational Bayesian approximation for the GMM is “too small” compared with that
obtained for the maximum likelihood estimator (Wang and Titterington, 2005). Wu et al.
(2012) propose a variational Bayes algorithm based on component splitting for fitting GMM
and show in simulation that random intializations converge to the ground truth for a simple
two component setting. The robustness of variational Bayes estimators is further discussed
in Giordano et al. (2018). For LDA, Awasthi and Risteski (2015) shows that, with proper
initialization, variational inference algorithms converge to the global optimum.

In this paper, we will focus on the community detection problem in networks under SBM.
Here the latent structure involves unknown community memberships and as a result, the
data likelihood requires summing over all possible community labels. Optimization of the
likelihood involves a combinatorial search, and thus is infeasible for large-scale graphs. The
mean field approximation has been used popularly for this task (Blei et al., 2017; Zhang and
Zhou, 2017). In Bickel et al. (2013), it is proved that the global optimum of the mean field
approximation to the likelihood behaves optimally in the dense degree regime, where the
average expected degree of the network grows faster than the logarithm of the number of
vertices. In Zhang and Zhou (2017), it is shown that if the initialization of mean field is close
enough to the truth then one gets convergence to the truth at the minimax rate. However,
in practice, it is usually not possible to initialize like that unless one uses a pilot algorithm.
Most initialization techniques like spectral clustering (Rohe et al., 2011; Ng et al., 2002) will
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return correct clustering in the dense degree regime, thus rendering the need for mean field
updates redundant.

Indeed, in many practical scenarios, without prior knowledge one simply uses multiple
random initializations, the efficacy of which is model-dependent. In order to understand the
behavior of random initializations, one needs to first better understand the landscape of the
mean field loss. There are few such studies for non-convex optimization in the literature;
notable examples include (Mei et al., 2018; Ghorbani et al., 2018; Jin et al., 2016; Xu et al.,
2016). In (Xu et al., 2016), the authors fully characterize the landscape of the likelihood
of the equal proportion Gaussian Mixture Model with two components, where the main
message is that most random initializations should indeed converge to the ground truth.
In contrast, for topic models, it has been established that, for some parameter regimes,
variational inference exhibits instability and returns a posterior mean that is uncorrelated
with the truth (Ghorbani et al., 2018). In this respect, for network models, there has not
been much work characterizing the behavior of the variational loss surface.

In this article, in the context of a specific SBM, we give a complete characterization
of all the critical points and establish the behavior of random initializations for batch co-
ordinate ascent (BCAVI) updates for mean field likelihood (with known and unknown model
parameters). Our results thus complement those of Zhang and Zhou (2017). For simplicity,
we work with equal-sized two-class stochastic blockmodels. When the parameters are known,
we show conditions under which random initializations can converge to the ground truth. In
particular, we show that centering random initializations around a half ensures convergence
happens a good fraction of time, and this property holds even if we only have access to
reasonable estimates of true parameters. We also analyze the setting with unknown model
parameters, where they are estimated jointly with the community memberships. In this
case, we see that indeed, with high probability, a random initialization never converges to
the ground truth, thus showing the critical importance of a good initialization for network
models.

2. Setup and preliminaries

The stochastic blockmodel (SBM), proposed by Holland et al. (1983) in social science, is one
of the most popular random graph models incorporating community structures. A SBM with
parameters (B, Z, ) is a generative model of networks with community structure on n nodes.
Its dynamics is as follows: there are K communities {1,..., K} and each node belongs to a
single community, where this membership is captured by the rows of the n x K matrix Z,
where the ith row of Z, i.e. Z; ., is the community membership vector of the ith node and
has a Multinomial(1l;7) distribution, independently of the other rows. Given the community
structure, links between pairs of nodes are determined solely by the block memberships of
the nodes in an independent manner. That is, if A denotes the adjacency matrix of the
network, then given Z, A;; and Ay are independent for (i, j) # (k,1), i < j, k <, and

P(Aij=1[2)=P(Ajj =1| Ziu = 1,Zj = 1) = Ba.

B = ((Bgp)) is called the block (or community) probability matrix. We have the natural
restriction that B is symmetric for undirected networks.
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The block memberships are hidden variables and one only observes the network in practice.
The goal often is to fit an appropriate SBM to learn the community structure, if any, and
also estimate the parameters B and 7.

The complete likelihood for the SBM is given by

P(A, Z; B,m) = [ [] (B (1 — Ba)' )% T [] 72 (1)

i<j a,b

As Z is not observable, if we integrate out Z, we get the data likelihood

P(A;B,m) = > P(A,Z;B,7), (2)

zZeZ

where Z is the space of all n x K matrices with exactly one 1 in each row.

In principle we can optimize the data likelihood to estimate B and w. However, P(A; B, )
involves a sum over a complicated large finite set (the cardinality of this set is ™), and hence
is not easy to deal with. A well-known alternative approach is to optimize the variational
log-likelihood (Bickel et al., 2013), which has a less complicated dependency structure, the
simplest of which is mean field log-likelihood (see, e.g., (Wainwright and Jordan, 2008)). We
defer a detailed discussion of the mean field principle in the Appendix.

For the SBM, the variational log-likelihood with respect to a distribution ¢ is given by

¥ o (BEZL)y2) ko Y ZuZalady - 10))) —00ln)

1<j,a,b

where 0, = log< —a b) f(8) = log(1 4 €?) and 7®™ denotes the product measure on

Z with the rows of Z being i.i.d. Multinomial(l;m). A special case of the variational
log-likelihood is the mean field log-likelihood (see, e.g., (Wainwright and Jordan, 2008)),
where one approximates ¥ by

Upr={0:0(z1,. .., 2 :H ()} (3)

Define Cyp(,0,7) = 32 ap Via¥ip(OabAij — f(Oap)) — 32, KL(i]|m). For SBM the mean
field approximation is equlvalent to optimizing £y p (v, 0, ) as follows:

mwax EMF(d]u 97 7T)

subject tozl/)m =1, forall1<i<n
a

Pia >0, forall1 <i<n,1<a< K,
where each v; is a discrete probability distribution over {1,..., K}.

2.1 Mean field updates for a two-parameter two-block SBM

Consider the stochastic blockmodel with two blocks with prior block probability m, 1 — 7
respectively and block probability matrix B = (p — q)I + ¢J, where p > ¢, I is the identity
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matrix, and J = 117 is the matrix of all 1’s. For simplicity, we will denote 1, as 1;. Then
the mean field log-likelihood is

(Y, p,q,m) = % D (1 = 1) + (1 — y)][Aij log (&) + log(1 — q)]
,J1F]
b3 2 i+ (- 01— )]s tog (1) +log(1 )]

i.ji#]

"E:k%< >wr+bg<1 qh)(l—dw] (4)

For simplicity of exposition, we will assume that 7w (which is essentially a prior on the

block memberships) is known and equals 1/2. Let C;,7 = 1,2 be the two communities. Let
@

T = It is clear that # = 1 + 0P(\f> Assuming 7 = 1 from the start will not change

our Conclusmns but make the algebra a lot nicer, which we do henceforth. Now

V=3 2 -2l to (1) +los1 - )

Wi .N#
. 27; 2wj—1}[Aulog( ) ol = ) o ()
_4tz ¢j U ) 10g<117_b11/)>’
JiF# !

where t = 1 5 log (p El q%) and A = 1 ; log ( ) Detailed calculations of other first and second
order partlal derlvatlves are glven in Sectlon B of the Appendix. The co-ordinate ascent
(CAVI) updates for 1 are

77D(new)

) 1
logm = 4tZ(¢j - 5)(141‘3' —A).
L =1 i

Introducing an intermediate variable ¢ for the updates, let f(z) = log(1%;) and & = f(¢).
Then at iteration s, given the current values of p and ¢ for computing ¢ and A, the batch
version (BCAVI) of this is

€9 = 414~ A(J ~ D)) — 21),

and ¢(®) = g(£(*)), where g is the sigmoid function g(z) = 1/(1 + e~*).

We will study these updates in two setttings: i) when the true model parameters pg, qo
are known (or estimated and kept fixed), and ii) when the model parameters pg, go need to
be jointly estimated with . The detailed BCAVI updates for each setting will be described
in Section 3. A summary of notations used in the model description and BCAVI updates so
far is provided in Table 1.
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Notation Definition
A Adjacency matrix
B B = (p—q)I 4 ¢J is the block probability matrix
P P =ZBZ", where Z is the n x 2 membership matrix
P n-dimensional mean field parameters
£ Intermediate variable in the updates, & = log (1%})
_ 1 (1-q) _ 1 1—
t, A t = 5log (5(172)) and \ = 5; log (fg)'
D0, qo, to, Ao | True model parameters and their related quantities

Table 1: Notations used in the two-parameter two-block SBM and BCAVI updates.

3. Main results

In this section, we state and discuss our main results. All the proofs appear in the Appendix.

We begin with introducing some notations. In the following, we will see the following
vectors repeatedly: ¢ = %1, 1,0,1¢,,1c,. Among these, 1 corresponds to the case where
every node is assigned by v to Ci, and, similarly, for 0, to Co. On the other hand, 1¢, are the
indicators of the clusters C; and hence correspond to the ground truth community assignment.
Finally, %1 corresponds to the solution where a node belong to each community with equal
probability.

The next propositions show some useful inequalities for ¢ and A computed from general p
and q.

Proposition 1 Suppose 1 > p >q > 0. Then

(p—9)(1+p—q) (p—¢)(1—p+q)
1. 2(1—q)p <t< 2(1-p)q

2. g < A<Dp.

, and

The next proposition refines the separation between A and p, ¢, when p < q < pp, pn — 0.
Proposition 2 If p < q =< pp,pn — 0 and p — g = Q(py), then
A—q=pn) >0, (5)

PEL =0 > 0. (6)

3.1 Known py, qo:

In this case, denoting the true model parameters pg, go (po > qo), we assume these parameters
are known and thus need only consider the updates for ¢». We consider the case where the
true po, qo are of the same order, that is, py =< qo < pn, with p, possibly going to 0. The
BCAVI updates are:

€% = ato(A — Ao(J — D) — 21), (7
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where tg and Ay are calculated using pg and gg. In what follows, we will also study the
population version of this update which replaces A by E(A | Z) = ZBZ" — pol =: P — pyl.
Hence for convenience, denote M := P — pgl — A\o(J — I). The population BCAVI updates

are 1
et = atg M) — 2 1). (8)

The eigendecomposition of P — A\gJ will play a crucial role in our analysis. Note that it
has rank two and two eigenvalues na., where ay = w — Ao, a— = 252 with eigenvectors
1 and 1¢, — 1¢, respectively. Now it can be easily checked that the eigenvalues of M are
v1 = noy —(po—Xo), v2 = na— —(po—Ao) and v; = —(po—XNo), j = 3, ...,n. The eigenvector
of M corresponding to v; is u; = 1, and the one corresponding to 15 is ug = 1¢, — 1¢,.

We first present a proposition related to the landscape of the objective function. Consider
the population mean field log-likelihood, which replaces A by its expectation E(A|Z) in Eq (4).
In the known pg, qo case, %1 is a saddle point of the population mean field log-likelihood.

Proposition 3 ¢ = %1 is a saddle point of the population mean field log-likelihood when pg
and qo are known, for all n large enough.

We next give conditions on the initialization which determine their convergence behavior
when using the population BCAVTI (8). To facilitate our discussion, we will write the BCAVI

updates in the eigenvector coordinates of M. To this end, define CZ-(S) = () ;) /||ug||? =
() u;) /n, for i = 1,2. We can then write

9O = @ /[y /s || 4 () Yz fazl] 40 = ¢ + Gz 4 0.
(9)

So, using (8) in conjunction with the above decomposition, coordinate-wise we have:

s s 1 s s 1 s s
gt — 4ton<(C£ ) - Far+ 0iC3 )04—) + 4tovs ((Cf ) - 3+ 7iCs” + ] )>

=: nag‘? + bl(-s), (10)

where o; = 1, if ¢ is in C;, and —1 otherwise. Note that the mean-field parameters are
obtained by passing ﬁi(s—i_l) elementwise through a sigmoid. So, in order to converge to the

ground truth, say 1¢,, we hope that fi(sﬂ) goes to positive infinity for nodes in C;, and §§s+l)
goes to negative infinity for nodes in C3. In Eq (10), in the first iteration, 51(1) is dominated by

na((,?,). In other words, if ]na((,g)| — 00 , and a(f% and a(of are of opposite signs, we expect (1)

to converge to the ground truth. If they are of the same sign, then () should converge to 1
or 0. The next theorem gives a more rigorous statement of this. In Table 3 we enumerate
the different limits for different signs of al(g).

A summary of main notations used in our analysis can be found in Table 2.

Theorem 4 (Population behavior) The limit behavior of the population BCAVI up-

dates (8) is characterized by the signs of aﬂ, where ag for iteration s is defined in (10).

Assume that |na(i0%| — o00. Define £(4p)(0)) = ]l(aﬂ > 0)1¢, + ]l(a(_O% > 0)1¢,, where 1(-)
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Notation Definition
Pn Average density of the network, pg =< qo =< pp,
o 0y = P 0= @
1c,,1c, 1c, are the indicators of the cluster C;, i = 1,2
M M =P —pol —\o(J — 1)
Eigenvalues of M, v1 = nay — (po — Ao),
Vi,...,VUnp .
’ ’ VQZ??,Oé_—(po—Ao),I/j:—(po—)\o),j:?),...,n
Ul g, v u1,uz are eigenvectors of M, u; =1, ug = 1¢, — 1,
T v is orthogonal to ui, ug, defined in Eq (9).
G, G2 G = (Y, ui)/n,i=12
ag Defined in Eq (10).

Table 2: Notations used in the analysis.

Si(g)ns of GS(S%, a(,O% Stationary point £(1())
0 0

a1 >0,a77>0 1

aﬁf{ <0, a(_O{ <0 0

a?) >0,a") <0 1,

af{ <0, a(_O% >0 1c,

Table 3: £(1)(9)) describes four stationary points depending on the sign of aﬁ.

denotes an indicator function of the event (see Table 3 for all cases of £((9))). Then, under
the same assumption on pg, qo in Proposition 2, we have

1) _ (0)y]12
W = 480~ Ofexp(—6(nmin{[a),[a9)[1) = o(1).

n

We also have for any s > 2

() — £(1p(©)2 _ JO(exp(=O(ntoa—))), if a(f%a(_oi <0,
n O(exp(—O(ntoay)), if Gﬂa(—og > 0.

Remark 5 1. Note that K(w(o)) describes 4 stationary points characterized by the signs of

a(ioi, which are calculated from (©: 1,0, 1c,, and 1¢c,. We enumerate these in Table 3.

The theorem explains which stationary point the population BCAVI converges to is

determined by the signs of ag.

2. Since the proof of Theorem 4 shows BCAVI can only converge to one of the four points
{1,0,1¢,,1¢,} starting from any given O satisfying the condition in the theorem,
there are only five stationary points of the mean field log-likelihood, namely 1,0,1¢,, 1¢c,,
and the saddle point %1 in Proposition 3.
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3. We see from Theorem /4 that, essentially, we have exponential convergence within two
iterations.

4. Since pg X qo X ay X py, as long as one of the projections Cfo) —-1/2, Céo) of the
initialization 1) is non-vanishing (of order ©(1)), the condition ]nag] — 00 Tequires
NpPp — 0.

From Theorem 4, we can calculate lower bounds on the volumes of the basins of attractions
of the limit points of the population BCAVI updates. We have the following corollary.

Corollary 6 Define the set of initialization points converging to a stationary point ¢ as

Se :={v | limsupn*1|]w(s) —¢||* = O(exp(—O(ntomin{|ay |, a_}))), when O = v}.
S5—00

Let MM be some measure on [0,1]", absolutely continuous with respect to the Lebesque measure.
Consider the stationary point 1, then

M(S1) > 11%1 M(H] NH N[0,1]"),
Y

where the half-spaces H] are given as

1—y
HY ={z | (z, apus + a_ug) > %4— n4t }

Similar formulas can be obtained for the other stationary points.

For specific measures 91, one can obtain explicit formulas for these volumes. In practice,
these are quite easy to calculate by Monte Carlo simulations.
Now we turn to the sample behavior of the updates in (7).

Theorem 7 (Sample behavior) For all s > 1, the same conclusion as Theorem 4 holds
for the sample BCAVI updates in (7) with probability at least 1 — n~",r > 0, as long as

nlafl)\ > max{y/np, log || — 1|, 1}, np, = Qlogn) and ¥ is independent of A.

Remark 8 Since |9 — || = O(1), we can check that the lower bound required on n|a$)]
by Theorem 7 always holds when we use initializations of the form 1#1(0) w fu, where f, is
some distribution with support [0,1], mean p and p # 3. Here n\ag\ = Op(npn) and we
already have np, = Q(logn). When p = 3, n|a(i0)| = Op(\/npn) which does not satisfy the
lower bound. In this case, we have the following theorem showing convergence can happen for
a good fraction of the random initializations.

Theorem 9 (Convergence for random initializations) When py and qo are known and
pn — 0 at a rate such that p,\/n/logn — oo, initializing with %(0) ~ iid Bernoulli() and

1
using the sample BCAVI updates (7), with probability at least 1 — arctan(cy) —arctan(c, ) _ o(1),

™

Copn .
28|11 — 2|y

(s) _ < — Ot —_ . —err
K% zoll1 < nexp(—Cito(po — qo)n) + 7o — a0V
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for s > 3, some general constants Cy,Cs (independent of n and model parameters), and
zo = 1¢, or 1¢,. Here

_ (po = Ao) + (Ao — q0) e Po—a)(l—e)
~e(po— Xo) + (Ao — @)’ T o)1+ e) T

en — 0 slowly such that pp\/ney/|1og pp| — o0 and n > 0 is some arbitrarily small constant.
-1
Remark 10 1. Note that the convergence probability can also be written as 2—{—%—
o(1), which is larger than 1/2. The distance between this lower bound probability and 1
decreases as |c — 1| decreases.

2. Thus Theorem 9 shows that random initializations lead to convergence to the global
optima (i.e. the ground truth, 1c, and lc,) of the variational objective function with
probability strictly greater than half. This means that one can do N independent
random initializations, and with probability greater than 1 — (1/2)N, at least one of
the initializations will converge to the ground truth. To see this statement is valid, we
note that even though each initialization uses the same data matriz A to obtain the
estimates, the bounds on ¥ and A used in our proof are completely separable.

3. With multiple random initializations, the best clustering can be picked by finding one
with the largest ELBO, since it is a well-known fact that the ground truth mazimizes
the ELBO (e.g., Bickel et al. (20138) Eq. (3) and Lemma 3). This justifies the common
practice of using multiple random starts and picking the result with the largest ELBO.
Hence it is important to note the key here is that the success probability of a random
initialization is lower bounded by a constant.

4. We can also obtain mis-clustering rate directly from the L1 norm bound. For every
iteration s, let 21(5) = ]1(¢§S) > 1/2) be the estimated labels. Then the mis-clustering
rate is given by

12 — zollo _ 219 — zolx
n - n

s—2
<2(1+o0(1)) exp(—Cito(po — qo)n) + 2 <(pOC_'2/;On)2n> :

The next corollary shows that even if we do not know pg and ¢y and only have their
estimates, the above convergence still holds as long as the estimates are reasonably close to

po and qp.

Corollary 11 (Using parameter estimates) The same conclusion as in Theorem 9 holds
if we replace po, qo with some p,§ =< pp, [P — q| = Qpn), satisfying

1. po;—qo > 5\’

2. 5\_QO :Q(pn) >0,

10
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where X is computed using p and q.

Remark 12 1. In practice, p, ¢ can be estimates depending on A, then the statement in
Corollary 11 still holds.

2. When p,q =< pn, p— 4 = Qpn) > 0, \ lies between (p+q)/2 and G as suggested by
Proposition 2. The conditions in Corollary 11 imply an upper bound on p and a lower
bound on §. Similar constraints hold if ¢ — p = Q(pn) > 0. An example of the estimate
regime is shown in Figure 1, where pg = 0.3, qo = 0.1, and the yellow area contains p,
q such that w >\ > qo-

3. Such estimates can be obtained by applying any strongly consistent SDP method to a
smaller subgraph, which makes it computationally efficient as well. Consider randomly
sampling \/n nodes from the original graph. This subgraph has average degree \/np, —
oo under the setting of Theorem 9, and class size of the order ©(y/n). Then applying
a strongly consistent SDP method, such as Li et al. (2018), one can achieve exact
recovery of community labels on this subgraph with high probability. p,§ are obtained by
simply averaging the edge counts, and using Bernstein’s inequality |p — pol, |§ — qo| =

O(y/22logn) < p, with high probability.

0 0.05 0.1 015 02 025 03 035 04
p

Figure 1: For py = 0.3, go = 0.1, the yellow area shows where 279 > A > qq is satisfied.

3.2 Unknown py, qo:

In this case, the model parameters p and g are updated jointly with . The full BCAVI
updates are

o @ TARED 4 (1 — gl T AL - ylD)
b= (w(s—l YT(J — 1)1/1(8—1) F 1 —ENT (T D)1 —yGED)’
o _ @) TAQ — gl 1>)

(@E=)T(J — 1)( (-1’

1 (p(1—¢®¥) 1 1—q®
(8) — Zlog (-2 ) (s) —
0 = 3108 (T ps») N0 = g o (1)

(11)

q

11
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1
€9 = 419 (A= NO(T — D)tV = 1),
Similar to before, py < qo < p, with p, possibly going to 0. In the population version, we
would replace A with E(A | Z) = P — pl.
In this case with unknown pg, qo, our next result shows that %1 changes from a saddle
point (Proposition 3) to a local maximum.

Proposition 13 Let n > 2. Then (¢,p,q) = (%1, nl(;f‘}), nl(:lfi)) is a strict local mazimum
of the mean field log-likelihood.

Since pg, go and 1 are unknown and need to be estimated iteratively, we have the following
updates for p) and ¢(M) given the initialization ¥(°) and show that they can be written in
terms of the projection of the initialization in the principal eigenspace of P.

Lemma 14 Let 2 = ()T 4 (1 —pONT(1 =) and y = 2(xpO)T(1 —p(0)) = n — 2.
Projecting (9 onto uy and uy and writing (©) = Cyuy + CGug +w, where w € span{uy, ug}t,
then

_ 2 2
p =Pt o W S BB Op( ).
o 2 2 2
o e + 0P/ .

Since ()71 — ) > 0, we have ¢;(1 — ¢1) > ¢Z. This gives:

po +

p<1>e(p°§q°+op<ﬁn/n>,po], W e [qo, 2q0+OP(\/p7/n))- (13)

It is interesting to note that p™) is always smaller than ¢*) except when it is O(\/pn/n)
close to (po + ¢o)/2. In that regime, one needs to worry about the sign of ¢t and A. In all
other regimes, t, A are positive.

Using the update forms in Lemma 14, the following result shows that the stationary
points of the population mean field log-likelihood lie in the principle eigenspace span{uy, us}
of P in a limiting sense.

Proposition 15 Consider the case with unknown po, qo and p, — 0, np, — oo. Let (1, D, q)
be a stationary point of the population mean field log-likelihood. If b = 1, + 1,1, where
Py, € span{uy,us} and 1,1 L span{ui,us}, then ||| = o(y/n) as n — oco.

We next present the two main results of this section, which analyze the convergence
of the full BCAVI (Eq (11)) updates with respect to different types of initializations. We
first consider a simple random initialization, where the entries of ¥(9) are i.i.d with mean
. In this case, (o is vanishing, which is unsurprising since (2 measures correlation with the
second eigenvector of P, ug which is the 1¢, — 1¢, vector. Then by Lemma 14, pM and ¢M
concentrates around the average of the conditional expectation matrix, i.e. (po + qo)/2. In
this case, the update converges to %1 with small deviations within one update as stated in
the next theorem. This result shows the futility of random initialization when pg, qo are
unknown, in contrast to the results in Section 3.1.

12
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Theorem 16 Consider the initial distribution 1/;2-(0) i fu where f is a distribution supported
on (0,1) with mean p. If p is bounded away from 0 and 1 and np, = Q(logn), using the
updates in (11), then |p™1) — 212 = Op(1),

g 1 s-1) _ 1
[0 = S1ll < Op(1/v/n) [0~ = S1ll + Op(p?)
for s > 2.

As another type of initialization, it is also instructive to analyze the case where the

initialization is in fact correlated with the truth. To this end, we will consider a initialization

scheme, w@(o) = W; + ego), where the expectation of w,fo) is ug, 620) are independent zero mean
noise such that the support of 1[)1(0) is [0, 1]. In this case, provided there is sufficient separation

between the cluster means, defined as

Ap = et M _ it = (14)
n n

we have convergence to ground truth within one iteration.

Theorem 17 Consider the initialization v = p; + 650) such that E[wi(o)] = W, 650) are

independent and max; Var(ipfo)) < oo. Assume LYy = 1/2 (WLOG) and np, =
Qlogn). Then provided
3/2 1/3
Ayl = L V8T Vlo;g” 7 (15)
(po — q0)*v/n

we have for large enough n, with probability at least 1 — exp(—O(logn)), v = 1¢, +
O(exp(—Q(v/npplogn))) or 1c, + O(exp(—Q(v/npnlogn))), where the error term is uniform

for all the coordinates. For s > 2,

C20n

n<p0 _qo) H¢ 0”1

1) — 2]y < nexp(—eito(po — go)n) +

for some general constants c1,ca (independent of n and model parameters), with probability
at least 1 —n~", r > 0, uniformly for all s.

Remark 18 1. The lemma states that provided the separation between py and qy does
not vanish too fast, and there is enough separation between the two cluster means,
we have converge to the truth within one iteration. In the case of po — qo =X pn,

1/6
the theorem requires |Ap| = ((bg") ) The lower bound can approach 0 when

npn
npp/logn — oo. Thus in this special case, our constraint on the initialization is
weaker than Zhang and Zhou (2017), which requires ||¢(%) — 2|y < cinsen/2 for some
sufficiently small constant cins: under a balanced two-block model.

13
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1/6
2. Consider randomly sampling a subset of nodes S from the graph, with |S| = © <n . <1°g”) ) )

npn

If we initialize wz(o) with the correct labels for i € S (which can be done by applying a

strongly consistent SDP algorithm like Li et al. (2018) to S), and wzgo) itd randomly
fori ¢ S, the separation condition on Ap would be satisfied. We show this also with a
simulation in Section 4, Figure 4 (a).

4. Numerical results

In Figure 2-(a), we have generated a network from an SBM with parameters py = 0.4, ¢y =
0.025, and two equal sized blocks of 100 nodes each. We generate 5000 initializations ¢ (®)

from Beta(a, 3)®" (for four sets of a and ) and map them to ag. We perform sample

BCAVI updates on 1/1(0) with known pg, gy and color the points in the a(ﬂ
according the limit points they have converged to. In this case, a4 > 0, hence based on

Theorems 4 and 7, we expect points with aﬂa(_of < 0 to converge to the ground truth

(0) (0)

(colored green or magenta) and those with aja’;] > 0 to converge to 0 or 1. As expected,
points falling in the center of the first and third quadrants have converged to 0 or 1. The
points converging to the ground truth lie more toward the boundaries but mostly remain in
the same quadrants, suggesting possible perturbations arising from the sample noise and
small network size. We see that this issue is alleviated when we increase n.

The notable thing is, in Figure 2-(a) and (d), the Beta distribution has mean 0.16 and
0.71 respectively. So the initialization is more skewed towards values that are closer to zero
or closer to one. In these cases most of the random runs converge to the all zeros or all ones,
with very few converging to the ground truth. However, for Figure 2-(b) and (d), the mean
of the Beta is 0.3 and 0.7, and we see considerably more convergences to the ground truth.
Also, (b) and (d) are, in some sense, mirror images of each other, i.e. in one, the majority
converges to 0; whereas in the other, the majority converges to 1.

co-ordinates

In Figure 3, we examine whether convergence can hold even when the exact values of
Do, qo are unknown using the initiliazation scheme in Theorem 9 and Corollary 11. In each
heatmap, the dashed lines indicate the true parameter values used to generate an adjacency
matrix A. The heatmap contains pairs of p, ¢ that we use in the sample BCAVI updates (7)
for fixed parameters initialized with wz(o) ~ iid Bernoulli(%). For each pair of parameters, we
use 50 such random initializations and compute the average clustering accuracy. In both
cases, we can see that as long as the parameter estimates fall into a reasonable range around
the true values, convergence to the ground truth happens for a high fraction of the random
initializations. The plots are symmetric in terms of p and ¢, suggesting the estimates do not
have to respect the relationship p > ¢ as discussed in Remark 12.

In Figure 4 (a), we examine initializations of the type described in Theorem 17 and the
resulting estimation error. In particular, we provide correct labels for a set of nodes S and
set wgo),i € S at those correct labels, and then initialize the rest of the nodes at random.
We show our results for three settings of pg, go, with n = 500. On the Y axis we plot the
classification accuracy over 50 random runs across the |S|/n on the X axis. We see the
surprising result that for the highest separation only 10% of labeled nodes can result in

14
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p = 0.40, q = 0.025, {*'~ Beta(1,5)

p = 0.40, q = 0.025, {”~ Beta(1,2)

©  Zeros
c2
- cl

-0.03 [ zeros] 002
-0.04 - o
s g~
S5 -0.05 ©
-0.02
-0.06
-0.07 -0.04
-0.08 -
-0.06
-0.09
o1 . ) ) -0.08 . . . . . . . A
.01 -0.09 -0.08 -0.07 0.06 -0.05 -0.04 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01
20 2@
+1 +1

(b)

P =040, = 0.025, 4"~ Beta(2,1) P =040, = 0.03, "~ Beta(25,1)

0.08

0.08

Ones
- c1
c2 |7

0.06

0.06 -

-0.02

-0.04 -

0.06  0.07 0 001 002 003 004 005 006 007 008

0.04 0.05

Figure 2: n = 200 and 5000, ¢(© ~ Beta(a, 3)®" for various values of o and 3. These O
are mapped to (af%,a(_of) (see (10)) and plotted. Cy (magenta) and Cy (green)
correspond to the limit points 1¢, and 1¢,. Other limit points are ‘Ones’, i.e. 1

(blue) and ‘Zeros’, i.e. 0 (red).

better than random classification, whereas for about 20% correctly labeled nodes, the average
accuracy is better than 90%.

In addition, we compare the performance of the random initialization scheme in Theorem 9
with other more informative initializations obtained from running spectral clustering (Rohe
et al., 2011) and semi-definite programming (SDP, Li et al. (2018)). As expected, spectral
clustering and SDP given better initializations than random and lead to higher accuracy,
specially on sparse graphs. Nonetheless, overall random initializations yield very reasonable
results over a range of pg/qo values and for moderately sparse graphs. Details of the
experiments and results can be found in Appendix Section D.
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Figure 3: Average clustering accuracy using 50 random initializations 1/11.(0) ~ iid Bernoulli(%)
and different p, ¢ values in the BCAVI updates with fixed parameters. The dashed
lines show the true parameter values, (a) po = 0.2, go = 0.1, (b) po = 0.3, g¢o = 0.2.
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Figure 4: Random initializations with small subset labeled correctly for a graph of size
n = 400 with (a) 2 equal sized blocks and (b) 3 equal sized blocks. X axis is
fraction of correctly clustered nodes, and Y axis is average accuracy.

5. Discussion

In this paper, we work with the BCAVI mean field variational algorithm for a simple two
class stochastic blockmodel with equal sized classes. Mean field methods are used widely for
their scalability. However, existing theoretical works typically analyze the behavior of the
global optima, or the local convergence behavior when initialized near the ground truth. In
the simple setting considered, we show two interesting results. First, we show that, when
the model parameters are known, random initializations centered around half converge to

16



WHEN RANDOM INITIALIZATIONS HELP

the ground truth a good fraction of time. The same convergence holds if some reasonable
estimates of the model parameters are known and held fixed throughout the updates. In
contrast, when the parameters are not known and estimated iteratively with the mean field
parameters, we show that a random initialization converges, with high probability, to a
meaningless local optimum. This shows the futility of using multiple random initializations
when no prior knowledge is available.

In view of recent works on the optimization landscape for Gaussian mixtures (Jin et al.,
2016; Xu et al., 2016), we would like to comment that, despite falling into the category of
latent variable models, the SBM has fundamental differences from Gaussian mixtures which
require different analysis techniques. The posterior probabilities of the latent labels in the
latter model can be easily estimated when the parameters are known, whereas this is not
the case for SBM since the posterior probability P(Z;|A) depends on the entire network.
The significance of the results in Section 3.1 lies in characterizing the convergence of label
estimates given the correct parameters for general initializations, which is different from the
type of parameter convergence shown in (Jin et al., 2016; Xu et al., 2016). Furthermore,
as most of the existing literature for the SBM focuses on estimating the labels first, our
results provide an important complementary direction by suggesting that one could start
with parameter estimation instead.

While we only show results for two classes, we expect that our main theoretical results
generalize well to K > 2 and will leave the analysis for future work. As an illustration,
consider a setting similar to that of Figure 2 but for n = 450 with K = 3 equal sized classes.
po = 0.5, go = 0.01 are known and ¥(9) is initialized with a Dirichlet(0.1,0.1,0.1) distribution.

We examine the convergence behavior of BCAVI for 1000 random initializations of (). In
Figure 5, each row represents the cluster membership vector a random initialization converges
to. We represent the node memberships with three different colors in the columns. The rows
have been permuted to group together initializations that converge to the same stationary
point. We can see that all 1000 random initializations converge to stationary points lying
in the span of {1¢,, 1¢,, 1¢, }, which are the membership vectors for each class. There are
14+ (;’) = 4 different types of stationary points, not counting class label permutations. Another
stationary point (the all ones vector that puts everyone in the same class) can be obtained
with other initialization schemes, e.g., when the rows of /() are identical. For a general
K- blockmodel, we conjecture that the number of stationary points grows exponentially
with K. Similar to Figure 2, a significant fraction of the random initializations converge
to the ground truth when pg, gg are known. On the other hand, when pg, go are unknown,
random initializations always converge to the uninformative stationary point (1/3,1/3,1/3),
analogous to Theorem 16.

We believe that for a more general SBM, the separation condition in Theorem 17 will be
some suitably defined distance from the ground truth, which will be a matrix for three or
more blocks (K > 3). Considering a special case of Theorem 17, if one can obtain correct
labels of a n®, « € [0, 1], size subset S of nodes (including all K labels), then an initialization
with the nodes in § fixed at the correct labels, and the rest initialized at random with
probability 1/2, then under suitable conditions on «, we expect BCAVI to converge to the
ground truth. We show that this intuition is indeed correct in Fig 4 (b) for K = 3. Here we
change the size of the random subset of nodes which are initialized at the correct label, and
plot average accuracy over fifty random runs on the Y axis. The three lines correspond to
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initializations

node index

Figure 5: Convergence to stationary points for known pg, gg, K = 3. Rows permuted for
clarity.

different p/q ratio. We see that the same trend holds for both K = 2 and 3. But for K = 3,
we need a larger set of correctly labeled samples to reach the same accuracy. In particular,
for the largest p/q ratio, with 20% of correct labels, for K = 2, average accuracy is 90%
whereas for K = 3, the average accuracy is about 75%.

For models beyond SBM, if the model can be expressed with a low rank plus noise
decomposition, then we believe that in the high signal to noise setting, the separation
condition will be reduced to the amount of correlation of the initialization with principal
eigenvectors in the population matrix.
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Appendix A.

This appendix provides derivation of stationarity equations for the mean field log-likelihood,
the proofs of our main results, and some additional simulation results.

Appendix A. The Variational principle and mean field

We start with the following simple observation:

log P(A; B,m) =log ¥ P(A,Z;B,7) =log <Z me)
Z Z

)
> W2) > Ww(Z) Y prob. on Z.

In fact, equality holds for ¢*(Z) = P(Z|A; B, m). Therefore, if ¥ denotes the set of all
probability measures on Z, then

(A, Z; B, )
log P(A; B,m) = rqilg%(Zlog < G ) v(Z). (16)

The crucial idea from variational inference is to replace the set ¥ above by some easy-to-
deal-with subclass Uy to get a lower bound on the log-likelihood.

(Jensen) <P(A, Z:B,m
log | ———5+—~
4

P(A, Z; B, 7)
log P(A; B,m) > wg%/%)é\p log <¢(Z)> (7). (17)

Also the optimal ¢, € Uy is a potential candidate for an estimate of P(Z|A; B, m). Estimating
P(Z|A; B, ) is profitable since then we can obtain an estimate of the community membership
matrix by setting Z;, = 1 for the ith agent where

a = argmax P(Zy =1]A; B, ). (18)

The goal now has become optimizing the lower bound in (17).

Appendix B. Derivation of stationarity equations

awz - 4:%1 SNl <1 1—/}1/})

gf) _ ;L;j‘(wi% +(1— ) (1 — %))(Aij (]19 T ip> 1 ip)’

gj _ ;i’;j_(w(l — ;) + (1 — )y) (Aij ((1] T i q) 1 i q>' 1)
Therefore
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o 1 <1 1 1 1
LBl 1)
oidp 2 2 1— 1—
Yidp 2 p p p
0% 1 < 1 1 1 1
AE w5
;0 2 2 1-— 1-—
vidg 2 = q q q
0% 1 1 1 1
a9 A 4 1- i 1— Az - 5 ’
op* 2”#](@&% et %))( j( p2+(1—p)2> (1—19)2)
0% 1 1 1 1
g _Z ; , A A [ — =
o — 5 2 (Wl =i+ Ww])( J( q2+(1—q)2> (1—Q))
1,J:0F£]
020
= 20
940p (20)
Appendix C. Proofs of main results
Proof |Proof of Proposition 1] For any a > b > 0, we have
a-b <lo 4 < a—b
a s\b b
which can be proved using the inequality log(1 + x) < x for z > —1, 2 # 0. Therefore
_ _ _ 1— _
pq<log<p)<pq, and pq<log< q><p a4
p q q l—gq l1—p 1—p
P—q9)(d+p—q) 1( <p> <1—q)> P—q9)d-p+q)
<t=—(log|=)+1log| — < ,
2(1—q)p 2\ "\ ¢ *\1-»p 2(1-p)q
and B . -
E ) e 5
|

Proof [Proof of Proposition 2| Let y = (p — q)/(1 —p) > 0. We will use the well known
inequalities (Topsge, 2004):

2y y
1 > 7 > 21
y2
log(1+y) <y— 201y (22)
Using Eq (22),
1—
log =1 - y N k')

_logg—&-log% o (1+?J)10g§+y - 10g§+(P—Q)
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Using Eq (21) we get:

(p—q) —qlog(p/q) — O(p)

A—q>
1= log 2+ (p—q)
o _ )2
] e 7 R 2
- log 2+ (p—q)
N2
(pg;;z) - O(pi)

2 " —Qp,
~ log 2+ O(pn) (6n)

The last step is true since p — ¢ = Q(py).
Now we prove Eq (6). Let 2 :=p/q—1=Q(1), since p — ¢ = Q(pn).
pP—q
(1-p)logf+(p—q)
pta_ . Hlosp/a) — (n—a) = O(pp)
2 - (I-plogf+(p—aq)
(1+2/2)log(1+2x) —x — O(pn)

— 1 log(p/q) + O(pn) (23)

Consider the function h(x) defined below, where x = p/q — 1 = Q(1).

A<

h(z)=(2+ x)log(1+z) — 2z

2+
B (z) = log(1 ST 9 —log(l+a) —
(x) = log( +x)+1+x og(l+x) T
2 2
> 2 _® x —o(1)
242 14+z2 (242)(1+x)
Plugging into Eq (23) we get:
h - n
Pra (#) =O0lon)  _ g,y

2 = 210g(p/q) + Olpn)

C.1 Proofs of results in Section 3.1

Proof [Proof of Proposition 3] That ¢ = %1 is a stationary point is obvious from the station-
arity equations (19). The eigenvalues of —41 + 4to M, the Hessian at %1, are h; = —4 + 4tyy;.
We have v1 = nay — (po — Ag) = O(n), and hence so is hy. Also, pg — A\g > 0, so that v3 < 0,
and hence hg < 0. Thus we have two eigenvalues of the opposite sign. |
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Proof |Proof of Theorem 4| From (10), we have
B = gnaly) +817) = g(nal) + 67,
where |5§s)| = O(exp(fn|a((,i)|)), where we have used the fact that

g(nz +y) — g(nx) = g(nz)g(nr + y)(e’ — 1) exp(—(nz +y)).

Writing as a vector, we have

YD = g(naf)te, + g(naic, +0, (24)
where ||6(9)]|oo = max; |5(S | = (exp( nmin{\afh, |a&?|})) Note that by our assumption,

16@ | = O(exp(—nmin{|a{,]a%}[})) = o(1). Now

(s+1) () ) g(nafi) + g(na(s))

— il A -1 ()
1 - 5 +O([10"|o0),
and (5) (5)
s (s+1) nay}) — g(na’
o W) glnain) —9(nasa) o500,
n
Note that g(nagﬂ) = 1{a${>0} + O(||6®)]| o). Now, using (24),we have
[+ — £( )13
n
l@mal) =10 o)1e + (gm0 10 e, +60
- n
2 (s) 2 s) (2
< 2(|(g(nal)) - La@soptall +(gnaZy) = 10 ) 1eallz + 15¢)])
- n
< lgnal]) = 1,0 o +la(nal) = 1 oo [* + 2605
’1 (s)>0} 1 (0)>0}‘ + ‘1{a$‘i>0} - 1{a(702>0}|2 + O(Ha(S)Hio) (25>

From the above representation and our assumption on n|ag| the bound for s = 1 follows.

We will now consider the four different cases of different signs of a(s)

Case 1: ai{ > O,a(_S% > 0. In this case g(nag )) = g(na&si) =14 0(|6®)]|o0), so that

() = (1,0) + O(1I6) 1 o0).

This implies that
1
a$Y = 26904 + O(1|6%) ] o0).
Since a4 > 0 by Proposition 2, a(ifr ) have the same sign as a(is:)l. Note that, here and in the
subsequent cases, we are using that fact that [|6(*)||o = o(1), for s = 0, by our assumption and
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it stays the same for s > 1 because of relations like the above (that is ag —2tpag + o(1),
so that [|[6()]|s = exp(—n mln{|a+1|, la 91]}) = O(exp(—Cntpay)) = o(1), and so on).

Case 2: a(s) <0, a(s) < 0. In this case 1 — g(na(ls)) =1- (na(si) =1+ 0|69 ||s0), s0
that
(6, = (0,0) + 0(9 o).
This implies that
al = —2tgay + O(16)] ).
(s (s)

Since a4 > 0 by Proposition 2, a}; U have the same sign as a} .

Case 3: a(s) > 0, a(s) < 0. In this case g(nag )) =1- (na(si) =1+4+0(]|6¥||s0), so that

S S 1 1 S
(GG = (G 5) + 016 0).

This implies that
als™ = £2tga_ + 0()|69) | 0).

(s)

1
(s+ ) have the same sign as a; .

Since a— > 0, a3

Case 4: ai} <0, a(s) > 0. In this case 1 —g(nags)) = g(nag) =14+ 0(||0®||s), so that
S S 1 1 S
(G 6 = (5, —5) + 0016 0).

This implies that
a$TY = F2tpa- + 0169 | o0).
(s)

have the same sign as al .

(s+1)

Since a— > 0, ay;

We conclude that, if @y > 0, then we stay in the same case where we began.Now the
desired conclusion follows from the bound (25).

In the proof above, we can allow sparser graphs, with pg, go > % More explicitly, let
Do = Pna,qo = ppb, with a > b > 0 and p, > % Then, to = Q(1), nto|lax| = Qnp,) — co. A

Proof |Proof of Corollary 6]
From Theorem 4, it follows that, when a4 > 0,

M(S1) > M@ | al) > 0,a") > 0 m;; > 1)
1
M |} > 1.af) > 2}
1 1
> m({u® o) > —.a% > =),

for any 0 < v < 1 and so on for the other other limit points.
More explicitly,

1 1 1

4tnY’
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=H] NHN[0,1]",

All in all, we have
M(Sy) > 11%1 M(H] NHY N[0,1]").
gl

This completes the proof. |

Proof [Proof of Theorem 7] We begin by noting that A—Xg(J—I)—M = A—E(A|Z) := A—P.
For the first iteration, we rewrite the sample iterations (7) as

W = 4t0M(¢<0> - ;1) + 4ty (A — P) <¢<0> - ;1> .

=:r(0)

Therefore, similar to the population case, we have

¢§1) = g(nagg) + bgo) + 4t0r§0)).
Note that

0 = 0
=3 Ay = P = 3). (26)
J#i

Since our probability statements will be with respect to the randomness in A and (@ is
independent of A, we may assume that ¢(?) is fixed. Let Y;; = (A;; — Hj)(@bj(o) —1). Then
the Y;; are independent random variables for j # i, and E(Y;;) = 0. Also, |Y;;| < |w§0) —3 <

||w(0) _%Hoo = A, say, and ]EYZ? = (1[)](-0) — %)QVar(Aij) = O(pn(wj(-o) — %)2) So, by Bernstein’s
inequality,

1 —%71262
P(fE Y1~j>e)§exp< 1 >
ni >4 BYS + 3Ane

_1p2.2
Conllé®® — FB + $Ane

_L1p2.2

2

< exp ( T ) (27)
CnpnA? + 3Ane

By taking ¢ = C'A,/2%logn for some large C’, it follows from the union bound and

npy, = Q(logn) that the event A; = {max; |r§0)| = O(v/npnlognA} has probability at least
1 — exp(—BO(logn)).
Now, from our assumption n|ag| > max{/np, logn|© — oo, 1}, it follows that

nagg) > 4t0r§0) +b§0) under event A1, simultaneously for all . Thus, similar to the population

case, we can write
1/1(1) = g(nafi)lcl + g(na(_og)lc2 + 460,
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where [|600)]|o = O(exp(—n min{\aﬂ\, |a(_0%|})) = 0(1), with probability at least 1—exp(—0(logn)).
After this the proof proceeds like the the proof of Theorem 4, and so we omit it.
(1)

Let us consider the case with s = 2 and we will show ;" can be bounded in a general

way. Now

€@ = 4t M (™M) — %1) + 4tor™)

= 4o M (D — 21) + dto(A4 — PV — £ ®)) + dto(4 — B)(e(w®) - 21).
Ry ~~
Ry

Now the analysis of the first term follows from Theorem 4. Define event Ay = {max; |Ry ;| =
O(vnpnlogn)}. Since £(() e {161,162,1,0,%1} which is a finite set, by the same
argument as Eq (27), Ay has probability at least 1 — exp(—O(logn)). For R;, define
Az = {||A = Pllop = O(\/npn)}. As has probability at least 1 —n~", r > 0 (Theorem 5.2 in
Lei et al. (2015)). Under As,

max|Rial < [|Rfl2 < CA = Pllopllo™ — e ®)]l2
— O(y/pn)v/n - O(exp(=O(nmin{|al)], |a)|}))) = o(1),

using the assumption that n]ag] > max{v/np, logn|y©® — %HOO, 1}. Hence max; ]rl(l)\ =
O(v/npplogn) and na((,li) > 4t0r§1) + bgl) simultaneously for all 7, under As N A3z. The same
analysis as in the s = 1 case follows.

The case for general s can be proved by induction using the same decomposition of (%),

which can be bounded uniformly for all s under As N Ajs. [ |

The main proof of Theorem 9 relies on a few lemmas, which we defer to the end of the
proof.
Proof [Proof of Theorem 9|

For convenience, we assume A has self loops, which has no effect on the conclusion.
Similar to the notation used in the proof of Theorem 7, we decompose &; as the population
update plus noise,

64D = atg M, (609 — 1) ity (4~ B(A|Z));, (0 — 1), (25)
—_———
signal (s)

7

Note that the signal part is constant for ¢ € 1¢, and ¢ € 1¢,. For convenience denote

1
51 = M;. (90 — 51), iele,

s9 = M; (90 — %1), i € 1c,. (29)
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Similarly, define sgl) and sél) in terms of 1/1(1). By Lemma 23, since pg > Ag > qo, for

Al, AQ >0,
1 1
st = (b0 = 20) Y (" = 2) + (a0 = 20) Y- (" = 3)
1€Cy 1€Co
n (1 s1 — A\ n (1 S92+ Ao
> _ S _ _ S _
> (po )\0)2<2 ‘I’< o >>+(CI0 )\0)2<2 q)< o ))
— O(npy)(e~0B1 4 gmitoday 0<npn>§§ — Op(vnpa). (30)
Ry
Similarly,
1 1
s = (g0 — Ao) Z(%(l) —5)+(po— o) Z(I/},(I) —3)
i€Cy 1€Ca
n (1 51— Aq n (1 S9 + Ao
< _ A _ _ A _
< (9o )\0)2<2 ‘1)< o0 >>+(Po )\0)2<2 ‘I)< - >>+R¢

(31)
We consider bounding sgl) and sgl) based on the signs of s; and s, which only depend
on ¥, Therefore in each case, we first consider the conditional distribution given $(©).
Case 1: s1 >0, so < 0.

Let A1 = €s1, Ay = —es9 for some small € > 0. We have
_ _ 22
1_@ (_(1 e)sl> > (1—¢€)s; exp e 62) 7 ’
2 Oy aw\/27r 20#’
_ _ )22
o <_(1 6)32> Ly (-9sm (_(1 62) 32> |
0y 2 o'w\/27'( 20'111
where we have used
B(a) — 1/2) = /'m' —u2/2
x) — = — e u
V21 Jo
x| 2
> 2l Q‘WG 2, (32)
Applying the above to (30),
1 . n(l—e) (1—¢)%s3V s?
S$7 > ———= —Xo)|si|+ (Ao —qo)|s2|)exp | ———F—=—— | — Ry. 33
1 = 2mgw<(p0 0)’ 1‘ ( 0 QO)’ 2‘) P 203) P ( )
Similar arguments show
1) o _nd—¢ (1—¢)2s3V 83
85’ < ———2((Ag — s1]+ —Xo)|s2])exp| ——————=—— | + R 34
< L Qo @il + (o Aoz e 2ot o B
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Case 2: s1 <0, s9 > 0.

The same analysis applies with the role of C; and Cs interchanged.

Case 3: s1 >0, s9 > 0.

WLOG assume s1 > s3 > 0. Taking A; = Ay = €(s1 — s2), (30) becomes

(1) > [(po — Ao)(s1 — €(s1 — 52)) — (Ao — qo)(s2 + €(s1 — s2))] exp —7(1 6)28% - R
9 ﬁ2 ) 0 0)(S1 1 2 0 — qo0)(s2 1 2 952 W
> ——1[(Mo — q0) — €(po — q0)]|s1 — s2| exp —7(1 6)281 - R (35)
= 5v9n ) 0 — 40 Po — 4o 1 2 5 ?p v

using pg — Ag > Ao — qo (Proposition 2). Since \g — go = Q(py) also by Proposition 2, choose
a € small enough so that (Ag — qo) — €(po — q0) > Q(pn)-
Similarly, taking A1 = €81, As = €,,89,

1) n (1+ en)252
sy < *m[()\o —q0)(1 — €n)s1 — (Po — Ao)(1 + €,)s2] exp (20121)1 + Ry,

(36)

(Ao—go)(1—€n)

o) (1Fer) — for some small 7 > 0. When s < ¢s1,

Letting €, — 0 slowly and denote ¢ =

D e — A + Ry. 37
s3. < Tﬂaw??(po 0)[s1| + Ry (37)

By Lemma 22, so < ¢s1 happens with probability

arctan(c,)  arctan(cy)

~1/2
o o +0(n )

P0<sg<ecs)=

_ po—Xo _ (Po—X0)+c(Ao—qo)
where ¢, = M=o ¢ = elpo—Ao)+(Ro—qo)"

When s9 > s1 > 0, the analysis is the same by symmetry. We have the same bounds for
(1) (1)

s; 7 and s, with s; and so interchanged. By a similar calculation, we need

arctan(c,')  arctan(c;
2m 2m

1
P(0 < s1 <csg) = ) +0(n~?),

Case 4: s; <0, so < 0. By symmetry, g(4to(s1 + T’EO))) — 1 =1 —g(—4to(s1 + 7“1(0)))
(similarly for g(4to(s2 + r( )))) It suffices to apply the same analysis in Case 3 to —s1, —s2
and —T‘Z( ). For example, when s; < s9 < 0, —sgl) is lower bounded by (35), —Sgl) is upper
bounded by (36) when 0 < —s1 < —csa.

Now combining all the cases, define event B as

_ . 1+¢€)2s2 v s2
B = {|5§1)|, ]551)| > Cnnpnawlmlnﬂsl], |sal, [s1 — s2|} exp (—(2)0221 — Ry, Sg )sg) <0y,
P

where C' depends on pg, gg. Cases 1-4 imply
PB)= > PBRY =p)P@”=v)+ > PBRY =P =y)

P:s182<0 P:5152>0
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> P(s152 < 0)+2P(0 < s3 <e¢s1)+2P(0 < s1 < ¢s2)

1 N 2 arctan(c, ') N arctan(c,) — arctan(c;!) _ arctan(cg) — arctan(c, ') O
2 T us m
—1
4 arctan(cg) — arctan(c, ) L Om1), (38)
T
where
1 arctan(c,?!) ~1/2
P(51>O,32<0):P(81<0,32>0):Z+7+O(n )
T

using calculations similar to Lemma 22.

Define event D = {|s1|,|s2|, |s1 — s2| > pnv/n/cn} for some ¢, — oo slowly. Then
by Lemma 20, P(D) > 1 — O(1/cy,). Also Ui = Npp, Py X Npn, e olsil emdtolszl —
Op(exp(—pny/n)), and €, — 0 slow enough such that "O?\F‘C"l’ — 00, it follows Ry, = o(npy/?)
with high probability. Then by (38),

t — arctan(c; |

—o(1), (39
— o), (39)
for some constant C' depending on py, qg.

From now on we will work under the event in (39). In the next iteration, write the true

labels as zp = 1¢, 1{s\") > 0} + 1¢,1{s{") < 0}. When s{" > 0 holds,

1 _
5 < e 4+ 1o < wo} (40)
1+ %

\7/11-(2) — 204 =

for any x¢ > 0. For i € Cq,
€9)  agg6l) 4 dtgr)
= 4t03§1) + 4to(A — P);i (20 — %1) + 4tg(A — P)i,-w(l) — 20)

Taking o = Ciptopn n/cn, since s > Crnpil* /cq, we have dtos() — 220 > 2Cntonpy* /e

for large n. Further, (A — P);.(20 — 31) = O(v/np, logn) uniformly for all i with high
probability by an argument similar to Eq (27), then

]l{ff) <zo} <1 {4tos§1) — O(y/npnlogn) < 2:60}
1 {4t0(A — P)z,(w( — Zo
< exp (2:c0 - 4750551) + O(\/npplogn) ) + {4750(A — P)i. () — 2) < —Cntopi/Qn/cn}
< exp(—~Cinpl/*n/en) + 1 {(A = P)i (6 = 20) < ~Cynpl/*njen}  (41)

H,_/

where C], C} are constants depending on po, go. Similarly for i € Ca,

1€ <20} < exp(=Clnpl/nfea) + 1{(A= P)i. (0D - 20) > Cynp¥?njen} . (42)
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Summing (40) using (41) and (42),
[ = z0]ls < nexp(=Cinp/*n/e,) + Y 1 {((A — P)i. (v = z9)| > Cznp3/2n/cn}

AWM — 20)T(A - P)2 (M) — 2)
(C5)*n*n2p3
2||A = P|2,lvW — 2|3
(C)*n?n?p;,

2 qub ZO||17 (43)

< nexp(=Cinpy/*n/cq) +

< nexp(=Cinpy/*n/cn) +

Che2
n2np2

< nexp(—Cinpd/*n/ecn) +

redefining C% in the last line, where we have used the fact that there exist r > 0 such that
|A — P|lop = O(y/npr) with probability at least 1 —n™" (Theorem 5.2 in Lei et al. (2015)).
The probability of (43) happening has the same lower bound as in (39).

The case for sgl) < 0 is similar with 2y = 1¢,.
For later iterations, note that when 2o = 1¢,, [ — 201 = n/2 — (1, uy), then (43)
implies

<w(2) ug) > 2 — dpn

for some ¢,, = o(1) slow enough such that §, > exp(—Cmp?/Qn/cn) + n%:fg , and
1€Cy
Then since A\g — qo > 0, pg + qo — 2Xo > 0,
s = (o = a0) (0@ u2) + (o + a0 — 220) Y () — 1/2)
1€Cy
n n
> (Ao — %)(5 —6nn) + (Po + qo — 2)\0)(1 — dpn)
1
= E(Po — qo)n — 0n(po — Ao)n > Co(po — qo)n (44)

for a general constant Cp < 1/4 independent of model parameters, and large n. Similarly,

S @ —1/2) < —% + dan,

1€Co

58 = (Ao — a0) (@, ua) + (b0 + a0 — 200) Y (%) = 1/2) < —Co(po — a0}
1€Co

The rest of the argument in (40)-(43) applies with above bounds for 552) and 552), xo =

Coto(po — qo)n, giving

Co Pn

13 — 2|1 < nexp(—Cito(po — go)n) + —
(po — qo0)*n

19® = zolx (45)
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for some general constants C7, Cs, independent of model parameters. The probability of (45)
happening still has the same lower bound as (39).
The same arguments can be repeated for all the later iterations.
|

Now we state and prove all the lemmas needed in the main proof. First we have a few
concentration lemmas.

Lemma 19 (Berry-Esseen bound)

sup| P (1) foy < | @) = @(2)| < Co - 24,

T€ER Oy
where Cy is a general constant, py, and oy depend on O,
Proof Define

0 0
0% = po(1 = po) 3_ (4" = 1/2) + ao(1 — q0) D (4" — 1/2)%,
i€Cy 1€Co
pu = po(L = po) (1 = 2po +208) 3 1% = 1/2* + qo(1 — q0) (1 — 290 +248) D |f” — /2"
1€Cy 1€Co

It follows by the Berry-Esseen bound that

sup [P (1" foy < 2 | 00) — @(2)| < Gy - 25

z€eR O'w
for some general constant Cy, where ® is the CDF of standard Gaussian. |

Lemma 20 (Littlewood-Offord) Lets; = (po—Xo) Ziecl(w,go)—l/Z)—k(qo—)\o) D icey (1/12-(0)—
1/2), 2= (a0 — M) Tiee, (45” = 1/2) + (0~ 20) T, (91" — 1/2). Then
c

Pn\/ﬁ

for ¢ >0, and some general constant B. The same bound holds for |sa|, |s1 — sal.

P(|s1]<¢)<B-

Proof Noting that 2%‘(0) — 1€ {-1,1} each with probability 1/2, and gy < A\¢g < po, this is
a direct consequence of the Littlewood-Offord bound in Erdds (1945). [

Lemma 21 (McDiarmid’s Inequality) Recall r® = (A —E(A|2))(x©® — 1) and let

i

h(rl@)) be a bounded function with ||h|lcc < M. Then

2
P % Z h(rz@)) - E(h(rz@)w(o)) > w | @ | <exp (_w) .

i€Cy nM
The same bound holds for i € Cs.
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Proof Define ¢ = 2 > ice, h(rgo)), then conditional on 1), ¢ is only a function of

~n

(Aij)i<jiec,- Replacing any A;; with A, € {0, 1},

8M
lo(Ar2, ..., Agjy o) — ¢(A12,...,A§j,...)] < —
and
> 1p(Arg, o Ay ) = G(Ara, ., Al ) < 20M
1<j,i€Cy
The desired bound follows by McDiarmid’s inequality. |

Using the normal approximation, we can also derive the following probability bound for
s1 and so.

Lemma 22 For some constant 0 < ¢ < 1,

arctan(c,)  arctan(cy)

~1/2
o2 or +0O(n )

P0<sgy<ecs)=

_ (po—Ao)+c(Mo—qo0) _ po—Xo
where ¢; = c(po—Xro)+(ro—qo)’ "% T AXo—qo”

Proof For convenience, denote 11 = >, ., (1#50) =1/2), Ty =) icc, (1/)(0) —1/2), then

i

(Po — Ao) + ¢(Ao — qo) o — Ao }
0<s59<esy !t = Ty <Ty < T
{052 < e} {C(po—/\o)+(>\o—qo) D
= {cTo < Ty < ¢, Ty and Ty, Ty > 0}

where 1 < ¢y < ¢,. It is easy to see that E(Ty) = E(T2) = 0, 02 := E(T?) = E(T?) < p2n,
E|T\|? = E|T\|? < p3n. Then

P(O <59 < 631) = P(O <T} < CuTg) — P(O <Ti < Cng). (46)
The first part can be calculated as

PO<Ti <c,Ty) =Y PO<T <ct|Ty =t)P(T =)
t>0

= P(0<Z < eyTooy! [Ty =t)P(Tr = 1) + O(n™/?)
t>0

=E ((®(cyTror") — 1/2)1(Tz > 0)) + O(n~/?)
using the Berry-Esseen bound, Z; ~ N(0,1). Now note that (®(c,Tho,") — 1/2)1(T3 > 0)
is continuous and monotonic in 7. For every ¢ € (0,1], there exists a(t) > 0 such that
®(c,Toop') —1/2 > t & Thor' > a(t). We have

E ((®(cuTror!) — 1/2)1(T2 > 0)) = /01 P ((®(c,Toor") — 1/2)1(Ty > 0) > t) dt
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— /1 P(Tyo ' > a(t))dt
0

_ /1 P(Zs > a(t))dt + O(n~Y2)
0
= E (®(cuZs) — 1/2)1(Z3 > 0)) + O(n~/?),

Zy ~ N(0,1), independent of Z;. It remains to calculate the expectation, which can be
written as

= i - - ex —’LL2 ex —22 uaz
wi@) = 5= [ [ esp(cu/exp(=/2)ua

for x = ¢,. Now

1 [ 1
"(z) = — ~(1+2%)2*/2)de = ——
W) = 5 [ rexp(=(1 40722z = 5
Integrating both sides, we get: w(x) = amt;:(m) + C, where C' = 0 since w(0) = 0. Thus
w(ey) = %ﬁ(c“) The same calculation can be done for P(0 < T} < ¢/T%). Substituting
into (46),
PO < 55 < cs1) = arctan(c,)  arctan(ce) O
2 27
|
Finally, we have the following general bounds for Zz‘ecl 1/1,51) and Zie@ ¢§1).
Lemma 23 For any Ay > 0,
- A
Zw}1)2”<1_®(_81 1>>—ne4t°A1—C’n-m§—Op(\/ﬁ),
: 2 oy 2 o
1€Cy1 P
A
Yo <t <1 ~ (—81+1>> + Do iod ol P Op(ym),  (4T)
o 2 o 2 oy

where ® is the CDF of standard Gaussian, py, and o, are constants depending on ) defined
in Lemma 19, and the Op(\/n) terms are uniform for YO The same upper and lower bound
hold for i € Co and ss.

Proof Define an index set Jfr ={i: T‘Z(O) > —s1+ A1}, Ay > 0. Then for i € C1 N Jfr,
%(1) = g(4to(s1 + 7"50))) > g(4tgAq) > 1 — e HoAr,
It follows then

STl > e n g1 - e oA (48)
i€Cy
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To calculate the size of the set, note that

i nJt =31 > —s1 + Ay),

1€Cy
By Lemma 21,
€0 A = 5P6 > —s1+ A1) | 60) + Op(vi)
> 2 (P(T > —s1+ A1) = Cop- Pg) —Op(Vn)
2 oy,
”O¢(“‘Aﬁ>cmf@0mwm (49)
2 0 Uw

where the second line follows from Lemma 19, with ® as the CDF of standard Gaussian,
r~ N(0, afp) and the Op(y/n) can be made uniform over (). (48) and (49) imply

T (1 (8) ) sy
1€Cy 2 T

—C'n- 22— 0p (i)
Ty
> n <1 _ & <_51 —Al)) B 2674%&
2 o 2
' op(v). (50)
%

Similarly let J; = {i : TZ(O) < —s1—A1}, Ay >0. ForieCinJg,

M = g(ato(s1 + r'?)) < g(—4tgAy) < e~ HoAL

We have
STl < ey n g fe o + —lcinJ;|
i€Cy
=§fwwunuffmkx (51)
where
wwun—§<ﬁ<—a—mHW%+OﬂﬁD
> 2o (81 :f1> C'n % — Op(yn). (52)

(51) and (52) give

Z ¢(1) < g gq) (_31 + A1> (1 _ e—4toA1)

g
i1€Cy ¥
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+C'n - g—;f + Op(v/n)

b
< n <1 _ & (_51 +A1>> " 2674150&
2 oy 2
+C'n- 22 1 0p(vi). (53)
%

Proof |Proof of Corollary 11|
Let £, A be constants defined in the usual way in terms of p,§. First we observe using p, §
only replaces t, A with £, A everywhere in (28). Now

1= (0~ 2 D (0" = 1/2) + (0= N D - 1/2)

1€Cy 1€Co
= (0 -9 3@ —1/2)+ (o - 1) Y@ —1/2)
1€Cy 1€Co

We can check the rest of the analysis remains unchanged as long as p, ¢ < pp, [p—q| = Q(pn),

1. botdo 5 )

2. A—qo=Qpn) > 0.

C.2 Proofs of results in Section 3.2

Proof [Proof of Proposition 13| That the described point is a stationary point is easy to

verify, because of the presence of the (¢; — 3) terms in the stationarity equations (19). Now,
1. 1741 1741
27 n(n—1)’ n(n—1)’

from (20), we see that the Hessian matrix at (3 1) is given by

—47 0 0
H=|o0" —Eaj?) (0 .k
T n(n—1
0 0 " 4a(1-a)
where a = nl(;’_%) Clearly, H is negative definite. This completes the proof. |

Proof |[Proof of Lemma 14] First note that conditioning on the true labels Z, E(A|Z) = P.
For notation simplicity, we omit the superscript of ¥(?). For the update of p™"), we have

0 — TPy + (1 —9)'P(1— )
YT (J - I>w+< — )T (] = (1 - 9)
YT (A= P+ (1 —9)T(A-P)1—1v)

N v+
ST+ =TT - DA 3)

34



WHEN RANDOM INITIALIZATIONS HELP

where the first term can be written as

w1 ul 4 Po— qou2u2 POI)¢+( w)T(p0+q0u ul 4 Po— qou2u —pOI)(l _w)
T (uruf — D)+ (1 = )T (uruf - I)(1 - ¢)
:wrﬂ(ﬁ + (1= ¢1)%) 4+ n*(po — 90)¢3 — pox
Gn2+(1-G)n? —z
_pot+ao , (po—q0)(G —x/2n?)

2 T @ra-q)r-am

where z = le)T@D + A =-P)Ta—-y) > n/4. The second term can be bounded by noting
E(y"(A — P)yp) = 0 and Var(¢" (A — P)y) < 2n(n — 1)po. By Chebyshev’s inequality,
YT (A — P)yp = Op(y/pnn).

This is because

wT ( P0+qo

Ey,a[67 (4 - P)y] = EyEalu (4 - P)y| 4] = 0,
and
Vary,a [ (4 — Pyl = E (Var(y7(4 — P)y| ) + Var(E[w (4 - P)y| v])
= E (Var(y"(4— P)y|v))
=4E Y hitp;Var(A;) < 2n(n — L)po

1<j
(1 — )T (A — P)(1 — ) can be handled similarly, and
W =D+ A=) (] = D1 - y)

2 2
= (Zw) + @—Zw) Ty = (1=9)"(1-4)
>n?/2 — 2n,

since the first two terms are minimized at ), 1; = n/2.

The result for ¢(Y) is proved analogously. |

Proof [Proof of Proposition 15| Let 1) = Cju1 + Coug +w, w € span{u, us}*, be a stationary
point. We will consider the population version of all the updates and replace A with
E(A|Z) := P and p, — 0. By Lemma 14,

po+q0 . (po—q0)((3 —z/2n?)

Pt s -G
. pota  (po—q0)(G +y/2n?)
1= 26(1— (1) —y/m® (55)

!
€
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In this case, the update equation (8) becomes

€= 4H(P — MJ 1) — 1)

= 4din <(C1 - ;) <p0 ;— “_ 5\> up + 22 ; qu2U2> + 4E(X — po) <¢ - ;1)
+b (56)

D

=n

where A and f are defined in terms of p and ¢. Since 1 is a stationary point, the above
update gives 1 = g(§).

We consider the following cases.

Case 1: (2 = Q(1). Since (1(1 — (1) > (3, it is easy to see that (55) implies that
P> PF s G othus p— G = Qpy), £ = 1), p < X < §. It follows then b; = O(py,), and
la;| = Q(pp) for i € Cy or i € C2 (or both). In any of these cases, ||w| = O(pnyv/n) = o(y/n).

Case 2: (5 = o(1). Note that T(1—) > 0 implies that ¢, (1—¢;)— 145 > ¢2. 1f w2 =
o(n), we are done. If |w[> = Q(n), ¢1(1 —¢1) = Q(1). In this case, p = 2FL + O(p,(3),
and similarly for §. It follows then that £ = O(¢3) = o(1), A = ROX90 4+ o(pp) (we defer the
details to (59)- (63)). Also note that b; = O(p,C3). When n|a;| > b;, g(&) = g(na;) + o(1).
Since g(na) € span{u,us}, this implies that ||w| = o(y/n). When n|d;| = b;, & = o(1), and
so we have ||w| = o(y/n) again. [ |

Proof [Proof of Theorem 16| Let a = (po+qo)/2. By (10), define &y := 41 (G —-13) (a—A1)

and kg = 4t(1)C2@. Consider the initial distribution w@(o) i fu, where f is a distribution

supported on (0,1) with mean p. Note that we have the following:

(ONT
=" s 0n(1/ v, 657)

ONT
o=l o0 vm)
Now using (12), recall that

1)y _ Pot+a | (po—qo)(G5 —x/2n?)
P =T Y g e YO/

!
€1

~~
€1

B 2 n2
R R T = 59

!
€

€2

This gives
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cr=cs+0p (YIU) —0p (Y1)

n n

We will use the following logarithmic inequalities for a > € > 0:

2 2
€ <logltic (59)
a-—+e a—e€ a—e€
Now we have
1 1-—
tW = = (log ota + log _ate ,
2 a— € l—a—¢€
s Gte  ate o (€1 +€2) 7
at+er l—a+e ~ (a+e)(l—a+e)
2t < (1te) (60)
(a—q)(l—a—q)
For A1) if €; + €3 > 0, we have
log =075 + + +
1
/\(1) 1—p(H) - < €1 + €9 /(61 €2+ €1+ €9 >:a+61. (61)
log (1)+1g1_q l—a—¢€ a+ € l—a—¢
/\(1)2 €1 1+ €2 61+62+ €1+ €2 . (62)
1—a+e a— € 1—a+e
If61+€2§07
log =475 + + +
_ (1
AV B0 ate /(1 @, _ate )—am, (63)
10g§(1)+1g1_q(1 l—a—e a+ e l—a—¢€

N < €1+ €2 61+62+ €1 + €2 —u—e
~“1l—a+e a—ey l—a+e z

1 D) _ VPn

), Ja— AW| = Op(¥22).

We next try to generalize the above calculations for any iteration s. For convenience we
assume A has self loops, which makes no difference to the asymptotics. Note that, for some
€'] < €, since ¢"(0) =0,

The above analysis shows t() = O r(5

3
P=9(6) = 5+ 16+ "€ =3 + £ +O0E) (64)

using the fact that ¢”’(§) = O(1) V€. Substituting, we have:

¢ = (p9,1) = ;+4<5<s>,1>+0<||<¢%||2>

_ % + t:) <(A B ) (D) - ;1),1> +0 <”( \/nl "2> , (65)
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using the update equation for £(*) in (11) and assuming A has self loops for convenience.
Here using the decomposition A = P + (A — P),

(=N = J1 1) = (B0 0 () -1
(=P = 20).1) < VA = Pllolle ) - 1)

_ 1
= Op(v/a2pu)[940 = S,

where the first line follows from P — A(8).J = (o490 — \(9)) 117 4 20904450, Tt follows then

() 1
- 5
4 t(s + . 3 1 (5)}3
‘ | <n2 (pO 4o (s)) |C£ 1) _ 1/2| +OP(M)H¢(S 1) _ 21||2> +0 <H(§ )°ll2
vn
S p + q s S— S— 1 ||£(S) |3
1690 (P50 - 39 I < 1720+ OplyBIW D - G1l) + O ( L
(66)
since [[03|l2 = y/>0; v8 < |Jv|l2]|v]|Z, < ||v]|3 for any v. Similarly, we have:
) _ 1/ (9 R R 1(E)2 ]2
CQ - n <¢ ,’LL2> - in <£ ,"LL2> \/ﬁ )
() 1 [GRN
- YO (s—1) _ = 2
- <(A AT (Y 21),u2>+0< Tn , (67)
@ 119 (n*(po — q0) | (s—1) 3 (s—1) 1 1(€9)3]I2
&= — 5 |G |+ Op(V2p)Y 5z ) +0O BV
s 51 o1y 1 1€))13
= [(1(0(npa) 65" |+ Op (Vo) [0 = S1]l2) + O ( e (68)
For the norm of £,
+ S— S—
160 < 4] (82 (| (252 - 2@) (€ = 1/2)| + Onlics ™)
1
+Op (g e = Sl (69)

using the same eigen-decomposition on P.
To bound t®), we can first define egs) and egs) in the same way as (58), where the

order terms come from the second part of (54) (and an analogous equation for ¢, with
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general 1~ replacing ¥). Then provided Cfs_l) is bounded away from 0 and 1, and

e, 8 = op(pa), by (60),

|t(s)| — OP(CSS*UV + O(n21p ) ((w(s—l))T(A _ P)%Z)(S_l) +(1— T,Z)(S_l))T(A —P)(1-— 7!1(5_1)))
+ 0P ()W) (A = P)A —47Y), (70)

where for any v,

[

YA = Py = 1T (A~ PLAAT(A - PY( — 1) + (0 — 317 (A~ P)( — 1)
= Op(ViZpn) (1+ 1~ 5111) + Op (Vg0 — 3113
= Op(VBp)(1+ 6~ 51)
since [~ Y — 11| < \/n. Similarly
WA= PL= (- 317 (A-P)1+ %1%4 _pi
= Op(v/i2on) (1 + 9~ 5111).

The upper bound on ¢(*) becomes:

|NH=@%@*Wﬁ+0P<

1 1
1 (s=1) _ 21

In a similar way to bound A(®) note that defining general egs), egs) in (60)-(63), as long

as Cfs_l) is bounded away from 0 and 1, and 658)7 658)

— Op (pntcs))

= op(pn), we have:

Po + qo (s)
BoTd _,
2

Finally,

1 1
(s) _ = — 2 1e(s) (s)\3
[ = 512 = Z1E912 + 0 (1)1l
1 S S
= 71691+ 0 (IE)g) (71)
For s = 1, we have the following:

1 + vV Pn
(1) _ PoTdgo () _
t Op(n pn), B) A OP( n )7

1
1€D] |2, [lp® — 51!\2 = 0p(1),

1
MU—U%@W=opQﬁ)
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where the second line follows from (69), (71), noting C{O) = Op(1), Céo) = Op(n~1/?). The
last line follows from (66) and (68).

For s = 2, note that the above bounds imply Cl(l) is bounded away from 0 and 1, and
(s) (s)

€ ,€ = op(pn). Using the same set of equations again, we have:
1 v/
12 = Op( ), ot a0 @ _ gV
n\/Pn 2 n

1
1€ l2, [ = S1]l2 = Op(v/pn)

6~ 1/21 161 = on /22) (72)

In general, once |[1)(5~1) — 112 = Op(1), ]C{S_l) —1/2] and |§§S_1)| = Op(1/4/n) we have

t) = 0p(1/n/Bn), (Po+ q0)/2 = A& = Op(/pr/n), €Dz = Op(y/An)s 161 — 1721, 157
are both op(1/y/n) and || — 11|52 = Op(/pn).-

We can further derive a contraction result from s = 2 onward. Since the rates in (72)
hold for s > 2, and applying (64) to ¥(%),

6~ 210> < 769> + Ol )

< L1E@ )+ 0p(pY2). (73)
For 5(5)7
€0 =10 (P NI = L1+ (4- P - 1))

where [|(P— A J) (7D — 31)[l2 = Op(pn) [ = 3112, and [[(A = P) (07D = 51)[|2 =
Op(y/py)|[ =Y — 11]|5. Tt follows from (73) and the rate of (%),

o 1 |
[6) = Sz < Op(1/Vm 67D = J1lls + Op(p2?).

[ |
Proof [Proof of Theorem 17| Under the current initialization,
1 1 0
Cl = 5 + ﬁ E )7
=1
1 o 1 (0)
Cz:A/Hg'Z%( —;,Zei : (74)
Zelcl 7«€1C2

Define the event A; = {1 Dicle EEO), 1 dicle 650) = O(y/logn/n)}, then by Bernstein’s
1 2
inequality, this event happens with probability at least 1 — exp(—©(logn)).
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Recall €; and € from Eq (58). Define Ay = {( )T (A — P)yp©, (1 —pO)T(A— P)(1 —
¥(©) = O(nv/pnlogn)}. By a similar Bernstein’s inequality, As has probability at least
1 —exp(—0O(logn)). Then under A; N Ao,

2 — =& v, logn
§+O(\/logn/n)—p n
G+ g
2 = (Po — qo) = +0
% + O(y/logn/n) — n%
using (74) and the same decomposition as in (54). The lower bound (15) on Ay implies

(3> \/logn/n, it follows 0 < €1, €2 < a since |(2| < 3, and €1, €2 = O((po — g0)¢3). Then by
(60)-(63),

w)nlogn>
n

9

¢ = e(“p*f) — 0 ((po — a0)3/pn)
ja = A| < max{er, es}. (75)
Next define
k= 44D (¢ — %)(a EYG)
Ko = 4t(1><2(p°gq0). (76)

Using (74) - (76), under A; N Ag,
_ 440D Po —qo
K1+ ke =48 | Ap- —5 T O(pn\/logn/n) |,
K1 — kg = 4t <—Au : Zw + O(Pn\/logn/n)> :

From (10) and adding the noise term from the sample version of the update,

fgl) = n(k1 + oik2) + b§°) + m"go), (77)
0y,

By the argument in (27), A3 = {maxl- |r§0)] =0 (M%"log n)} has probability at least
1 — exp(—O(logn)). For any pair i € C; and j € Ca, under N3_, A, we have

In (77), bgo) is of smaller order than the other terms and it suffices to consider n(x1+0;ka+7

(k1 + ko + V) (k1 — g + r](.o))

%

(5} = #3) + O (max(|r(® |, |ri® ) max(f ] |2 )

<1600~ 220 1 04 iag /) ) + 260 calton — )0 2 o)

<Ot o — )l (1 — ao) + 02 ogn) )
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<Ct (o — ) S0l (1800 — 00+ 02 hog ) ) <0

1/3 1/3 1/4
3/2
for |Au| > C <p” Vlog") = @( bg") > <10g") for some general constant

(Po—a0)*v/n npn n

C large enough, independent of n and model parameters. Thus n(k; + k2 + 7’50)) and

(0)

n(k1 — K2 + T ), for i, 7 in different blocks, have opposite signs.
We will now check if n(k; + oik9 + rl@)

k1| — max; |r\”]). By (75), (76),

allral = ] = max ) = 0 (C180P o — a0) = O % log))

> Q(y/npplogn) — oo

Thus n(k1 +0oik2 —|—1"£0)) is growing to infinity with an order bounded below by Q(v/np, logn),
with probability at least 1 — exp(—©(logn)).

If n(k1 + ko + 7"1(0)) > 0, since ngl) = g(n(k1 + oik2) + bz(-o) + m"go)), we have (1) =
1c, + O(exp(—Q(v/np, logn)) with probability at least 1 — exp(—©(logn)). The case k1 +
Ko + Tio < 0 is similar.

For later iterations, WLOG assume zyp = 1¢,, and A has self-loops for convenience.
First noting that the error term in ™) is uniform, we can write [ — 1¢, |l = 11y,
where 1, = O(exp(—Q(yv/np,logn))) with high probability. We have Cfl) = 124+ 0(m),
Cél) =1 — O(ny). To obtain p®, ¢, we observe in Eq (58), z =n — ©(nn,), y = O(nn,).
Using the decomposition in (54), define Ay = {||A — P||op, = O(\/npy)} which has probability
at least 1 —n~", r > 0, then under Ay,

) — o0, and it suffices to lower bound n(|k2| —

W (A~ P)y| < |A— Pllopllv]|3 = Op(n®?pl/?)

for general 1. It follows then

2) _Potd  Po— 9o
P > T3

= po — O(pnnn) + O(v/ pn/n),

(1 + O(nn)) + O( V pn/n)
(
g =D POZ D o)) + O(/pu/n)
(

2 2
= qo + O(pnin) + O/ pn/n). (78)

To bound t@ and A, note that

(2) (2) _
p p Po + Po Do
log L —1og LT POTPO _ 100 PO L oy 01 rpn),
@ T %@ g tw0 Cw F1n) + O/ /n)
1—q® 1—qo— g% + g 1—qo
08 @ =08 T T B e = OB T, T Obnta) + OWpn/), (79)
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then

t3) = 1o+ O(na) + O(1/y/1pn), A = Xg + O(pann) + O pu/n). (80)

To show that contraction starts from this iteration, we can use arguments similar to the
last part of the proof of Theorem 9. Writing

¢@ = 4@ (P - X (M) — %1) + 4t (A - P) (M) — %1), (81)

the signal part is constant for ¢ € 1¢, and 7 € 1¢,. Denote

A0 = 0 -2 T - )+ (a0 - A Tl - )

; 2 : 2
1€Cy 1€C2
1 1
s = (a0 = AP D@ = 2) + (oo = AP S - 9.
i€Cy i€Ca

It is easy to see that when n is large,

n nn
stV 2 (0 —a0) (5 = 2% ) + (o = AP)mum
> Co(po — qo)n, (82)

for some general constant Cyp < 1/4, independent of n and model parameters. and similarly
ss!) < —Co(po — qo)n. Next in Eq (40), taking 2o = Coton(po — do), using (80), (82),

el <o} <1 {4t<2)s§” F4O(A = P)i.(z0— 21) < 2960}
1 {4t(2)(A — P (M — zg) < —xo}
< exp {—2Coto(po — qo)n+ O(v/np, logn) + 0(npn77n)}
1 {4t<2> (A—P).(p® = 2) < —mo} .
(83)

Then using the same argument as in Eq (43), for large enough n, under Ay,

C20n
143 — 20|l < nexp(—cito(po — qo)n) + ( ” @ — zo]|1.

Po — qo)*n
for some constants c1, co independent of n and model parameters. The same argument works
for later iterations under ﬂi:p‘lk, thus the high probability statement holds uniformly for
all iterations with probability at least 1 —n™", 0 < r.
|
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Appendix D. Additional simulation

We compare the effectiveness of the random initialization 1/)1(0) i Bernoulli(1/2) with in-
formative initializations obtained from spectral clustering and SDP. For SDP, we use the
algorithm in Li et al. (2018) with the tuning parameter selected using the method in Cai
et al. (2015). In Figure 6(a), we set the average degree of each graph to 20, n = 400, and
vary the po/qo ratio; smaller ratios mean weaker signal. We run BCAVI with three types
% Bernoulli(1/2) (blue), ¢
clustering (black), and w;o) set to the result of running SDP (red). The plot shows the
mean accuracy and standard deviation from 20 random graphs at each point. As expected,
BCAVI initialized with spectral clustering and SDP have higher accuracy, although random
initializations have quite reasonable performance in high signal regimes. Figure 6(b) is similar
with average degree set to 30. In this denser case, the performance of random initializations
improve, and become very close to the other two methods.

of initializations: 1/12-(0) set to the result of running spectral

1 1 —
0.9 0.9
> >
00.8 008
o ]
= =
Q Q
£o7 go07
0.6 0.6
0.5 —Frandom |{ 0.5 ——random
——spectral —1—spectral
—1-spbP —1-sbP
0.4 0.4
14 1.6 1.8 2 2.2 24 2.6 2.8 3 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
p/q ratio p/q ratio

(a) (b)

Figure 6: Average clustering accuracy of three types of initialization scheme for n = 400,
average degree equals 20 (a) and 30 (b).
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