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Abstract

We study the following learning problem with dependent data: Observing a tra-
jectory of length n from a stationary Markov chain with k states, the goal is to
predict the next state. For 3 ≤ k ≤ O(

√
n), using techniques from universal

compression, the optimal prediction risk in Kullback-Leibler divergence is shown
to be Θ(k

2

n log n
k2 ), in contrast to the optimal rate of Θ( log log n

n ) for k = 2 previ-
ously shown in [FOPS16]. These rates, slower than the parametric rate of O(k

2

n ),
can be attributed to the memory in the data, as the spectral gap of the Markov
chain can be arbitrarily small. To quantify the memory effect, we study irreducible
reversible chains with a prescribed spectral gap. In addition to characterizing the
optimal prediction risk for two states, we show that, as long as the spectral gap is
not excessively small, the prediction risk in the Markov model is O(k

2

n ), which
coincides with that of an iid model with the same number of parameters.

1 Introduction

Learning distributions from samples is a central question in statistics and machine learning. While
significant progress has been achieved in property testing and estimation based on independent and
identically distributed (iid) data, for many applications, most notably natural language processing, two
new challenges arise: (a) Modeling data as independent observations fails to capture their temporal
dependency; (b) Distributions are commonly supported on a large domain whose cardinality is
comparable to or even exceeds the sample size. Continuing the progress made in [FOPS16, HOP18],
in this paper we study the following prediction problem with dependent data modeled as Markov
chains.

Suppose X1, X2, . . . is a stationary first-order Markov chain on state space [k] ≜ {1, . . . , k} with
unknown statistics. Observing a trajectory Xn ≜ (X1, . . . , Xn), the goal is to predict the next
state Xn+1 by estimating its distribution conditioned on the present data. We use the Kullback-
Leibler (KL) divergence as the loss function: For distributions P = [p1, . . . , pk] , Q = [q1, . . . , qk],
D(P∥Q) =

∑k
i=1 pi log

pi

qi
if pi = 0 whenever qi = 0 and D(P∥Q) = ∞ otherwise. The minimax
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prediction risk is given by

Riskk,n ≜ inf
M̂

sup
π,M

E[D(M(·|Xn)∥M̂(·|Xn))] = inf
M̂

sup
π,M

k∑
i=1

E[D(M(·|i)∥M̂(·|i))1{Xn=i}] (1)

where the supremum is taken over all stationary distributions π and transition matrices M (row-
stochastic) such that πM = π, the infimum is taken over all estimators M̂ = M̂(X1, . . . , Xn) that
are proper Markov kernels (i.e. rows sum to 1), and M(·|i) denotes the ith row of M . Our main
objective is to characterize this minimax risk within universal constant factors as a function of n and
k.

The prediction problem (1) is distinct from the parameter estimation problem such as estimating the
transition matrix [Bar51, AG57, Bil61, WK19] or its properties [CS00, KV16, HJL+18, HKL+19] in
that the quantity to be estimated (conditional distribution of the next state) depends on the sample path
itself. This is precisely what renders the prediction problem closely relevant to natural applications
such as autocomplete and text generation. In addition, this formulation allows more flexibility with
far less assumptions compared to the estimation framework. For example, if certain state has very
small probability under the stationary distribution, consistent estimation of the transition matrix with
respect to usual loss function, e.g. squared risk, may not be possible, whereas the prediction problem
is unencumbered by such rare states.

In the special case of iid data, the prediction problem reduces to estimating the distribution in KL
divergence. In this setting the optimal risk is well understood, which is known to be k−1

2n (1 + o(1))

when k is fixed and n → ∞ [BFSS02] and Θ( kn ) for k = O(n) [Pan04, KOPS15].1 Typical in
parametric models, this rate k

n is commonly referred to the “parametric rate”, which leads to a sample
complexity that scales proportionally to the number of parameters and inverse proportionally to the
desired accuracy.

In the setting of Markov chains, however, the prediction problem is much less understood especially
for large state space. Recently the seminal work [FOPS16] showed the surprising result that for
stationary Markov chains on two states, the optimal prediction risk satisfies

Risk2,n = Θ

(
log log n

n

)
, (2)

which has a nonparametric rate even when the problem has only two parameters. The follow-up
work [HOP18] studied general k-state chains and showed a lower bound of Ω(k log log n

n ) for uniform

(not necessarily stationary) initial distribution; however, the upper bound O(k
2 log log n

n ) in [HOP18]
relies on implicit assumptions on mixing time such as spectral gap conditions: the proof of the upper
bound for prediction (Lemma 7 in the supplement) and for estimation (Lemma 17 of the supplement)
is based on Berstein-type concentration results of the empirical transition counts, which depend on
spectral gap. The following theorem resolves the optimal risk for k-state Markov chains:

Theorem 1 (Optimal rates without spectral gap). There exists a universal constant C > 0 such that
for all 3 ≤ k ≤

√
n/C,

k2

Cn
log
( n

k2

)
≤ Riskk,n ≤ Ck2

n
log
( n

k2

)
. (3)

Furthermore, the lower bound continues to hold even if the Markov chain is restricted to be irreducible
and reversible.

Remark 1. The optimal prediction risk of O(k
2

n log n
k2 ) can be achieved by an average version of

the add-one estimator (i.e. Laplace’s rule of succession). Given a trajectory xn = (x1, . . . , xn) of
length n, denote the transition counts (with the convention Ni ≡ Nij ≡ 0 if n = 0, 1)

Ni =
n−1∑
ℓ=1

1{xℓ=i}, Nij =
n−1∑
ℓ=1

1{xℓ=i,xℓ+1=j}. (4)

1Here and below ≍,≲,≳ or Θ(·), O(·),Ω(·) denote equality and inequalities up to universal multiplicative
constants.
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The add-one estimator for the transition probability M(j|i) is given by

M̂+1
xn (j|i) ≜ Nij + 1

Ni + k
, (5)

which is an additively smoothed version of the empirical frequency. Finally, the optimal rate in (3)
can be achieved by the following estimator M̂ defined as an average of add-one estimators over
different sample sizes:

M̂xn(xn+1|xn) ≜
1

n

n∑
t=1

M̂+1
xn
n−t+1

(xn+1|xn). (6)

In other words, we apply the add-one estimator to the most recent t observations (Xn−t+1, . . . , Xn)
to predict the next Xn+1, then average over t = 1, . . . , n. Such Cesàro-mean-type estimators have
been introduced before in the density estimation literature (see, e.g., [YB99]). It remains open
whether the usual add-one estimator (namely, the last term in (6) which uses all the data) or any add-c
estimator for constant c achieves the optimal rate. In contrast, for two-state chains the optimal risk (2)
is attained by a hybrid strategy [FOPS16], applying add-c estimator for c = 1

logn for trajectories with
at most one transition and c = 1 otherwise. Also note that the estimator in (6) can be computed in
O(nk) time. To derive this first note that given any j ∈ [k] calculating M̂+1

xn−1
1

(j|xn−1) takes O(n)

time and given any M+1

xn−1
n−t+1

(j|xn−1) we need O(1) time to calculate M̂+1

xn−1
n−t+2

(j|xn−1). Summing

over all j we get the algorithmic complexity upper bound.

Theorem 1 shows that the departure from the parametric rate of k2

n , first discovered in [FOPS16,
HOP18] for binary chains, is even more pronounced for larger state space. As will become clear in
the proof, there is some fundamental difference between two-state and three-state chains, resulting in
Risk3,n = Θ( logn

n ) ≫ Risk2,n = Θ( log log n
n ). It is instructive to compare the sample complexity for

prediction in the iid and Markov model. Denote by d the number of parameters, which is k − 1 for
the iid case and k(k − 1) for Markov chains. Define the sample complexity n∗(d, ϵ) as the smallest
sample size n in order to achieve a prescribed prediction risk ϵ. For ϵ = O(1), we have

n∗(d, ϵ) ≍


d
ϵ iid
d
ϵ log log

1
ϵ Markov with 2 states

d
ϵ log

1
ϵ Markov with k ≥ 3 states.

(7)

At a high level, the nonparametric rates in the Markov model can be attributed to the memory in the
data. On the one hand, Theorem 1 as well as (2) affirm that one can obtain meaningful prediction
without imposing any mixing conditions;2 such decoupling between learning and mixing has also
been observed in other problems such as learning linear dynamics [SMT+18, DMM+19]. On the
other hand, the dependency in the data does lead to a strictly higher sample complexity than that of
the iid case; in fact, the lower bound in Theorem 1 is proved by constructing chains with spectral
gap as small as O( 1n ) (see Section 3). Thus, it is conceivable that with sufficiently favorable mixing
conditions, the prediction risk improves over that of the worst case and, at some point, reaches the
parametric rate. To make this precise, we focus on Markov chains with a prescribed spectral gap.

It is well-known that for an irreducible and reversible chain, the transition matrix M has k real
eigenvalues satisfying 1 = λ1 ≥ λ2 ≥ . . . λk ≥ −1. The absolute spectral gap of M , defined as

γ∗ ≜ 1−max {|λi| : i ̸= 1} , (8)

quantifies the memory of the Markov chain. For example, the mixing time is determined by 1/γ∗

(relaxation time) up to logarithmic factors. As extreme cases, the chain which does not move (M
is identity) and which is iid (M is rank-one) have spectral gap equal to 0 and 1, respectively. We
refer the reader to [LP17] for more background. Note that the definition of absolute spectral gap
requires irreducibility and reversibility, thus we restrict ourselves to this class of Markov chains (it
is possible to use more general notions such as pseudo spectral gap to quantify the memory of the

2To see this, it is helpful to consider the extreme case where the chain does not move at all or is periodic, in
which case predicting the next state is in fact easy.
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process, which is beyond the scope of the current paper). Given γ0 ∈ (0, 1), define Mk(γ0) as the
set of transition matrices corresponding to irreducible and reversible chains whose absolute spectral
gap exceeds γ0. Restricting (1) to this subcollection and noticing the stationary distribution here is
uniquely determined by M , we define the corresponding minimax risk:

Riskk,n(γ0) ≜ inf
M̂

sup
M∈Mk(γ0)

E
[
D(M(·|Xn)∥M̂(·|Xn))

]
(9)

Extending the result (2) of [FOPS16], the following theorem characterizes the optimal prediction risk
for two-state chains with prescribed spectral gaps (the case γ0 = 0 correspond to the minimax rate in
[FOPS16] over all binary Markov chains):
Theorem 2 (Spectral gap dependent rates for binary chain). For any γ0 ∈ (0, 1)

Risk2,n(γ0) ≍
1

n
max

{
1, log log

(
min

{
n,

1

γ0

})}
.

Theorem 2 shows that for binary chains, parametric rate O( 1n ) is achievable if and only if the spectral
gap is nonvanishing. While this holds for bounded state space (see Corollary 4 below), for large state
space, it turns out that much weaker conditions on the absolute spectral gap suffice to guarantee the
parametric rate O(k

2

n ), achieved by the add-one estimator applied to the entire trajectory. In other
words, as long as the spectral gap is not excessively small, the prediction risk in the Markov model
behaves in the same way as that of an iid model with equal number of parameters. Similar conclusion
has been established previously for the sample complexity of estimating the entropy rate of Markov
chains in [HJL+18, Theorem 1].
Theorem 3. The add-one estimator in (5) achieves the following risk bound.

(i) For any k ≥ 2, Riskk,n(γ0) ≲ k2

n provided that γ0 ≳ ( log k
k )1/4.

(ii) In addition, for k ≳ (log n)6, Riskk,n(γ0) ≲ k2

n provided that γ0 ≳ (log(n+k))2

k .

Corollary 4. For any fixed k ≥ 2, Riskk,n(γ0) = O( 1n ) if and only if γ0 = Ω(1).

1.1 Proof techniques

The proof of Theorem 1 deviates from existing approaches based on concentration inequalities for
Markov chains. For instance, the standard program for analyzing the add-one estimator (5) involves
proving concentration of the empirical counts on their population version, namely, Ni ≈ nπi and
Nij ≈ nπiM(j|i), and bounding the risk in the atypical case by concentration inequalities, such
as the Chernoff-type bounds in [Lez98, Pau15], which have been widely used in recent work on
statistical inference with Markov chains [KV16, HJL+18, HOP18, HKL+19, WK19]. However,
these concentration inequalities inevitably depends on the spectral gap of the Markov chain, leading
to results which deteriorate as the spectral gap becomes smaller. For two-state chains, results free of
the spectral gap are obtained in [FOPS16] using explicit joint distribution of the transition counts; this
refined analysis, however, is difficult to extend to larger state space as the probability mass function
of (Nij) is given by Whittle’s formula [Whi55] which takes an unwieldy determinantal form.

Eschewing concentration-based arguments, the crux of our proof of Theorem 1, for both the upper
and lower bound, revolves around the following quantity known as redundancy:

Redk,n ≜ inf
QXn

sup
PXn

D(PXn∥QXn) = inf
QXn

sup
PXn

∑
xn

PXn(xn) log
PXn(xn)

QXn(xn)
. (10)

Here the supremum is taken over all joint distributions of stationary Markov chains Xn on k states,
and the infimum is over all joint distributions QXn . A central quantity which measures the minimax
regret in universal compression, the redundancy (10) corresponds to minimax cumulative risk (namely,
the total prediction risk when the sample size ranges from 1 to n), while (1) is the individual minimax
risk at sample size n – see Section 2 for a detailed discussion. We prove the following reduction
between prediction risk and redundancy:

1

n
Redsymk−1,n − log k

n
≲ Riskk,n ≤ 1

n− 1
Redk,n (11)
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where Redsym denotes the redundancy for symmetric Markov chains. The upper bound is standard:
thanks to the convexity of the loss function and stationarity of the Markov chain, the risk of the Cesàro-
mean estimator (6) can be upper bounded using the cumulative risk and, in turn, the redundancy. The
proof of the lower bound is more involved. Given a (k − 1)-state chain, we embed it into a larger
state space by introducing a new state, such that with constant probability, the chain starts from and
gets stuck at this state for a period time that is approximately uniform in [n], then enters the original
chain. Effectively, this scenario is equivalent to a prediction problem on k − 1 states with a random
(approximately uniform) sample size, whose prediction risk can then be related to the cumulative risk
and redundancy. This intuition can be made precise by considering a Bayesian setting, in which the
(k − 1)-state chain is randomized according to the least favorable prior for (10), and representing the
Bayes risk as conditional mutual information and applying the chain rule.

Given the above reduction in (11), it suffices to show both redundancies therein are on the order of
k2

n log n
k2 . The redundancy is upper bounded by pointwise redundancy, which replaces the average

in (10) by the maximum over all trajectories. Following [DMPW81, CS04], we consider an explicit
probability assignment defined by add-one smoothing and using combinatorial arguments to bound
the pointwise redundancy, shown optimal by information-theoretic arguments.

The optimal spectral gap-dependent rate in Theorem 2 relies on the key observation in [FOPS16] that,
for binary chains, the dominating contribution to the prediction risk comes from trajectories with
a single transition, for which we may apply an add-c estimator with c depending appropriately on
the spectral gap. The lower bound is shown using a Bayesian argument similar to that of [HOP18,
Theorem 1]. The proof of Theorem 3 relies on more delicate concentration arguments as the spectral
gap is allowed to be vanishingly small. Notably, for small k, direct application of existing Bernstein
inequalities for Markov chains in [Lez98, Pau15] falls short of establishing the parametric rate of
O(k

2

n ) (see Remark 4 in Section 7.2 for details); instead, we use a fourth moment bound which turns
out to be well suited for analyzing concentration of empirical counts conditional on the terminal state.

For large k, we further improve the spectral gap condition using a simulation argument for Markov
chains using independent samples [Bil61, HJL+18]. A key step is a new concentration inequality for
D(P∥P̂+1

n,k), where P̂+1
n,k is the add-one estimator based on n iid observations of P supported on [k]:

P

(
D(P∥P̂+1

n,k) ≥ c · k
n
+

polylog(n) ·
√
k

n

)
≤ 1

poly(n)
, (12)

for some absolute constant c > 0. Note that an application of the classical concentration inequality of
McDiarmid would result in the second term being polylog(n)/

√
n, and (12) crucially improves this

to polylog(n) ·
√
k/n. Such an improvement has been recently observed by [MJT+20, Agr20, GR20]

in studying the similar quantity D(P̂n∥P ) for the (unsmoothed) empirical distribution P̂n; however,
these results, based on either the method of types or an explicit upper bound of the moment generating
function, are not directly applicable to (12) in which the true distribution P appears as the first
argument in the KL divergence.

1.2 Related work

While the exact prediction problem studied in this paper has recently been in focus since [FOPS16,
HOP18], there exists a large body of literature on relate works. As mentioned before some of our
proof strategies draws inspiration and results from the study of redundancy in universal compression,
its connection to mutual information, as well as the perspective of sequential probability assignment
as prediction, dating back to [Dav73, DMPW81, Ris84, Sht87, Rya88]. Asymptotic characterization
of the minimax redundancy for Markov sources, both average and pointwise, were obtained in
[Dav83, Att99, JS02], in the regime of fixed alphabet size k and large sample size n. Non-asymptotic
characterization was obtained in [Dav83] for n ≫ k log2 k and recently extended to n ≍ k2 in
[TJW18], which further showed that the behavior of the redundancy remains unchanged even if the
Markov chain is very close to being iid in terms of spectral gap γ∗ = 1− o(1).

The current paper adds to a growing body of literature devoted to statistical learning with dependent
data, in particular those dealing with Markov chains. Estimation of the transition matrix [Bar51,
AG57, Bil61, Sin64] and testing the order of Markov chains [CS00] have been well studied in
the large-sample regime. More recently attention has been shifted towards large state space and
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nonasymptotics. For example, [WK19] studied the estimation of transition matrix in ℓ∞ → ℓ∞
induced norm for Markov chains with prescribed pseudo spectral gap and minimum probability mass
of the stationary distribution, and determined sample complexity bounds up to logarithmic factors.
Similar results have been obtained for estimating properties of Markov chains, including mixing time
and spectral gap [HKL+19], entropy rate [KV16, HJL+18, OS20], graph statistics based on random
walk [BHOP18], as well as identity testing [DDG18, CB19, WK20, FW21]. Most of these results
rely on assumptions on the Markov chains such as lower bounds on the spectral gap and the stationary
distribution, which afford concentration for sample statistics of Markov chains. In contrast, one of the
main contributions in this paper, in particular Theorem 1, is that optimal prediction can be achieved
without these assumptions, thereby providing a novel way of tackling these seemingly unavoidable
issues. This is ultimately accomplished by information-theoretic and combinatorial techniques from
universal compression.

1.3 Notations and preliminaries

For n ∈ N, let [n] ≜ {1, . . . , n}. Denote xn = (x1, . . . , xn) and xn
t = (xt, . . . , xn). The distribution

of a random variable X is denoted by PX . In a Bayesian setting, the distribution of a parameter θ is
referred to as a prior, denoted by Pθ. We recall the following definitions from information theory
[CK82, CT06]. The conditional KL divergence is defined as as an average of KL divergence between
conditional distributions:

D(PA|B∥QA|B |PB) ≜ EB∼PB
[D(PA|B∥QA|B)] =

∫
PB(db)D(PA|B=b∥QA|B=b). (13)

The mutual information between random variables A and B with joint distribution PAB is I(A;B) ≜
D(PB|A∥PB |PA); similarly, the conditional mutual information is defined as

I(A;B|C) ≜ D(PB|A,C∥PB|C |PA,C).

The following variational representation of (conditional) mutual information is well-known

I(A;B) = min
QB

D(PB|A∥QB |PA), I(A;B|C) = min
QB|C

D(PB|A,C∥QB|C |PAC). (14)

The entropy of a discrete random variables X is H(X) ≜
∑

x PX(x) log 1
PX(x) .

The rest of the paper is organized as follows. In Section 2 we describe the general paradigms of
minimax redundancy and prediction risk and their dual representation in terms of mutual information.
We give a general redundancy-based bound on the prediction risk, which leads to the upper bound in
Theorem 1. Section 3 presents the main idea of the lower bound construction. In the supplement,
Section 4 discusses the assumptions and implications of our results and several open problems.
Sections 5 and 6 contain the full proof for the upper and lower bound in Theorem 1. Due to space
limitations, proofs for spectral-gap dependent risk bounds in Theorems 2 and 3 are given in Section 7.

2 Two general paradigms

2.1 Redundancy, prediction risk, and mutual information representation

For n ∈ N, let P = {PXn+1|θ : θ ∈ Θ} be a collection of joint distributions parameterized by θ.

“Compression”. Consider a sample Xn ≜ (X1, . . . , Xn) of size n drawn from PXn|θ for some
unknown θ ∈ Θ. The redundancy of a probability assignment (joint distribution) QXn is defined as
the worst-case KL risk of fitting the joint distribution of Xn, namely

Red(QXn) ≜ sup
θ∈Θ

D(PXn|θ∥QXn). (15)

Optimizing over QXn , the minimax redundancy is defined as

Redn ≜ inf
QXn

Redn(QXn), (16)

where the infimum is over all joint distribution QXn . This quantity can be operationalized as the
redundancy (i.e. regret) in the setting of universal data compression, that is, the excess number of bits
compared to the optimal compressor of Xn that knows θ [CT06, Chapter 13].
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The capacity-redundancy theorem (see [Kem74] for a very general result) provides the following
mutual information characterization of (16):

Redn = sup
Pθ

I(θ;Xn), (17)

where the supremum is over all distributions (priors) Pθ on Θ. In view of the variational representation
(14), this result can be interpreted as a minimax theorem:

Redn = inf
QXn

sup
Pθ

D(PXn|θ∥QXn |Pθ) = sup
Pθ

inf
QXn

D(PXn|θ∥QXn |Pθ).

Typically, for fixed model size and n → ∞, one expects that Redn = d
2 log n(1+o(1), where d is the

number of parameters; see [Ris84] for a general theory of this type. Indeed, on a fixed alphabet of size
k, we have Redn = k−1

2 log n(1+o(1)) for iid model [Dav73] and Redn = km(k−1)
2 log n(1+o(1))

for m-order Markov models [Tro74], with more refined asymptotics shown in [XB97, SW12]. For
large alphabets, nonasymptotic results have also been obtained. For example, for first-order Markov
model, Redn ≍ k2 log n

k2 provided that n ≳ k2 [Dav83, TJW18].

“Prediction”. Consider the problem of predicting the next unseen data point Xn+1 based on
the observations X1, . . . , Xn, where (X1, . . . , Xn+1) are jointly distributed as PXn+1|θ for some
unknown θ ∈ Θ. Here, an estimator is a distribution (for Xn+1) as a function of Xn, which, in turn,
can be written as a conditional distribution QXn+1|Xn . As such, its worst-case average risk is

Risk(QXn+1|Xn) ≜ sup
θ∈Θ

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn|θ), (18)

where the conditional KL divergence is defined in (13). The minimax prediction risk is then defined
as

Riskn ≜ inf
QXn+1|Xn

Risk(QXn+1|Xn), (19)

While (16) does not directly correspond to a statistical estimation problem, (19) is exactly the familiar
setting of “density estimation”, where QXn+1|Xn is understood as an estimator for the distribution of
the unseen Xn+1 based on the available data X1, . . . , Xn.

In the Bayesian setting where θ is drawn from a prior Pθ, the Bayes prediction risk coincides with
the conditional mutual information as a consequence of the variational representation (14):

inf
QXn+1|Xn

Eθ[D(PXn+1|Xn,θ∥QXn+1|Xn |PXn|θ)] = I(θ;Xn+1|Xn). (20)

Furthermore, the Bayes estimator that achieves this infimum takes the following form:

QBayes
Xn+1|Xn = PXn+1|Xn =

∫
Θ
PXn+1|θ dPθ∫

Θ
PXn|θ dPθ

, (21)

known as the Bayes predictive density [Dav73, LB04]. These representations play a crucial role in
the lower bound proof of Theorem 1. Under appropriate conditions which hold for Markov models
(see Lemma 19 in Appendix A), the minimax prediction risk (19) also admits a dual representation
analogous to (17):

Riskn = sup
θ∼π

I(θ;Xn+1|Xn), (22)

which, in view of (20), show that the principle of “minimax=worst-case Bayes” continues to hold for
prediction problem in Markov models.

The following result (proved in Section 5) relates the redundancy and the prediction risk.
Lemma 5. For any model P ,

Redn ≤
n−1∑
t=0

Riskt. (23)

In addition, suppose that each PXn|θ ∈ P is stationary and mth-order Markov. Then for all
n ≥ m+ 1,

Riskn ≤ Riskn−1 ≤ Redn
n−m

. (24)
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Furthermore, for any joint distribution QXn factorizing as QXn =
∏n

t=1 QXt|Xt−1 , the prediction
risk of the estimator

Q̃Xn|Xn−1(xn|xn−1) ≜
1

n−m

n∑
t=m+1

QXt|Xt−1(xn|xn−1
n−t+1) (25)

is bounded by the redundancy of QXn as

Risk(Q̃Xn|Xn−1) ≤ 1

n−m
Red(QXn). (26)

Remark 2. Note that the upper bound (23) on redundancy, known as the “estimation-compression
inequality” [KOPS15, FOPS16], holds without conditions, while the lower bound (24) relies on
stationarity and Markovity. For iid data, the estimation-compression inequality is almost an equality;
however, this is not the case for Markov chains, as both sides of (23) differ by an unbounded factor
of Θ(log log n) for k = 2 and Θ(log n) for fixed k ≥ 3 – see (2) and Theorem 1. On the other
hand, Markov chains with at least three states offers a rare instance where (24) is tight, namely,
Riskn ≍ Redn

n (cf. Lemma 6).

2.2 Proof of the upper bound part of Theorem 1

Specializing to first-order stationary Markov chains with k states, we denote the redundancy and
prediction risk in (16) and (19) by Redk,n and Riskk,n, the latter of which is precisely the quantity
previously defined in (1). Applying Lemma 5 yields Riskk,n ≤ 1

n−1Redk,n. To upper bound Redk,n,
consider the following probability assignment:

Q(x1, · · · , xn) =
1

k

n−1∏
t=1

M̂+1
xt (xt+1|xt) (27)

where M̂+1 is the add-one estimator defined in (5). This Q factorizes as Q(x1) = 1
k and

Q(xt+1|xt) = M̂+1
xt (xt+1|xt). The following lemma (proved in Section 5.2) bounds the redun-

dancy of Q:

Lemma 6. Red(Q) ≤ k(k − 1)
[
log
(
1 + n−1

k(k−1)

)
+ 1
]
+ log k.

Combined with Lemma 5, Lemma 6 shows that Riskk,n ≤ C k2

n log n
k2 for all k ≤

√
n/C and some

universal constant C, achieved by the estimator (6), which is obtained by applying the rule (25) to
(27).

3 Optimal rates without spectral gap

In this section, we sketch the proof of the lower bound part of Theorem 1, which shows the optimality
of the average version of the add-one estimator (25). We first describe the lower bound construction
for three-state chains, which is subsequently extended to k states.

3.1 Warmup: an Ω( logn
n ) lower bound for three-state chains

Theorem 7. Risk3,n = Ω
(

logn
n

)
.

To show Theorem 7, consider the following one-parameter family of transition matrices:

M =

Mp =

1− 2
n

1
n

1
n

1
n 1− 1

n − p p
1
n p 1− 1

n − p

 : 0 ≤ p ≤ 1− 1

n

 . (28)

Note that each transition matrix in M is symmetric (hence doubly stochastic), whose corresponding
chain is reversible with a uniform stationary distribution and spectral gap Θ( 1n ); see Fig. 1.
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Figure 1: Lower bound construction for three-state chains.

The proof of Theorem 7 is given in Section 6.1 using a Bayesian argument. The main idea is as
follows. Notice that by design, with constant probability, the trajectory is of the following form: The
chain starts and stays at state 1 for t steps, and then transitions into state 2 or 3 and never returns to
state 1, where t = 1, . . . , n−1. Since p is the single unknown parameter, the only useful observations
are visits to state 2 and 3 and each visit entails one observation about p by flipping a coin with
bias roughly p. Thus the effective sample size for estimating p is n− t− 1 and we expect the best
estimation error is of the order of 1

n−t . However, t is not fixed. In fact, conditioned on the trajectory
is of this form, t is roughly uniformly distributed between 1 and n− 1. As such, we anticipate the
estimation error of p is approximately

1

n− 1

n−1∑
i=1

1

n− t
= Θ

(
log n

n

)
.

Intuitively speaking, the construction in Fig. 1 “embeds” a symmetric two-state chain (with states 2
and 3) with unknown parameter p into a space of three states, by adding a “nuisance” state 1, which
effectively slows down the exploration of the useful part of the state space, so that in a trajectory of
length n, the effective number of observations we get to make about p is roughly uniformly distributed
between 1 and n. This explains the extra log factor in Theorem 7, which actually stems from the
harmonic sum in E[ 1

Uniform([n]) ]. We will fully explore this embedding idea in Section 3.2 to deal
with larger state space.

3.2 k-state chains

The above lower bound construction for 3-state chains can be generalized to k-state chains with k ≥ 3.
The high-level argument is again to augment a (k − 1)-state chain into a k-state chain. Specifically,
we partition the state space [k] into two sets S1 = {1} and S2 = {2, 3, · · · , k}. Consider a k-state
Markov chain such that the transition probabilities from S1 to S2, and from S2 to S1, are both very
small (on the order of Θ(1/n)). At state 1, the chain either stays at 1 with probability 1 − 1/n or
moves to one of the states in S2 with equal probability 1

n(k−1) ; at each state in S2, the chain moves
to 1 with probability 1

n ; otherwise, within the state subspace S2, the chain evolves according to some
symmetric transition matrix T . See Fig. 2 in Section 6.2 for the precise transition diagram.

The key feature of such a chain is as follows. Let Xt be the event that X1, X2, · · · , Xt ∈ S1 and
Xt+1, · · · , Xn ∈ S2. For each t ∈ [n − 1], one can show that P(Xt) ≥ c/n for some absolute
constant c > 0. Moreover, conditioned on the event Xt, (Xt+1, . . . , Xn) is equal in law to a stationary
Markov chain (Y1, · · · , Yn−t) on state space S2 with symmetric transition matrix T . It is not hard
to show that estimating M and T are nearly equivalent. Consider the Bayesian setting where T is
drawn from some prior. We have

inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt]

]
≈ inf

T̂
ET

[
E[D(T (·|Yn−t)∥T̂ (·|Yn−t))]

]
= I(T ;Yn−t+1|Y n−t),
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where the last equality follows from the representation (20) of Bayes prediction risk as conditional
mutual information. Lower bounding the minimax risk by the Bayes risk, we have

Riskk,n ≥ inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]
≥ inf

M̂

n−1∑
t=1

EM

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt] · P(Xt)

]
≥ c

n
·
n−1∑
t=1

inf
M̂

EM

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xt]

]
≈ c

n
·
n−1∑
t=1

I(T ;Yn−t+1|Y n−t) =
c

n
· (I(T ;Y n)− I(T ;Y1)). (29)

Note that I(T ;Y1) ≤ H(Y1) ≤ log(k−1) since Y1 takes values in S2. Maximizing the right hand side
over the prior PT and recalling the dual representation for redundancy in (17), the above inequality
(29) leads to a risk lower bound of Riskk,n ≳ 1

n (Red
sym
k−1,n− log k), where Redsymk−1,n = sup I(T ;Y1)

is the redundancy for symmetric Markov chains with k− 1 states and sample size n. Since symmetric
transition matrices still have Θ(k2) degrees of freedom, it is expected that Redsymk,n ≍ k2 log n

k2 for

n ≳ k2, so that (29) yields the desired lower bound Riskk,n = Ω(k
2

n log n
k2 ) in Theorem 1. The

rigorous proof is carried out in Section 6.2.
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