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VELOCIMETER LIDAR-BASED RELATIVE RATE ESTIMATION
FOR AUTONOMOUS RENDEZVOUS, PROXIMITY OPERATIONS,
AND DOCKING APPLICATIONS
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This paper presents a navigation system for autonomous rendezvous, proximity
operations, and docking (RPOD) with respect to non-cooperative space objects
using a novel velocimeter light detection and ranging (LIDAR) sensor. Given only
raw position and Doppler velocity measurements, the proposed methodology is ca-
pable of estimating the six degree-of-freedom (DOF) relative velocity without any
a priori information regarding the body of interest. Further, the raw Doppler veloc-
ity measurement field directly exposes the body of interest’s center of rotation (i.e.
center of mass) enabling precise 6-DOF pose estimation if the rate estimates are
fused within a Kalman filter architecture. These innovative techniques are compu-
tationally inexpensive and do not require information from peripheral sensors (i.e.
gyroscope, magnetometer, accelerometer etc.). The efficacy of the proposed al-
gorithms were evaluated via emulation robotics experiments at the Land, Air and
Space Robotics (LASR) laboratory at Texas A&M University. Although testing
was completed with a single body of interest, this approach can be used to on-
line estimate the 6-DOF relative velocity of any amount of non-cooperative bodies
within the field-of-view.

INTRODUCTION

The field of autonomous rendezvous, proximity operations, and docking (RPOD) encompasses a
wide array of increasingly important relative spacecraft applications such as active debris removal
(ADR), satellite servicing and assembly, asteroid sampling, and formation flying. These missions
require technologies suitable for both cooperative and non-cooperative bodies of interest, thus, one
particularly challenging aspect of RPOD applications is the development and implementation of au-
tonomous on-board systems capable of sensing and reacting to highly uncertain dynamic conditions
in a reliable manner. Further, according to Naasz and Moreau [1], mainstream RPOD technology
for wide spectrums of missions does not currently exist causing new missions requiring autonomous
RPOD capabilities to incur significant non-recurring engineering and development costs related to
sensors and integrated systems. Although the use of inertial sensors, such as gyroscopes and ac-
celerometers, have become ubiquitous in spacecraft navigation, these sensors cannot deliver any
useful information regarding the relative motion between two or more bodies. In the context of
non-cooperative proximity operations, this leads to the need for additional sensing mechanisms.

The key challenge in carrying out proximity operations with non-cooperative space objects is the
notion that the 6-DOF relative rates (translational and angular velocity) are highly uncertain and
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directly influence the precision of any position estimates. Consistently successful RPOD missions
require a high-degree of confidence for both the relative pose and rate estimates as any guidance and
control action in the presence of large uncertainty can prove fatal. In order to ascertain estimates
with the required precision and confidence, the spacecraft engaging in proximity operations typi-
cally has to expend a lot of time and computational resources due to complex computer vision data
processing algorithms and the implementation of a navigation filter. In previous research, many so-
lutions have been developed to sense the relative motion states. The Land, Air, and Space Robotics
(LASR) laboratory at Texas A&M has made significant contributions with regards to various sens-
ing technologies including stereo-vision and light detection and ranging (LIDAR) systems for close
proximity spacecraft navigation [2, 3, 4, 5, 6, 7].

Innovations in the autonomous automotive industry offer an exciting new basis for the sensing
of relative motion between two or more tumbling rigid bodies. The LASR laboratory has recently
acquired one such revolutionary LIDAR sensor system which can simultaneously acquire a dense
point cloud (3D points associated with objects within the field-of-view), point-wise Doppler velocity
measurements, a co-registered image stream and an infra-red (IR) response of the environment from
the sensor point of view. This paper aims to leverage this wealth of knowledge to produce an
innovative 6-DOF relative velocity estimator without the need for additional peripheral sensors or a
predefined object model. Emulation robotics experiments are performed to demonstrate the efficacy
of the proposed algorithms in a real-time RPOD scenario such as soft-capture of a rocket body as
displayed in Fig. 1.

Figure 1. Proximity Operation Emulation Robotics at Land, Air and Space Robotics Laboratory

The rest of the paper is organized as follows. Section II derives the velocimeter LIDAR based
spacecraft relative navigation problem from first principles. Next, Section III presents a novel batch
state estimation algorithm that can directly estimate the relative 6-DOF translational and rotational
velocities of a body of interest (BOI) using linear system theory. Section I'V delivers the experimen-
tal methodology and results of employing the proposed techniques to estimate the relative velocities
of a rotating rocket body. Finally, Section V summarizes the mathematical formulations, navigation
methodologies, and experimental results and provides conclusions drawn from the work.

VELOCIMETER LIDAR RELATIVE NAVIGATION

LIDAR sensing units offer an advantageous means to determining the relative 6-DOF pose and
velocity of a non-cooperative body during RPOD missions. In contrast to 3D LIDAR-based ap-



proaches, standard photogrammetry methods [8] acquire and track 2D features over a sequence of
frames to obtain relative pose estimates. These methods exhibit many drawbacks including signif-
icant sensitivity to lighting conditions, added difficulty during multi-body segmentation, and the
reliance on pre-calibrated camera parameters and pre-defined camera models to infer depth. Al-
ternatively, LIDAR units provide direct depth information and are not affected by variable lighting
conditions. Moreover, a state-of-the-art velocimeter LIDAR capable of measuring point-wise rel-
ative Doppler velocity, which is defined as the projection of the 6-DOF relative velocity onto the
line-of-sight vector, can further refine pose estimates. A mathematical description of relative navi-
gation using a velocimeter LIDAR is given below.

Consider a chaser spacecraft with known position, orientation, and motion observing a non-
cooperative body-of-interest (BOI) within as displayed in Fig. 2. The position of an arbitrary
point on the uncooperative body (®p;) coordinatized in the LIDAR reference frame is given by

“pr, = Cryp,"pi + "t )

where the left superscripts denote the frame in which a vector is coordinatized, the right subscript,
k, denotes the current time-step, the right sub-subscript, i = 1, ..., N}, denotes the i’ point on the
body, Cr,, B,, 1s the direction cosine matrix mapping vectors in the current body frame, B, to the
LIDAR frame, L, and Lt}, is the relative translation vector between the origin of the LIDAR frame
to body’s center-of-mass.

Body of Interest Pi

Cerys,

Figure 2. Relative position between the LIDAR reference frame on chaser spacecraft
and an arbitrary point on a body of interest

Taking the time derivative of Eqn. (1) leads to the relative velocity of the i*" point on the body
resulting in
L

Vi, = — [kax} Crp,”pi+ "tk + Cryp, P 2
where [-X] denotes the skew symmetric cross product matrix of a vector, Lty is the relative transla-
tional velocity of the non-cooperative body, and “wj, is the relative angular velocity from the body
frame to the LIDAR frame. This work only considers situations where the non-cooperative body
is rigid; therefore, Bp; = 0 V 4. Furthermore, Eqgn. (2) can be rewritten to be linear in Ly by
reversing the cross product resulting in

by, = [(CL/BkBPi)X] Lwg + M 3)



Now consider the line-of-sight (LOS) velocity (or Doppler velocity) of the i*" point on the body
from the LIDAR’s perspective to be

5 = Lpk, " v,
ki = 1Epw, |l 4)
1 T Tr;
= sl (kai [(C(L/BkBpi)>< ka + kai Ltk)
where || - || is the magnitude of the corresponding vector. It is important to note that Eqn. (4)

is linear in both angular and translational velocity. A representative display of the raw measured
LOS velocity versus the expected LOS velocity given the true angular velocity is shown in Fig. 3.
Notice that the expected velocity distribution has higher positive velocity values on the right side of
the body than the measured. This can be attributed to an incorrect center-of-mass (COM) estimate
which was placed at the point cloud centroid to produce the estimated Doppler velocity distribution
presented in Fig. 3.

Expected Velocity Distribution Measured Velocity Distribution

-0.4 -0.3 -0.2 -01 0 0.1 0.2 0.3 0.4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 3. Expected LOS velocity distribution (left) vs. measured (right)

The inability to accurately determine a non-cooperative body’s center-of-mass is one of the main
sources of error when it comes to relative rate estimation for RPOD applications. Interestingly,
the Doppler velocity field directly exposes the true center of rotation (i.e. center of mass) of the
BOIL. Briefly consider the velocity measurement field to be a function of one positional coordinate
at a time. Fig. 4 displays these three independent functions of space. It is natural to suggest that
the body’s center of mass lies where the velocity field as a function of position changes sign. In
other words, the values of where the three functions displayed in Fig. 4 cross zero (0, = 0)
are the respective (x,y,z) coordinates of the COM for that particular configuration. Assuming the
current direction cosine matrix which maps the body frame to the LIDAR frame is known, this
direct knowledge of the COM allows the collection of points which make up the BOI coordinatized
in the body frame, Bpi, to be extracted.

For each frame, position and LOS velocity measurements are acquired from the velocimeter
LIDAR (i.e. © Pk, and Uy, respectively) for every point within the FOV. Given this information,
the next step is to segment out independent bodies (if more than one are visible) and determine
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Figure 4. Doppler velocity field as an independent function of (x,y,z) exposing the
true center-of-mass

each body’s relative position and orientation. Significant research has been done to address these
issues including point cloud registration techniques, 3D point feature matching, and various types of
navigation filters [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. This work implements cluster segmentation
to separate the various independent bodies within the FOV, and an iterative closest point (ICP)
algorithm to determine the frame-to-frame relative change in orientation and position of the body
of interest.

BATCH STATE ESTIMATION

Assuming the frame-to-frame relative orientation and translation (C,, B, and Lt,,, respectively)
between the non-cooperative body and the LIDAR can successfully be extracted through point cloud
registration techniques, the main issue of estimating the body’s relative angular and translational
velocity can now be addressed. If embedded into a Kalman filter framework, direct velocity in-
formation would help refine the position estimate, and, most notably, aid in the determination and
tracking of the true center of mass. It is important to note that existing point cloud registration
techniques assume that the segmented point cloud centroid is the body’s center of mass. This is
not the case for the majority of real world applications, especially when the BOI is not fully cap-
tured in the point cloud. Therefore, any angular velocity estimates derived from this information is
sure to be inaccurate. Further, up until the introduction of Doppler velocimeter measurement units,
bulk velocity could only be inferred from position estimates, leading to error propagation. While
position-informed navigation filters can mitigate and control this error, significant computational
effort must be employed to provide reasonable rate estimates. To this end, a simplified approach to
extract the relative translational and angular velocities by leveraging relative state kinematics and
dynamics has been developed and is presented below.

As aforementioned, the LOS velocity measurement provided by the velocimeter LIDAR is linear
in relative translational and angular velocity which can directly be observed by rewriting Eqn. 3 in



matrix form as

- Epy, kaiT[(CL/BkBpi)X]:| |:LLtk] (5)
: 1Ep, |l £, Wi

Linear system theory suggests that upon reception of each point cloud, consisting of N 3D points
with corresponding Doppler velocities, an over-constrained set of linear equations of the form y =
Hx where y € RVX1, H ¢ RNV*6 and x € R*! can be constructed to instantaneously solve for
translational and angular velocity via least squares techniques. However, initial tests revealed the
ill-conditioned nature of the H matrix which led to erroneous estimates of the velocity states with
extremely large error covariance. The condition number of the system, x, defined by the ratio of the
largest to the smallest singular value of H” H, was on the order of & ~ O(1e7).

To surmount this issue, regularization techniques can be implemented to aid in the conditioning
of the system, as performed by Hu et al. [19]. However, selection of regularization values is an
arbitrary process and this work found it to produce erroneous results due to a single viewpoint
in contrast to Hu’s multi-view setup. Another approach to aid in conditioning is to augment the
original system with other linear systems that are functions of the same independent variables. With
this in mind, consider the Doppler velocity measurement field to be a continuous function of space
and time, i.e. Uy, = U, (¢, X'), where X’ defines an inertial Cartesian coordinate system with (x,y,z)
components. Assuming that over a period of time, the BOI is not accelerating in any direction, the
Lagrangian (or material) derivative of the Doppler velocity field can be set to 0 as

Dvy, 0ty

Dt - ot +vyi - Vi, =0 (6)

where V is the gradient operator and v is given by Eqn. (3). Ignoring higher order terms from the
partial derivative term, Eqn. (6) can be rewritten in matrix form to be

Dy, -
T:Z = 0 = VTVUki
_ [om, 0w, Oby,
- |:6z Oy 0z v (7)
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o 3y 5.~ | can be numerically approximated from measure-

ment data for each frame. The system presented by Eqn. (7) alone was not enough to improve the
condition of the original system to the point where accurate estimates could be obtained. Therefore,
attitude kinematics can be leveraged to produce another linear system as a function of the body’s
angular velocity to further refine the conditioning of the total system. Employing Classical Ro-
drigues Parameters (CRPs) to parameterize the body’s orientation with respect to the LIDAR frame,
the following linear system is obtained [20]:

where the values in the matrix [

3 .
B = ﬁ;; = [03><3 3 [I3><3 + [,3?] +,3f,3?H FZL] €))
B3,

where the values [61 ; Bg ; /6"3 f] 4 can be numerically approximated from measurement data for
each frame and the vector of CRPs, 3, can directly be extracted from C7,, B, [20]. The only un-
knowns within the systems presented in Eqns. 7 and 8 are the velocity state vector variables so



they can directly be appended to the linear system represented in Eqn. (5). Therefore, assuming
the relative angular and translational velocity remain constant over a "batch’ of /" frames with Ny
measurements per frame (assuming there will be a varying number of measurements per frame) the
following set of linear equations can be formed as
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for f=k—F+1,...,kandi = 1,...,Ns where Vil — [W o O ] and C 4 is the
direction cosine matrix mapping the BOI’s (k — F') frame to the LIDAR’s f frame.

Analysis of this new system indicated a significant improvement in the condition number such
that, k ~ O(1e3), and is also much more capable of estimating bulk velocities with higher confi-
dence as indicated by the resultant error covariance, which is defined below. Although implementing
a standard least squares estimator for each batch of frames can provide decent velocity estimates,
employing this framework in a sequential manner can significantly refine the results. This sequen-
tial batch least squares framework is detailed in [21], however for completeness, the key steps are
detailed below.



First, consider every F' frames to be defined as a "batch’. If the total number of points acquired
over the current batch of F' frames is defined to be Ny = Zl}i Ny, consider the linear system
presented by Eqn. (10) to take the form y, = H;x; where y; e RGNT+3F)x1 1, ¢ RENT+3F)x6
and x; € R%*!. Now consider the measurement equation to be y; = H1x; + n; where n is a vector
of measurement errors. It is important to note that the Doppler velocity measurements are the only
terms with a true associated uncertainty; however, to avoid numerical instability, a very small error
term is added to the linear systems given in Eqns. (7) and (8). Thus, once the first "batch’ of data
is acquired, the instantaneous velocity vector can be solved for by employing a linear least squares
framework yielding

X1 = (H{ WiHy) " H{ Wiy (11)

where the [*] notation denotes an estimated quantity and T is a positive definite weighting ma-
trix. The weighting matrix is said to be ’optimal’ if it is set to the inverse of the observation er-
ror covariance defined as E{nn”}~! where E{-} is the expectation operator. However, it was
found that simply setting the weighting matrix to an appropriately sized Identify matrix produces
accurate and precise results. The estimation error covariance for the first estimate is defined by
P = E{éxldx?} = [H ’iF WiH 1] ~! Where dx is the estimation error. The first estimate acts as
a baseline that is subsequently updated with each new batch of data contained in yo and Hs. This
corrections are performed as follows [22]:

~ -1 ~ ~
%o = [H{ WiH + H] WoH,|  (H{ Wi§1 + Hi Wa¥>2) 12)
-1
Py = [H{ Wi Hy + H] W, Hy] (13)
It is natural to see the relationship between these two expressions is given by
Pyl = Prt 4+ HI W Hy (14)

To avoid the inversion of the covariance matrix at every time step, which could lead to numerical
instability, the following covariance recursion form of the sequential linear least squares algorithm
can be employed:

Xpr1 = Xp + K1 (Fe1 — He1Xp) (15)

where )
Ki1 = PoHE ) [Hy PoHE + W4 (16)
Poyr = [I — Kpp1 Hp ] Py (17)

It is important to note that Joseph’s stability update form can be, and was, used in this sequen-
tial linear estimator framework. Recall the weighting matrix, W1, was set to identity for this
application: a non-optimal selection. According to Zanetti and DeMars [23], Joseph’s stability
update form alleviates any numerical instability or improper over-corrections due to the use of a
non-optimal weighting matrix.

Both the standard and sequential batch state estimation methodologies can be implemented in
one of two ways. First, after each "batch’ of F frames are received, the set of linear equations given
by Eqn. (10) can be constructed and an estimation can be obtained using the update equations.
However, this limits the estimation frequency to F times the data reception rate. Early tests indicated
that at least 2 frames of data are needed to obtain accurate estimates for the translational and angular
velocity. It was found that the error covariance decreased as the number of frames included in each



batch increased. Therefore, there is a dichotomy between faster updates and confident estimates
that must be judiciously balanced according to the mission requirements. The second method of
implementation enables estimates to be obtained at the rate of data capture by using a ’sliding
window’ approach. After each new frame of data is received, the measurement vector, y, and linear
system matrix, H, are back-filled with the last F' — 1 frames of information, and the new frame
completes the *batch’. Although this back-fill maneuver seems simple, the H matrix is comprised
of direction cosine matrices which are defined with respect to the 1st frame of the current batch.
Thus, the entire H matrix needs to be re-computed every frame rather than just appending the most
recent frame’s expressions. Although the second method is more cumbersome than the first, it
allows for any number of frames per batch to be used while also enabling updates to be performed
at the rate of data reception. Furthermore, it was found that using the ’sliding window’ approach
yields more uniform estimates in contrast to estimates that are very noisy produced by the standard
batch estimation process.

EXPERIMENTAL METHODOLOGY AND RESULTS

To test the efficacy of the proposed standard and sequential batch least squares algorithms for
the estimation of translational and angular velocity of a non-cooperative body, several experimen-
tal tests were performed at Texas A&M’s LASR Laboratory. The experimental setup used for all
emulation experiments is displayed in Fig. 5. Pictured on the left is one of LASR Lab’s novel
robotic platforms called Holonomic Omni-directional Motion Emulation Robot (HOMER) which
is capable of unrestricted motion in all planar directions (x, y, % where ¢ is the yaw axis) given
an arbitrary trajectory. Mounted on top of HOMER is a Stewart platform which is capable of pre-
cise 6-DOF control, and mounted on top of the Stewart platform is the novel velocimeter LIDAR.
The LIDAR acquires point cloud and image data at 10 Hz and exhibits a point-wise position and
Doppler velocity 1o standard deviations of 0.05 m and 0.1 m/s, respectively. An Intel NUC was
used as the compute element. Displayed in the right is LASR Lab’s Suspended Target Emulation
Pendulum (STEP) with a mock rocket body mounted to the end of the pendulum. STEP is a large
gantry suspended above the test area and is capable of manipulating payloads in all planar direc-
tions. The LASR Lab is outfitted with Vicon motion capture system to provide ground truth data
for comparison.

To ensure the proposed methodologies are capable of accurately estimating both translational and
angular velocity in various conditions, two emulation experiments were implemented: 1) rocket
body in a flat spin with no translation and 2) an approaching rocket body in a near pure spin. Note
that the number of frames per batch was chosen to be 3 for every test case. Further, the weighting
matrix for the standard batch least squares algorithm was set to identity, i.e. W = I,.. The initial
weighting matrix for the sequential batch least squares algorithm was set to Wy = 5 * [ y,.. After
the first batch of data is processed and an initial estimate was obtained, the weighting matrix was
set to identity.

Stationary Observation Rocket Body in a Flat Spin

The first test case emulates a (relatively) stationary chaser spacecraft in close proximity to a
rocket body in a flat spin. To accomplish this, STEP was commanded to rotate the rocket body at the
desired constant angular velocity of 0.25 rad/s in the yaw direction and maintain zero translational
velocity in all directions. The translational and angular velocity profiles of the relative motion
between the rocket body and velocimeter LIDAR coordinatized in the LIDAR reference frame is
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Figure 5. Experimental setup for RPOD emulation experiments at Texas A&M'’s
Land, Air, and Space Robotics Laboratory

displayed in Fig. 6. Note that STEP has internal controllers to compensate for varying payload
inertial distributions to ensure a constant angular rate. The state error and respective 3¢ bound plots
from the proposed regular and sequential batch least squares algorithms are displayed in Fig. 7.
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Figure 6. Translational (top) and angular (bottom) velocity profiles for a rocket body
in a flat spin at 0.25 rad/s

For both the standard and sequential versions, the estimation error and error covariance is the
lowest for translational velocity in the x-direction, which is expected as this is bore-sight for the
velocimeter LIDAR. According to [24], the eigenvector associated with the smallest eigenvalue of
the covariance matrix indicates the direction of highest observability. In this case, the direction of
highest observability points almost exclusively in the direction of v,,, with similar small components
in the wy, and w directions and near zero components in the other directions. Although both versions
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Figure 7. Translational (left) and angular (right) velocity error plots and 30 bounds
using regular and sequential linear least squares for a rocket body in a flat spin at 0.25
rad/s

of the batch least squares algorithm are able to accurately estimate the relative translational and
angular motion, the sequential version can do so in a more confident and uniform manner. Most
notably, the average error and 30 standard deviation for v, produced by the standard technique
is 0.014 m/s and 0.421 m/s, respectively. Whereas the sequential variation produces an average
error and converged 3o standard deviation of 0.014 m/s and 0.145 m/s, respectively, indicating a
confidence level more than 2x greater than the standard batch least squares algorithm. Moreover,
the average error and 3¢ standard deviation for w, produced by the standard technique is 0.0512
rad/s and 1.253 rad/s, respectively. Whereas the sequential version produces an average error and
converged 3o standard deviation of 0.057 rad/s and 0.580 rad/s. Despite the fact that the mean error
covariance for the other velocity vector components remains large compared to the signal size, both
versions of the algorithm properly estimate the zero motion as indicated by the small mean errors
displayed in Table 1.

Table 1. Mean errors and 30 standard deviations for regular and sequential batch least squares
algorithms during stationary observation of a rocket body in a flat spin

Regular Batch Least Squares Sequential Batch Least Squares
State Mean Error 30 Std. Deviation Mean Error Converged 30 Std. Deviation
vz [m/s] 0.014 0.421 0.014 0.145
vy [m/s] 0.105 3.909 0.093 1.722
v, [m/s] 0.116 5.819 0.079 2.171
wy [rad/s] 0.001 3.134 0.004 1.851
wy [rad/s] 0.139 1.943 0.091 0.589
w [rad/s] 0.051 1.253 0.057 0.580
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Approach to a Rocket Body in a Flat Spin

The second test case emulates the approach of a chaser spacecraft to a rocket body in a flat spin.
To accomplish this, STEP was commanded to rotate the rocket body at the desired constant angular
velocity of 0.25 rad/s in the yaw direction, translate with constant translational velocity in the z-
direction and maintain zero velocity in all other directions while the LIDAR remained stationary.
Note that STEP does not have control over angular motion in the = and y directions or translational
motion in the z direction, so the resulting motion depicted by the velocity profiles coordinatized in
the LIDAR reference frame displayed in Fig. 8 in those directions are from the natural swinging
of the pendulum. This test case exhibits a much shorter test time due to space limitations. It
is important to note that the proposed algorithms were derived under the assumption of constant
velocity, i.e. zero acceleration. Further, the sequential version heavily relies on this assumption
as it uses previous estimates to inform the current estimate. Therefore, this test case evaluates
the proposed techniques’ ability to maintain accuracy even when this foundational assumption is
violated. The state error and respective 30 bound plots from the proposed regular and sequential
batch least squares algorithms are displayed in Fig. 9.

o1 Relative translational velocity coordinatized in LIDAR frame
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Figure 8. Translational (top) and angular (bottom) velocity profiles for an approach-
ing rocket body in a flat spin at 0.25 rad/s

Similar to the results from the first test case, the error trajectories are completely encapsulated
by their respective 30 boundaries in all directions for both the regular and sequential batch least
squares algorithms. This indicates that even under conditions when the velocity is not constant,
both versions of the batch least squares algorithm can maintain consistency. Further, the notion of
v, being the most observable state is maintained as indicated by the resulting error covariance. The
mean errors and 3¢ standard deviations are similar to the first test case and are presented in Table 2.
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Figure 9. Translational (left) and angular (right) velocity error plots and 30 bounds
using regular and sequential linear least squares for an approaching rocket body in a
flat spin at 0.25 rad/s

Table 2. Mean errors and 30 standard deviations for regular and sequential batch least squares
algorithms during approach to a rocket body in a perturbed flat spin

Regular Batch Least Squares Sequential Batch Least Squares
State Mean Error 30 Std. Deviation Mean Error Converged 30 Std. Deviation
Vg [m/s] 0.047 0.418 0.002 0.147
vy [m/s] 0.288 2411 0.351 0.839
v, [m/s] 0.157 6.5074 0.064 1.935
wg [rad/s] 0.129 3.203 0.154 2.032
wy [rad/s] 0.027 2.035 0.147 0.582
w [rad/s] 0.097 0.895 0.109 0.445

SUMMARY AND CONCLUSIONS

An innovative approach to simultaneously estimate the relative translational and angular velocity
of an arbitrary body in the field of view of a novel velocimeter LIDAR was presented in this paper.
Although testing was performed with respect to a single BOI, the proposed techniques are applica-
ble to situations where there are multiple bodies within the FOV. Most notably, this methodology
does not require any a priori information on the BOI or information from any other peripheral sen-
sors to achieve accurate and confident rate estimates. Further, despite the foundational assumption
of constant velocity, experimental results indicate that the proposed algorithms are capable of pro-
ducing precise estimates during periods of slight acceleration. Results from the robotic emulation
experiments performed at Texas A&M’s Land, Air, and Space Robotics Laboratory also show that
the translational velocity in the x-direction (bore-sight of the LIDAR) is the most observable ve-
locity state. Moreover, the two representative test cases presented in this work depict the proposed
methodologies’ capability to accurately estimate both 6-DOF velocity in all directions. This work
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is framed as a parameter estimation problem; however, future work will leverage relative motion
dynamics to further refine the rate estimates as well as estimate the complete relative pose online.
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