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ABSTRACT

The paper discusses a machine learning vision and nonlinear control approach for autonomous ship landing of vertical
flight aircraft without utilizing GPS signal. The central idea involves automating the Navy helicopter ship landing
procedure where the pilot utilizes the ship as the visual reference for long-range tracking, but refers to a standardized
visual cue installed on most Navy ships called the horizon bar” for the final approach and landing phases. This idea
is implemented using a uniquely designed nonlinear controller integrated with machine vision. The vision system
utilizes machine learning based object detection for long-range ship tracking, and classical computer vision for object
detection and the estimation of aircraft relative position and orientation during the final approach and landing phases.
The nonlinear controller operates based on the information estimated by the vision system and has demonstrated
robust tracking performance even in the presence of uncertainties. The developed autonomous ship landing system is
implemented on a quad-rotor vertical take-off and landing (VTOL) capable unmanned aerial vehicle (UAV) equipped
with an onboard camera and was demonstrated on a moving deck, which imitates realistic ship deck motions using a
Stewart platform and a visual cue equivalent to the horizon bar. Extensive simulations and flight tests are conducted

to demonstrate vertical landing safety, tracking capability, and landing accuracy while the deck is in motion.

NOTATION

Rbasic

Basic rotation matrix

Rinodifiea Modified rotation matrix

A Camera intrinsic matrix RN Process noise covariance

a Long-range controller constant s Scaling factor

b Close-range controller constant W Window size

c Setpoint t Translation vector

CE Current yaw estimate u Image pixel position-column

M Current yaw measurement u(ty)  Control law

Cu Corner position-column Uo Center of image-column

cy Corner position-row v Image pixel position-row

d Long-range controller constant Vo Center of image-row

de(t)  Error difference between time # and 4 w(t,)  Width of bounding rectangle at time #;
dty Time difference between time # and #;_{ X Sideward relative distance, meter

e(ty)  Error at time # Y Vertical relative distance, meter

f(x)  Probability density function z Forward relative distance, meter

Sr Focal length of camera in horizontal direction o Relative yaw angle, rad

b Focal length of camera in vertical direction B Relative pitch angle, rad

h(ty) Height of bounding rectangle at time #; y Relative roll angle, rad

KG Kalman gain 6 Aircraft pitch angle, deg

Kp Derivative gain u Mean value

K; Integral gain Pu Parameter to convert pixels to SI units-column
Kp Proportional gain Py Parameter to convert pixels to ST units-row
m Long-range controller constant ol Standard deviation

013 1x3 zero matrix 0] Aircraft roll angle, deg

PE Previous yaw estimate 1V Aircraft yaw angle, deg

ON Measurement noise covariance Vf(u,v) Image gradient

R Rotation matrix

r(tx)  Relative position at time #;
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INTRODUCTION

Landing a helicopter on a small ship at rough sea states is an
extremely challenging task even for human pilots due to the
small landing space, six degrees of freedom ship deck mo-
tions, limited visual references for pilots, and lack of alter-
native landing spots. There have been many studies in the
past that focused on automating helicopter ship landing by
utilizing a wide array of sensors such as GPS, vision sensors,
motion sensors, LIDAR, etc. This paper investigates a novel
solution that falls under the category of a vision-based con-
trol system that does not use GPS signals and thus ensures its
functionality in GPS-denied/-spoofed environments.

Previous efforts toward autonomous ship landing involve a
common process that is to estimate or track ship deck mo-
tions first, and then control the aircraft attitude to match the
ship motions for landing. In order to extract the ship deck mo-
tion information, various methods have been introduced such
as tracking H landing marking (Ref. 1), T landing marking
(Ref. 2), points dispersed on the deck (Ref. 3), lights (Ref. 4),
and infrared cooperated targets on a ship (Refs. 5,6). These
vision-based methods have shown the limited capability for
autonomous UAVs landing on ships undergoing significant
motions representative of rough sea states. Fundamentally,
a method that involves visual tracking of deck motion is not
ideal for VTOL UAVs that approach a ship horizontally at low
altitudes because its application range is limited to the vertical
space where the deck can be captured. Also, actively control-
ling the UAV to match the complex deck motions could excite
unstable UAV attitude dynamics. This is even more unsafe
when the aircraft is in close proximity to the moving deck
because even a small control error can cause a catastrophic
accident due to an impact by the deck. Furthermore, none
of the previous methods were based on the Navy helicopter
ship landing procedure that was established and successfully
executed by pilots for decades. In fact, visually tracking the
moving landing deck is exactly the opposite of what Navy he-
licopter pilots are trained to do.

The present landing method is developed based on an in-depth
understanding of the Navy helicopter ship landing procedure,
which is discussed in Refs. (Refs. 7,8). Contrary to intuition,
Navy pilots are trained not to follow ship deck motions for
two main reasons. First, spatial disorientation can occur when
a pilot has no fixed, visible horizon to refer to, which is a
critical element for maintaining a proper sense of helicopter
attitude independent of ship motions. The key visual aid that
helps pilots to land safely is a horizon reference bar” shown
in Fig. 1, which is gyro-stabilized to indicate a perfect horizon
regardless of ship motions and is widely used in most modern
Navies (Refs. 9, 10). Thus, pilots can land a helicopter by ref-
erencing the horizon bar without responding to ship motions.

Second, constantly changing the helicopter attitude to match
ship deck motions can trigger unstable helicopter dynamics
introducing serious potential hazards. Hence, a pilot tries to
control the helicopter in a stable manner independent of the
ship’s roll and pitch motions, and then lands vertically. It
is also recommended to land quickly in order to prevent the

Figure 1. Horizon reference bar

ship deck from impacting one of the helicopter landing gear
skids/wheels causing a rollover. This vertical landing manner
is proven to be safe within the operating limits of the heli-
copter and currently being used in practice. The present tech-
nical approach towards automating such a landing procedure
consists of machine vision to obtain the relative position and
heading of the aircraft and a control system to execute the ap-
proach and landing maneuvers.

The vision system is hybrid in nature with two different meth-
ods, a machine learning object detection and a classical com-
puter vision method, each of which is designed to operate de-
pending on the relative distance to the landing pad. In the
long-distance, the machine learning object detection method
is applied to identify the landing platform (the ship), and an
image-based control is utilized in the autonomous flight con-
trol system. In recent years, there have been many studies
to develop algorithms that guarantee fast detection as well as
higher accuracy, which are essential to reliable UAV opera-
tions. Various algorithms and architectures of Convolutional
Neural Network (CNN), a class of deep neural networks,
have been proposed such as Region-based CNN (R-CNN)
(Refs. 11-13), Single Shot Detector (SSD) (Ref. 14), and You
Look Only Once (YOLO) (Refs. 15-17). R-CNN is classi-
fied as a two-stage detector that combines region-proposal al-
gorithms with CNN to extract 2,000 regions via a selective
search, then classifies the selected regions on the image. Later,
its variant Faster R-CNN is introduced to improve the detec-
tion speed by replacing the slow selective region search pro-
cess. Meanwhile, SSD and YOLO are classified as a one-stage
detector that regards object detection as a regression prob-
lem by taking an input image and simultaneously learning
the probability of an object class and bounding box coordi-
nates. According to the studies that compared the state-of-the-
art algorithms, YOLOV3 demonstrated faster detection perfor-
mance than Faster R-CNN and SSD (Refs. 17, 18). Hence, the
YOLOV3 algorithm is selected to train an object detector that
is able to detect a ship and a horizon bar in real-time. It is
not only visually tracking the object but that information is
relayed in real-time to the autonomous flight control system.



Once the object is detected, it provides the object position and
its bounding box in the image to the autonomous flight con-
trol system. Even though the actual relative distances are not
estimated, the size of the object and its position in the image
are sufficient information to control a UAV to approach the
ship from a long distance. The verified maximum range is ap-
proximately 250 meters (820 feet) when the object occupies
an area of 6 x 6 feet. Considering the range is proportional to
the object’s occupying area in the image, a typical small ship
where the rear-side occupies 50 x 50 feet area can be detected
from 17.3 kilometers (9.3 nautical miles) away.

On the other hand, obtaining accurate relative position and
orientation from a captured image is crucial for the final ap-
proach and even more important for precise landing on the
ship deck. Instead of detecting an object as a whole using
machine learning, computer vision techniques are applied to
extract particular points of interest. To name a few, edge and
line detection (Refs. 19, 20), corner detection (Refs. 21,22),
and contour detection (Ref. 23) are previously applied to air-
craft landing applications. In the present system, the visual
cue to track is a horizon bar that has a rectangular shape and
green color. To detect distinctive points on the bar, multiple
processes such as image filtering, contour detection, corner
points detection, and screening are conducted in this order.
From the detected points in the 2D image, UAV relative po-
sitions and orientations are estimated using PnP (Perspective-
n-Point) method. The accuracy of the present vision system
to sub-centimeter and sub-degree levels have been previously
demonstrated by the authors (Ref. 24).

By using the information provided by the vision system, the
flight controller manipulates the UAV to approach and land.
To this end, various control systems that uses vision sen-
sors without GPS have been investigated in the literature,
such as proportional-derivative (PD) control (Refs. 4, 25), a
proportional-integral-derivative (PID) control (Refs. 3, 26),
gain-scheduled PID control (Ref. 24), linear quadratic reg-
ulator (LQR) (Refs. ), adaptive control (Refs. 30-32),
discrete-time nonlinear model predictive control (Ref. 33),
and reinforcement learning based control (Ref. 34). In the
present system, a nonlinear control system with the Kalman
filter is uniquely designed to operate accurately and robustly
in the presence of time delays and sensor noise. The Kalman
filter reduces the noise in estimation, however, small noise
can be amplified when incorporated into the derivative con-
troller due to the numerical differentiation process. A novel
nonlinear controller is developed on top of the Kalman esti-
mator to prevent the controller from responding to unrealistic
estimations (or large fluctuations). It multiplies the estimation
difference by the probability of its occurrence that follows a
normal distribution. In this manner, the controller probabilis-
tically perceives if the estimation is physically possible or not
and then determines how to respond with a control input.

To demonstrate the safety of the vertical landing maneuver,
which in this case is independent of the ship motions, realis-
tic ship motions are implemented on a six degrees of freedom
(DOF) motion platform. The first ship motion case is from the
Oliver Hazard Perry Class FFG Frigate which is a small ship

with a single landing deck. The ship motions at the sea state
of 6 and the wave direction of 60° are scaled down for the
4ft x 4ft platform and are provided in (Ref. 1), which are also
similar to measured ship motion data presented in (Ref. 35).
The second ship motion case is the FFG 7 Class ship motion
limits which are 3° of pitch and 8° of roll as defined in the
Naval Air Training and Operating Procedures Standardization
(NATOPS) (Ref. 36). The period of pitch and roll motions are
selected as 10.1 secs and 6.5 seconds according to the study of
typical small ship motions conducted by the Sandia National
Lab (Ref. 37). Vertical landings are conducted at random in-
stances of deck motions.

The developed autonomous system is systemically verified in
every aspect through extensive simulations and flight tests. A
platform is constructed to reproduce ship structure and deck
motions using a 6 DOF Stewart platform. A quad-rotor-UAV
Parrot ANAFI live streams a video to a base-station computer,
which processes the image frames to transmit control inputs
through WIFI. Indoor and outdoor flight tests demonstrated
the robust autonomous tracking capability and the safety of
vertical landing.

The following are the key contributions of this paper.

e Automate Navy helicopter ship landing procedure for
UAVs.

Develop and integrate a state-of-the-art machine learning
based vision system with an autonomous flight controller
for stable long-range tracking.

Demonstrate a fast and reliable method to extract points of
interest from an image by combining classical computer
vision and screening algorithms.

Develop a novel nonlinear controller along with a proba-
bilistic algorithm to prevent large incorrect control in-
puts due to non-physical estimations to enable robust and
smooth tracking.

Demonstrate the accuracy and safety of vertical landing
with scaled deck motion corresponding to a small ship
at a sea state of 6.

The outline of the paper is as follows: In Section 2, details
about the development of machine vision systems are de-
scribed. In section 3, the nonlinear control systems are de-
tailed and the performances are compared to other candidate
controllers. The results of long-range tracking and vertical
landing tests are presented in section 4 followed by the con-
clusions inferred from this study.

MACHINE VISION

The objective of the vision system is to provide the visual
information required in a given situation. Hence, the devel-
opment begins by understanding how a helicopter pilot per-
ceives and acts during different situations while approaching
and landing on a ship. First, the pilot visually confirms the



ship’s location from a long distance and then sets a course and
speed for the approach. Second, once reaching close proxim-
ity of the ship, the horizon reference bar becomes visible, and
from that point, the pilot stabilizes the helicopter by referring
to the horizon bar, which remains horizontal independent of
the ship motions, for a safe landing. In the present vision
system, the same strategy is automated for VTOL UAVs by
taking advantage of state-of-the-art machine learning object
detection and classical computer vision methods.

= 1 1

1 1
100m 10m

Eclassical CV based

| Points on Bar|

Horizon Bar
- |

L4

>250m
ML based

Primary: Ship Platform Horizon Bar

Secondary: Ship Platform

Figure 2. Tracking object depending on distance

As shown in Fig. 2, the ship, horizon bar, and corner points
on the bar are used to perceive pose information depending on
the distance. Note that it is only possible to detect the corner
points at close proximity to the landing pad. The ship and
horizon bar detections are used in the case when the corner
points of the visual cue cannot be accurately detected.

Machine Learning Based Approach

The developed machine learning object detector is engaged
at long distances, where detecting the object (or ship) as a
whole is of interest. Classical computer vision may achieve
the same task, however, it requires explicit algorithms for de-
tection which leads to being complicated and also challeng-
ing to capture every aspect of the object. Instead, machine
learning object detection learns the characteristics of the ob-
ject thoroughly using neural networks. The speed and accu-
racy of this detection process are significantly improved by
using Graphics Processing Units (GPUs).

Once it detects an object, it returns the position of the object
and the size of its rectangle bounding box in the image. The
position and size are used to determine approach course and

Input Image

Divide into N x N grid

A

speed, respectively. Since the detection range is proportional
to the area occupied by the detected object in the image, dur-
ing the early phases of approach the whole ship is detected
to maximize the detection range. As the UAV gets closer to
the ship, it also detects the horizon bar which provides more
specific position and size information. Instead of having one
object detector that identifies two objects (ship and horizon
bar), two separate object detectors are developed for each ob-
ject so that they do not have to distinguish one object from
the other. The control system takes the information from the
object detectors and takes the most appropriate control action
in a given situation.

Developing the object detector involves three steps, which are,
collecting images, labeling objects in the images, and training
the object detector. First, 2000 images of the ship platform
and 1000 images of the horizon bar are collected by UAV’s
onboard camera. To include various object figures in train-
ing sets, the perspective, lighting, weather condition, and dis-
tance were varied as much as possible. Second, the object in
the collected images is labeled by drawing a bounding box
and designating the object name. This data is stored as pixel
positions and the object identification number. Third, the set
of labeled images are used for training via a state-of-the-art
machine learning technique. In order to implement the ma-
chine learning object detection in a real-time flight system,
computational speed is the first factor to consider. According
to the recent studies that compare the processing time of fast
detecting algorithms (Refs. 14,17,18), YOLOV3 is faster than
other algorithms such as SSD and Faster R-CNN while having
similar accuracy in prediction. For this reason, the YOLOv3
algorithm is selected for the system. The object detection task
consists of object classification and localization. Typically,
an object detector is developed to detect multiple objects and
classify them; however, in the present approach, two separate
single object detectors are developed to detect the ship plat-
form and horizon bar, respectively. By doing so, each detector
only needs to find a particular object in the image, and the ob-
ject class is automatically assigned without incurring the risk
of false classification.

Bounding boxes
with confidence score

Successful Detection

Class probability map

Figure 3. Ship platform detection process by YOLOv3 algorithm
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The one-stage detector YOLOV3 regards the detection as a
regression problem and uses a single neural network. It an-
alyzes the entire image to predict the object-bounding box.
As shown in Fig. 3, the input image is divided into an N
x N grid and each grid cell predicts bounding boxes with a
confidence score and class probability. To better detect the
object in different sizes, it predicts bounding boxes at three
different scales, which helps to detect the object from a far
distance. The predictions of developed detector are encoded
as an N X N x [3% (4414 1)] tensor for N x N grid cells, 3
different scales, 4 bounding box offsets, 1 object confidence
score, and 1 class prediction.

The observed maximum ranges for detecting the ship platform
and horizon bar are approximately 250m and 100m, respec-
tively. The real-time detection at different distances is shown
as bounding boxes with object names in Fig. 4.

Figure 4. Long and mid-range real-time object detection
result

Classical Computer Vision Based Approach

Once the UAV reaches close proximity of the ship platform, it
is required to detect the visual cue and then estimate relative
position and orientation for the final approach and landing. At
close range, robust detection and estimation are achieved by
combining computer vision techniques and developed screen-
ing algorithms. The vision system first detects the desired
points of interest and then estimates the relative position and

orientation. The visual cue does not need to have any partic-
ular form as long as the dimensions are known apriori. How-
ever, unique features that are distinguishable from the sur-
roundings are favorable for detection. The current visual cue
closely mimics the horizon bar on Navy ships and is installed
normal to the aircraft approach course. It has two green-
colored rectangles on a grey background with known size and
separation as shown in Fig. 5.

Figure 5. Installed horizon bar

Considering the characteristics of the installed horizon bar,
the corner points of the green rectangles are determined as
the targets to be detected. In order to ensure robust detection
and estimation in scenarios involving large UAV movements
and different light conditions, the established vision system
sequentially conducts the image filtering, contour and corner
detection, detected points screening, and the estimation of po-
sition and orientation.

Image Filtering: The initial approach involves applying a
Hue-Saturation-Value (HSV) filter to sort out the green rectan-
gles. The HSV filter is preferred over Red-Green-Blue (RGB)
because the RGB color space is more sensitive to light condi-
tions. To ensure the capture of the green rectangles in different
light conditions, the greater range of HSV (H: 35 - 85, S: 70 -
255, V: 90 - 255) is assigned; however, this inevitably leads to
the capture of undesired portions. In the HSV filtered image,
there possibly exists small white patches outside the rectan-
gles and black voids inside the rectangles. The morphologi-
cal opening technique is used to remove the white patches in
the image. It first erodes an image removing any small white
patches and then dilates the eroded image to preserve the orig-
inal shape and size. Morphological closing is used to fill up
small voids in those rectangles by dilating an image first then
eroding the dilated image. By performing these operations,
the rectangles are depicted as white regions on the black back-
ground. The watershed algorithm (Ref. 38) is exploited to
obtain clear boundaries of the rectangles. The two reference
areas are obtained by eroding the processed image by 1% and
dilating the processed image by 1%. The gap between the two
areas is assumed to contain the boundaries of the rectangles.
The algorithm simultaneously expands the area of the back-
ground and the rectangles toward each other until they meet
at one pixel point. By connecting the points, clear boundaries
of the rectangles are obtained. The images of each step are
shown in Fig. 6.
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Figure 6. Image filtering process

Contour and Corner Detection: Once the green rectangles
are isolated by the image filtering process, the detection of
contours and corner points is conducted. Even after the filter-
ing, directly implementing any pre-existing corner detection
algorithms is prone to detect some false corners. To detect the
eight corner points precisely, the contours of the detected re-
gion are found and bounded in rectangles first. Thus, the size
and shape of the detected areas are very close to the green
rectangles and the corners of those bounding rectangles can
be used as rough estimates of the actual corners. Second, the
Forstner corner detection method is adopted to detect the cor-
ner points of the rectangles precisely based on the rough cor-
ners obtained by contour detection (Ref. 39). The Forstner
corner detection increases the accuracy by sub-pixel refine-
ment process. It is based on the fact that an ideal corner is a
single point that tangent lines of the object cross perpendicu-
lar to each other as shown in Fig. 7. This way, false corner
detection can be avoided.
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Figure 7. Forstner corner detection method

The pixel information around a corner is not perfectly clear.
Therefore, an approximation process for defining the corner
position (c,,¢y) is required and is expressed in Eq. (1).

(6, ¢y) =argmin Y ([VFu,v)] (u—cuv—c,))* (1)
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The image gradient V f(u,v) at the image pixel position (u,v)
is perpendicular to line from (u,v) to corner position (¢, c,).
In order to obtain (c,,c¢,), a least square estimation in a small
window is used. The projection of line from (cy,¢,) to (u,v)
on to the tangent line at (u,v) is required to be maximized in
the given window. In other words, the projection of the image
gradient onto the line segment connecting (c,,c,) and (u,v)
has to be minimized for all (u,v) inside the window N. One
crucial part here is the size of the window chosen for each
image. It cannot be a fixed window size because the UAV
is always moving towards the landing pad. The size of the
detected region keeps increasing as it approaches closer to the
visual cue. Hence a variable window size which is a function
of the width and height is assigned as expressed in Eq. (2).

swOn (i), ) = g 0wla) <hw)) @)

sw(w(t),h(t)) is the window size at time #; where w(f;) and
h(ty,) are the width and height of bounding rectangles in pixels.
The results of the contours and corners detection are shown in
Fig. 8.

Corners detected

Contours detected

Figure 8. Detection of contours and corners

Detected Points Screening: The screening procedure is es-
tablished to assure that no false corners are present. All the
corners are sorted in a particular order as shown in Fig. 9,
which helps in finding the length and slope of each side of the
rectangles in the image. Even though they are not perfect rect-
angles in the image, width 1, 2, 3, and 4 have similar lengths
and slopes. The height 1, 2, 3, and 4 also have similar lengths
and slopes. A £10% tolerance level is set for the lengths and
a £5% tolerance level is set for the slopes.

® width2

~ Width4d

Figure 9. Detected corners in sorted order



Estimation of Relative Position and Orientation:

The estimation is based on a single camera calibration method
using a planar object (Refs. 40,41). The geometric relation of
the image and real-world coordinates is shown in Fig. 10.
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Figure 10. Geometric relation of image and real-world co-
ordinates

A conventional pinhole camera model is used to derive the
geometric relation. A 3D coordinate system can be defined
with respect to the visual cue and there is a 2D coordinate
system associated with the image frame. (X,Y,Z) is a point
on the object described in the visual cue body-fixed frame,
and (u,v) is a corresponding point on the image frame (pixel
position in the image). The relationship between the image
coordinates and the body-fixed coordinates in matrix form is
described in Eq. (3).

u —1
s|v —A[R ’] 3)

| Oz 1
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The equation is derived in a homogeneous coordinate system.
In the homogeneous coordinate system, the 2D image point
(u,v) becomes a 3D vector (u,v,1) and the 3D world coor-
dinates (X,Y,Z) become 4D vector (X,Y,Z,1). The scaling
factor s comes from transforming the homogeneous coordi-
nates to cartesian coordinates. R is a 3 x 3 rotation matrix
and ¢ is a 3 x 1 translation vector. R matrix has the informa-
tion about the camera orientation with respect to the visual
cue and ¢ provides the information on how far the camera is
from the particular (X,Y,Z) point in the visual cue body-fixed
frame. Op,3 is 1 x 3 zero matrix. The matrix which includes
R, t, O1,3, and 1 is called the camera extrinsic matrix, which
varies from image to image. The matrix A is called the camera
intrinsic matrix and its components are shown in Eq. (4).

1/pe O w|[fi 0 00
A=| 0 1/p, w||0 £ 0 0 4)
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1/py and 1/p, are parameters that scale the image coordi-
nates, which are in pixels to values in the International System

of Units (SI). ug and vq are the center position in the image
plane. The first matrix shifts the center of the image plane to
the top left corner point. The second matrix contains the focal
length information f, and f,, which are the focal lengths of
the camera in the x and y directions, respectively. The product
of two matrices forms the camera intrinsic matrix, which de-
pends on the particular camera. This unique camera intrinsic
matrix can be found using a camera calibration (Ref. 42).

To determine the relative position and orientation of the cam-
era, the Perspective-n-Point (PnP) algorithm is applied. Given
a set of n 3-D coordinates of an object and its corresponding 2-
D projections on the image, this algorithm solves Eq.(3) to ob-
tain the rotation vectors R and the translation vectors ¢. There
are 6 DOF for a camera, which are 3 DOF in rotation (roll,
pitch, yaw) and 3 DOF in translation (X,Y,Z). A minimum
of 3 points are required to find a solution, but the solution is
not unique. There should be a minimum of 4 points to obtain
a unique solution; however, it can be more reliable and redun-
dant when there are more points. An iterative method is used
for the PnP algorithm since it is robust for objects which con-
sist of a planar surface and gave more accurate results. The
iterative method is based on Levenberg-Marquardt optimiza-
tion (Refs. 43, 44). In this method, the function minimizes
re-projection error, which is the sum of squared distances be-
tween the observed image points (u,v) and projected object
points (X,Y,Z). By default, the iterative algorithm sets the
initial value of rotation and translation as zero and then up-
dates during each iteration.

The RANSAC method (Refs. 45,46) is used to find a rough
initial guess for the extrinsic matrix in an iterative approach.
The RANSAC method also identifies the outliers and removes
them during the calculation. The initial guess and inliers are
fed into the iterative algorithm to have a more accurate esti-
mation. The solvePnP algorithm (Ref. 42) returns a rotation
vector and the translation vector. The rotation vector can be
converted to the rotation matrix using the Rodrigues function.
Thus, once the rotation matrix (R) and translation vector ()
are obtained, —R~ !¢ gives the relative distances in 3D from
the camera to the origin of the visual cue body-fixed frame.

The present estimation method is modified from the existing
algorithm to take advantage of the gimbal camera. Since the
gimbal corrects for the roll and pitch motion of the UAYV, the
images only reflect the yaw motion (heading angle) with re-
spect to the visual cue. Thus, roll and pitch angles computed
by the image can be regarded as camera noise and gimbal cor-
rection errors. Therefore, the roll and pitch angles are ex-
cluded from the position estimation. The basic and modified
rotation matrix are specified in Egs. (5) and (6), respectively.

cocB  cosBsy—sacy cosBcy+sosy
Rpusic = |sacB  sasBsy—cacy sasBey+cosy| (5)
—sp cPsy cBey
cosa¢ —sina 0
Ryodifiea = | Sin  —cosae 0 (6)
0 0 1
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o, B, and y represent yaw, pitch, and roll angles, respectively.
Each row of the R matrix contributes to their respective coor-
dinates (X,Y,Z). By setting pitch and roll angle to zero, the
modified rotation matrix is obtained from the basic rotation
matrix. Only the yaw angle remains which takes care of the
relative heading angle. The third row of the modified rota-
tion matrix shows that the Z-coordinate is independent of the
yaw angle, . Hence, the yaw angle has no contribution in
the estimation of forward relative distance (Z-coordinate) be-
tween the UAV and the visual cue. However, the sideward rel-
ative distance (X-coordinate) and vertical relative distance (Y -
coordinate) are heavily dependent on the yaw angle. The cam-
era position with respect to the visual cue is given in Eq. (7)

It is apparent from multiple experiments that the yaw angle es-
timation becomes noisy as the camera gets farther away from
the visual cue. Since the estimation is based on the number
of visual cue pixels in the image, the changes in pixels with
distance result in the noise. Despite this sensitivity issue, yaw
estimation still shows a reasonable trend within the range that
the forward relative distance is accurately estimated. To uti-
lize the yaw estimation trend, instead of directly taking the
noisy yaw angle estimation, a simple low pass filter is con-
figured to reduce the noise level. One of the commonly used
real-time data filters is Kalman Filter. Kalman filter predicts
the current estimate by taking into account the current mea-
sured value, the previous estimate, and the noise level in the
data. A single state Kalman filter was opted over other real-
time filters because of the lesser number of variables required
while computation. Gaussian noise is assumed to be present
in the measurement data with a specified mean and variance.
The underlying equations involved in estimating the yaw are:

CE=PE+KGxCM

1
KG=PrEx — 8
G=PrEX 5 /N ®)
PrE — PE+ON

where CE is the current yaw estimate, PE is the previous yaw
estimate, KG is the Kalman Gain, CM is the current yaw mea-
surement, RN is the process noise covariance, and QN is the
measurement noise covariance. RN and QN values are exper-
imental values found by analyzing different sets of yaw angle
measurements and they are set to 0.005 and 0.05, respectively.

The estimation method for the relative position and orienta-
tion is previously validated using a Vicon motion capture sys-
tem, which demonstrated sub-centimeter and sub-degree ac-
curacy as detailed in (Ref. 24).

NONLINEAR CONTROL SYSTEM

The sequential steps involved in the vision-based control sys-
tem are live-streaming the video from UAV’s onboard camera

to an external base-station computer, image processing, feed-
back controller generating the control inputs, and transmit-
ting the control inputs back to the UAV. The processing time
is considerably affected by the type of detection method en-
gaged in the vision system. The average time to complete one
cycle is 0.5 seconds when the machine learning detection is
engaged and 0.03 seconds when the detection of the rectangle
corner points is engaged. In order to cope with the time de-
lay as well as potential sensor and estimation noise, nonlinear
controllers, which can adapt to different situations are devel-
oped. Particularly, five different flight modes are configured
according to the situations perceived by the vision system as
shown in Fig. 11.
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Figure 11. Flowchart showing vision-based control system

Long-range Tracking Controller

In the long-range where the entire landing platform is detected
as a whole, the information provided by the vision system is
the platform size and position in the camera view. The flight
control system in this region deals with a relatively slow up-
date rate that is 0.5 seconds on average. When the update rate
is fast enough, the discrete system that receives sensor data
at each update time can be a good approximation to the con-
tinuous system. Thus, integral and derivative controllers can
be configured by using the summation and difference of error.
However, the summation and difference are not good approx-
imations for integral and derivative controllers when the up-
date rate is slow. Hence, the nonlinear controller is designed
to achieve the control task in the presence of the slow update
rate by applying the nonlinear exponential gain Kp{e(#;)} as
shown in Eq. (9).



In Eq. (9), e(f;) denotes the error at time #;, r(¢) is the relative
position at time f, and c is the setpoint. The control law,
u(t), has exponential term in the nonlinear gain Kp{e(#)} to
decay control magnitude exponentially near zero error. The
constants m, a, ¢, and d selected for the ship platform and bar
tracking are provided in Table 1.

Table 1. Selected constants of long-range controllers

Flight Mode  Controller m a c d
. pitch 0.008 0 5000 O
Sthpr ;llfitﬁ;rm roll 12 00158 640 1
heave 3.0 0.0108 360 1

pitch 0.004 0 3400 O

Bar Tracking roll 1.0 0.0158 640 1
heave 5.0 0.0108 360 1

The desired object size, the image center position in the hori-
zontal direction, and the image center position in the vertical
direction are the setpoints for the pitch, roll, and heave con-
trollers, respectively. Unlike the roll and heave controllers,
the pitch controller with the assigned parameters returns to a
linear proportional controller, which is sufficient to approach
the ship in the long-range. There is also a yaw controller that
can control the heading angle to set the approach course. It
is designed as a nonlinear probabilistic control system, which
is the same as the close-range tracking yaw controller and de-
tailed in the following section. The only difference is that a
magnetometer is used to read the current heading in the long-
range and the vision system provides the estimated heading
angle during close-range tracking.

The exponential nonlinear roll control input is shown in Fig.
12.
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Figure 12. Exponential nonlinear roll control input

Depending on the constant value a, the rate of change of con-
trol magnitude varies. In the roll controller case, constant a is
selected as 0.0158. The maximum and minimum control mag-
nitudes are limited to 100 and -100, respectively. Even though
it utilizes only the error at time #, it can minimize the over-
shoot around the setpoint where the error is zero by decaying
quickly. On contrary, it yields a large control magnitude as
the error becomes larger.

In the case of a slow update rate, the nonlinear controller
is able to achieve stable setpoint tracking. The effect of
the nonlinear roll controller is compared to the conven-
tional linear proportional controller and proportional-integral-
derivative (PID) controller as shown in Fig. 13.
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Figure 13. Effect of exponential nonlinear Controller

It demonstrates that the nonlinear controller can prevent the
system from overshooting the setpoint. However, the linear
proportional controller cannot stabilize the oscillations be-
cause it computes the control input by multiplying the error
with a fixed gain value. Even the linear PID controller is not
able to stabilize the oscillations in an effective fashion due to
the slow update rate.

However, as seen from Fig. 13, the nonlinear controller has
some steady-state error. Considering the long distances at
which the nonlinear controller is engaged, the steady-state er-
ror is not an issue because this is not the final error of the
entire approach and landing maneuver, but the initial error for
the corner tracking system, which takes over the control at
close distances. Therefore, it is more imperative to control
the aircraft stably than to achieve the minimum steady-state
error while the UAV is approaching from a long distance.

Close-range Tracking Controller

At close range, when the vision system can reliably detect the
corners of the rectangles on the visual cue, the vision-based
controller utilizes the estimated relative position and orienta-
tion data to yield control inputs. The average update rate is
0.03 seconds, which is significantly faster than the machine
learning object detection that is applied at long distances.



Having integral and derivative controllers along with the pro-
portional controller enables precise tracking. Even though
the estimation provides accurate position and orientation data
with sub-centimeter and sub-degree error, a small error differ-
ence between subsequent time steps can yield large and noisy
control magnitude since it depends on the difference in error
divided by the small update rate of 0.03 seconds. To take ad-
vantage of the derivative controller with minimum noise, the
Kalman filter and nonlinear derivative controller are designed.

A single state Kalman filter is applied with the unity feedback,
which means that it does not require the prediction from the
model. This model-free estimator reduces the noise, however,
it uses error difference values for estimation. Therefore, it will
be affected by incorrect and unrealistic error difference values
that may occur from time to time. To reject this intermittent
unrealistic estimation effectively, a novel nonlinear derivative
controller with linear proportional and integral controllers is
designed by utilizing the normal distribution concept as de-
scribed in Eq. (10).

de(ty) =e(ty) — e(t—1)
de(t) (10)
dty,

k
u(tk) :er(tk) +K; Z e(tk)dtk —|—KD{de(tk)}
k=1

de(ty,) is an error difference between time #;, and 1, and u(#)
is a control law that has linear proportional and integral terms
as well as the nonlinear derivative term. Kp and K; are con-
stant proportional and integral gains, and Kp{de(;)} is the
nonlinear derivative gain that is a function of error difference,
de(ty,), as specified in Eq. (11).

) =l 0
X =—2e o
V2ro? (11)
0.5 deli)-w)?

Kp{de(1)} = be o
f(x) is the probability density function that forms a normal
distribution. ¢ denotes the standard deviation and y denotes
the mean value. The area under the function indicates the
probability that a certain range of deviation occurs. The prob-
abilistic nonlinear derivative controller is constructed by tak-
ing the exponential term from the probability density function
and multiplying constant b that determines the control mag-
nitude. Based on the observation of aircraft movement, o is
determined as 0.04, which means the distance that the aircraft
can move during 0.03 seconds has a 68.2 percent chance of
being within 4 cm and a 95.4 percent chance of being within
8 cm. When b is 1 and u is 0, the probabilistic nonlinear
derivative controller computes derivative gains as shown in
Fig. 14.

Depending on the error difference, de(f;), the corresponding
nonlinear derivative gain, Kp, is selected and multiplied by
the derivative term de(t;)/dt;. If the estimated error differ-
ence is too high (or unrealistic), then it takes a small Kp value
to significantly minimize the control input. In this way, the
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Figure 14. Probabilistic nonlinear derivative controller

controller does not respond to the large noise in the error data,
which can trigger undesired and unstable maneuvers. Also,
the magnitude of gain can vary according to the selection of
constant b in Eq. (11). The effects of the Kalman filter and
the probabilistic nonlinear controller are shown in Fig. 15.
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Figure 15. Effect of kalman filter and probabilistic nonlin-
ear derivative controller

Red circles denote the control magnitude of the linear deriva-
tive controller without the Kalman filter. The high noise that
occurs in the range of 0 to 10 seconds are due to the deriva-
tive term, de(t;)/dt. This term is sensitive because the error
is divided by a small df;, which has an average value of 0.03
seconds. Thus, even a small error in estimation can be mag-
nified in the derivative controller. The green line is the result
after applying the Kalman filter to the linear derivative con-
troller. The noise is reduced, however, it still yields large con-
trol inputs in response to the incorrect estimation values. The
blue line shows the control inputs generated by the probabilis-
tic nonlinear controller with the Kalman filter and these inputs
are relatively small and insensitive to the large unrealistic er-
ror differences. At the 6.5 second mark, the error difference
de has a large value caused by incorrect estimation. In this
case, the linear derivative controller with the Kalman filter
reduced the magnitude to some extent but it is still affected



by that particular spurious error value. However, the proba-
bilistic nonlinear controller with the Kalman filter is able to
screen out the wrong value, thereby minimizing the effect of
incorrect error estimation. The finally selected gains through
extensive flight tests and simulations are specified in Table 2.

Table 2. Selected gains of close-range controllers

Flight K,
Mog de Controller Kp Kj b IJD .
o pitch 75 005 45 002 0.04
nggfsr roll 75 001 85 0 0.04
Tracking  heave 15 001 7 0 002
yaw 55 005 175 0 5
FLIGHT TESTING

The objectives of flight testing are to verify the long-range
tracking capability, landing accuracy, and safe vertical land-
ing on a platform with 6 DOF motions. Extensive flight tests
are conducted in realistic and challenging scenarios. First, the
ship landing environment is mimicked by the landing pad via
implementing the Oliver Hazard Perry Class FFG Frigate mo-
tions with helicopter ship landing limits. While the landing
pad is in motion, the ship platform is also translating forward
just like a real ship during a helicopter landing. During the
approach and landing, the UAV makes transitions between the
flight modes that engage with a particular vision and control
method based on the perceived situation, and lands vertically
without matching the UAV attitude to that of the pad. During
outdoor flight testing the maximum wind speed experienced
was around 9 m/s (17.5 knots) and the wind direction kept
fluctuating over the course of these experiments. The GPS is
only used to log positions during flight and not for control.

Experimental Setup

To simulate the 6 DOF motions of the ship deck, a Servos
and Simulation Inc Generic Motion System (model 710-6-
500-220) with a 4 ft x 4 ft (1.22 m x 1.22 m) landing deck
as shown in Fig. 16. The ranges of roll, pitch, and yaw are
+ 13°, + 15°, and + 16°, respectively. The ranges of surge,
sway, and heave are £ 10.2 cm, £ 10.2 cm, and + 6.4 cm,
respectively.

Figure 16. Servos and Simulation Inc. 6 DOF motion sys-
tem with 4 ft x 4 ft Landing Deck
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The ship platform is constructed including the horizon bar and
motion deck as shown in Fig. 17. The width, height, and
length of the ship platform are 5 ft, 5 ft, and 10 ft, respectively.
The horizon bar always indicates a perfect horizon, and the
motion deck has its own 6 DOF motions in addition to the
forward translational motion, which is similar to what would
be experienced on a real ship.

Figure 17. Constructed ship platform with horizon bar
and motion deck

A Parrot ANAFI is selected as a representative VTOL UAV.
It has a gimbal camera that can mechanically compensate for
the roll and pitch motion of the UAV and live streams a video
in 720p resolution. As shown in Fig. 18, it has the embed-
ded inner-loop autopilot that controls each propeller’s rpm to
achieve the commanded inputs generated by the outer-loop
vision-based control system developed in this study.
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External Computer
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Figure 18. Process of autonomous flight system

The system used for processing is LENOVO Legion Y740-
15IRH, which is composed of Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz, 6 Cores, and 12 Logical Processors. It
features an integrated NVIDIA GeForce GTX 1660 Ti 6GB
Graphics and 8GB of LPDDR4 memory with a 128-bit inter-
face. The Ubuntu 18.04 with Nvidia driver version 440 and
CUDA version 10.2 are used. The WIFI communication is
established by an external TP-LINK TL-WN722N Wireless
N150 High Gain USB Adapter.



Ship Motions and Vertical Landing Safety

In order to demonstrate that it is safe to land vertically with-
out matching the UAV attitude dynamics to platform motion,
landing tests are conducted while the 6 DOF platform is simu-
lating two challenging ship motions. The first prescribed mo-
tion is the Oliver Hazard Perry Class frigate at the sea state of
6 and a wave direction of 60° introduced by Sanchez-Lopez,
Jose Luis, et al. (Ref. 1). The frigate is 136 meters long and 14
meters wide and has a single flight deck. Sea state 6 is defined
by the World Meteorological Organization (WMO) as a very
rough condition that has a wave height of 4 to 6 meters. While
the platform is undergoing this complicated motion, vertical
landings are executed at random time instances as shown in
Fig. 19.
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Figure 19. Oliver Hazard Perry class frigate motion and
vertical landing moments

Solid red, blue, and green lines denote continuous angular
(pitch, roll, and yaw) and linear (surge, sway and heave) mo-
tions of the 6 DOF platform. 50 landing tests are conducted
in total and the motion of the platform at the time of each suc-
cessful landing are depicted as dots. The randomly distributed
landing timings demonstrate the vertical landing is safe at any
moment of the Oliver Hazard Perry Class FFG frigate ship
motions under the given conditions.

The second prescribed motion is the Navy helicopter ship
landing limits defined by NATOPS. In the case of the FFG
7 Class Ships which the Oliver Hazard Perry frigate belongs
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to, the ship motion limits for landing are set as + 8° of roll and
+ 3° of pitch. Even though the limits are defined by the maxi-
mum roll and pitch magnitudes, the frequency of the motion is
also a crucial factor for the motions. According to the report
for a similar size ship (length: 152.4 m, width: 15.2 m) mo-
tions conducted by the Sandia National Laboratory (Ref. 37),
the roll period is 10.1 seconds and the pitch period is 6.5 sec-
onds as shown in Table 3.

Table 3. Typical ship characteristics

Length Width Roll Period Pitch Period

Ship Type (m) (m) (secs) (secs)
Destroyer  152.4 15.2 10.1 6.5
Aircraft
Carrier 304.8 38.1 15.8 8.8

The maximum pitch and roll magnitude with the reported pe-
riods are applied to the platform and 50 vertical landings are
conducted at random moments as shown in Fig. 20.
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Figure 20. Motions of helicopter ship landing limits and
vertical landing moments

Solid red and blue lines denote continuous pitch and roll mo-
tions of the 6 DOF platform. The dots are the motions at the
time of successful landings. The randomly distributed landing
timings demonstrate the vertical landings are safe independent
of the motion as long as it is within the operational limits.

Tracking Capability and Landing Accuracy

The tracking capability and landing accuracy of the developed
vision-based autonomous flight control system are verified in
challenging situations such as random initial positions, maxi-
mum distance of 250 meters, realistic ship motions, commu-
nication latency, sensor noise, low visibility, and windy condi-
tions. In this fully autonomous vision-based system, GPS and
a magnetometer are used only to log positions and heading
angles and not for control. During flight testing, the landing
pad is mimicking the ship deck motions that are introduced in
the previous section.

First, flight tests are conducted to verify the maximum range
and smooth transition between flight modes. The trajectories
from take-off to landing are logged as shown in Fig. 21.
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Figure 21. Trajectories of long-range tracking

The initial positions are widely distributed and the maximum
distance between the UAV and the ship platform is approx-
imately 250 meters. During flights, the flight modes are
switched from the ship platform/horizon bar tracking to the
corner points tracking depending on the distance. The results
demonstrate stable long-range tracking capability in the pres-
ence of wind up to 9 m/s (17 knots). The time history of
control inputs for a representative case is shown in Fig. 22.
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Figure 22. Control inputs, distances, and heading angle
during long-range tracking in time
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It shows the control inputs, distances, and heading angle after
take-off until the execution of vertical landing. Each line de-
notes pitch, roll, heave, and yaw control inputs described as
percentages that range from -100 to 100 and generated based
on forward, sideward, vertical relative distance, and relative
heading angle, respectively. Zero control input means neutral
control input that maintains current UAV pose such as pitch,
roll, altitude, and heading. While the UAV approaches the
ship platform from 250 meters away, the vision-based flight
control system effectively flies the UAV by smoothly switch-
ing between the flight modes from the machine learning ob-
ject tracking for ship platform and horizon bar to the rectangle
corner points tracking, depending on the relative distance.

Considering the UAV and landing pad size, the safe landing
threshold is set by a 35 x 35 centimeter square from the pad
center, therefore, once the UAV reaches the landing threshold
the controller commands vertical landing. The final landing
points from multiple flight tests are distributed within the set
landing threshold as shown in Fig. 23.
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Figure 23. Landing points on pad of long-Range tracking

Second, flight tests are conducted to verify the robust tracking
while the ship platform is moving in different courses with its
own 6 DOF motions. The three representative trajectories of
the ship platform and UAV are shown in Fig. 24.
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Figure 24. Trajectories of moving ship tracking



Red squares denote the trajectory of the ship platform and blue
lines denote the trajectory of the UAV. It shows robust tracking
while the ship platform is moving in straight, S-pattern, and
90° turn. The control inputs for S-pattern moving platform
tracking are shown in Fig. 25.
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Figure 25. Control inputs, distances, and heading angle of
moving ship tracking in time

It shows the control inputs, distances, and heading angle after
take-off until execution of vertical landing while the UAV is
tracking the ship platform moving in an S-pattern. The pitch
control input is generated to approach the ship platform that
varies its speed from 0 to 10 mph. Since the ship platform
changes the course abruptly up to 130°, the relative sideward
distance and heading also change to a great extent. Accord-
ingly, the corresponding roll and yaw control inputs change
aggressively to achieve zero relative sideward distance and
heading. Vertical landings are conducted once the UAV flies
into the 35 x 35 centimeters landing threshold while the ship
platform is in motion. The final landing points from the multi-
ple flight tests are distributed within the set landing threshold
as shown in Fig. 26. The different flight test cases are shown
in the video (Ref. 47).
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Figure 26. Landing points on pad of moving ship tracking
CONCLUSION

The goal of this study is to develop an autonomous ship land-
ing solution for VTOL UAVs by closely following the Navy
helicopter ship approach and landing procedure. This automa-
tion has been achieved by using a single onboard camera with-
out using GPS. The developed ship landing system consists
of a machine vision system and a nonlinear control system.
The machine vision system is developed taking advantage of
state-of-the-art machine learning and classical computer vi-
sion techniques. The control system is developed to gener-
ate situation-adaptive control inputs by introducing the idea of
nonlinear gain variation and a probabilistic approach to limit
the impact of incorrect estimations.

Multiple flight tests are systematically conducted to verify the
safety of vertical landing maneuver, long-range detection and
robust tracking capability, and landing accuracy. The UAV
lands vertically independent of ship motions in the same man-
ner as a Navy helicopter lands on a ship. 100 landing tests are
successfully conducted on a moving deck, which mimicked
realistic and challenging 6 DOF ship motions. The machine
learning object detector trained by the YOLOV3 algorithm be-
gins identifying the 6 x 6 ft ship platform from 250 meters
away, which means the range in the case of a real ship landing
can be 17.3 kilometers (9.3 nautical miles). This is estimated
assuming that the rear-side of a typical small ship occupies
an area of 50 x 50 ft. The unique nonlinear control system
demonstrates robust tracking capability during a wide range
of realistic scenarios such as random initial positions, com-
plicated ship motions, communication latency, sensor noise,
and in the presence of winds up to 20 mph. Since the landing
command is triggered once the UAV flies into the pre-defined
landing threshold area, the final landing points are randomly
positioned within the area. The current landing threshold is
35 x 35 cm area which is sufficient to guarantee safe landing
ona 122 x 122 cm (4 x 4 ft) landing deck.

Some of the key conclusions from this study are enumerated
below.

1. The proposed vertical landing maneuver for VTOL
UAVs, which involves not following the ship deck mo-
tions, was verified as a safe way of landing. This was


https://youtu.be/ExkyUOdgYaw

achieved through multiple landing tests on the deck mim-
icking challenging ship motions (Oliver Hazard Perry
frigate at sea state 6) and NATOPS helicopter ship land-
ing operational limits (roll: £8, pitch: £3).

. The long-range vision system developed based on the
state-of-the-art machine learning algorithm YOLOv3
demonstrated a 10 times greater detection range than the
classical computer vision systems. The control system
successfully utilized the detected object position and rel-
ative size as states for long-range tracking.

. The biggest challenge to implement the machine learn-
ing based object detection on the real-time autonomous
flight was the time delay. To cope with the time delay
issue, the long-range controller was constructed that re-
sponded less sensitively to errors around the setpoint and
aggressively to large errors, using the exponential gain.
It enabled the UAV to stay in the appropriate flight course
while approaching the ship platform.

. The developed close-range vision system that combined
the classical computer vision techniques and screening
algorithms guaranteed fast and reliable detection of the
visual cue and demonstrated precise relative position and
orientation estimation. The update rate was approxi-
mately 15 times faster than the machine learning vision
system and therefore, the control system was able to con-
trol the UAV more precisely using faster feedback.

. Even after going through the configured Kalman esti-
mator, the large/false estimation error can still occur at
times. To prevent responding to such non-physical es-
timations, the probabilistic nonlinear controller was de-
veloped. It probabilistically perceives if the estimation is
physically possible or not, based on the normal distribu-
tion curve and known UAV characteristics. Multiplying
the estimation value by its probability can effectively re-
ject responding to the false estimation. By this approach,
the controller never generated abrupt large control input
even when the vision system provided inaccurate esti-
mations from time to time. This greatly improved the
robustness of the tracking.

. The landing accuracy depends on the pre-defined landing
threshold. The accuracy can be increased by setting a
smaller threshold; however, this will take more time and
requires more control effort. Considering the UAV and
landing pad size, the appropriate landing threshold of 35
x 35 cm was set and the UAV successfully landed within
this area every time during the 100+ flight experiments.

The results demonstrate conclusively the feasibility of this
novel autonomous approach and landing strategy for VTOL
UAVs, which is inspired by the Navy helicopter ship land-
ing. This is a significant accomplishment since there are no
known efforts in the literature, which focused on automating
the real helicopter ship landing procedure. The next goal of
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the study is to improve the wind disturbance rejection capa-
bility by combining the current control system with reinforce-
ment learning techniques so that the aircraft could robustly
fly through the ship wake during the approach and landing
phases.
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