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Abstract

The cop throttling number of a graph, introduced in 2018 by Breen et al.,
optimizes the balance between the number of cops used and the number
of rounds required to catch the robber in a game of Cops and Robbers.
In 2019, Cox and Sanaei studied a variant of Cops and Robbers in which
the robber tries to occupy (or damage) as many vertices as possible and
the cop tries to minimize this damage. They investigated the minimum
number of vertices damaged by the robber over all games played on a
given graph G, called the damage number of G. We introduce the nat-
ural parameter called the damage throttling number of a graph, denoted
thy(G), which optimizes the balance between the number of cops used
and the number of vertices damaged in the graph. We show that dam-
age throttling and cop throttling share many properties, yet they exhibit
interesting differences. We prove that thy(G) is tightly bounded above
by one less than the cop throttling number. We discuss infinite families
of graphs which attain equality for this bound, as well as graphs which
have a greater gap between the damage throttling number and the cop
throttling number. For most families of connected graphs G of order n
that we consider in this paper, we prove that thy(G) = O(y/n). However,
we also find an infinite family of connected graphs G of order n for which
thy(G) = Q(n?/3).

1 Introduction

Cops and Robbers is a two-player pursuit-evasion game played on simple graphs
which was introduced in [I, 11} 14]. In this game, a team of k cops attempt to
capture a single robber on a given graph. In round 0, each cop and the robber
choose a vertex to occupy, starting with the cops. In all subsequent rounds, each cop
either stays in their location or moves along an edge of the graph, after which the
robber has the same choice. This is equivalent to playing on a reflexive graph (every
vertex has a loop) and requiring the robber and all cops to move during each round.
Both interpretations are used in the literature. If during any round, a cop occupies
the same vertex as the robber, the cops win and the robber is caught (or captured).
Alternatively, if the robber has a strategy to avoid capture forever, the robber wins
the game.

Many graph parameters naturally arise from the game of Cops and Robbers.
First introduced in [I], the minimum number ¢(G) of cops required on a graph G
to guarantee capture of the robber is called the cop number of the graph. A graph
G with ¢(G) = 1 is called cop-win. Currently, one of the biggest open problems in
Cops and Robbers is Meyniel’s Conjecture [9], which states that ¢(G) = O(y/n).

Other parameters consider the amount of time taken to play a game of Cops
and Robbers. For a graph G and integer k > 1, the k-capture time of a graph G,
denoted capt,(G), is the minimum number of rounds required for k cops to capture
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a robber over all games played on G where the robber avoids capture for as long as
possible. The k-capture time of a graph was first studied for £ = ¢(G) in [3] and for
other k values in [5]. Note that if & < ¢(G), then capt,(G) is defined to be infinity.
In [6], the cop throttling number, th.(G), of a graph G was introduced in order to
study the optimal balance between the number of cops used and their capture time.
Specifically, for any graph G on n vertices, th.(G) = 1r<nklgn{k + capt,(G)}. The cop

throttling number is an upper bound for the cop number of a graph and it was asked
in [6] whether th.(G) = O(y/n). This question was answered negatively in [2].

Recently in [7], Cox and Sanaei introduced an interesting parameter dmg(G),
called the damage number of G. A vertex is considered damaged if the robber ever
occupies that vertex in a round in which capture does not occur. For a graph G,
dmg(G) is the minimum number of vertices damaged over all games played on G
with a single cop where the robber places and plays to maximize damage. Note that
in this variant of the classic game, the cops try to minimize damage and do not
necessarily capture the robber. Cox and Sanaei also mention that damage can be
studied with multiple cops; the following definition formalizes this idea.

Definition 1.1. Suppose G is a graph on n vertices and k is an integer with 1 <
k < n. The k-damage number of G, denoted dmg,(G), is the minimum number of
vertices damaged over all games of Cops and Robbers played on G with k& cops where
the robber places and plays in order to maximize damage.

In contrast to k-capture time, the k-damage number of a graph is still interesting
when k < ¢(G) since k cops can always seek to minimize damage regardless of
whether capture is possible. Furthermore, the notion of k-damage number leads to
the investigation of the optimal balance between the number of cops used and the
number of vertices damaged. This idea is captured in the next definition.

Definition 1.2. Suppose G is a graph on n vertices. The damage throttling number
of G is defined as thy(G) = 112321 {k + dmg,(G)}.

In this paper, we study the damage throttling number of a graph and how it
compares to the cop throttling number. In Section 2] we explore various similarities
between the two throttling numbers. First, we prove that for any connected graph G,
c(G) < thy(G) and we show that for any graph G, thy(G) < th.(G) — 1. In Section
we find several infinite families of graphs G for which th,(G) = th.(G) — 1.
Furthermore, we show this equality holds for all connected graphs on 6 or fewer
vertices in Section 2.2

In Section |3 we explore the differences between damage throttling and cop throt-
tling by finding infinite families of graphs G for which thy(G) < th.(G) — 1. In
particular, we construct a graph G' with th,(G) < th.(G) — 3 in Section and we
examine a family of graphs with highest possible capture time in Section In Sec-
tion , we find a family of connected graphs G of order n for which thy(G) = Q(n%?).
In Section [5] we study k-damage numbers and how they compare to cop numbers.
Throughout this paper, we follow most of the graph theoretic and Cops and Robbers
notation found in [8] and [4] respectively.
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2 Similarities with cop throttling

In this section, we examine some ways in which the damage throttling number of a
graph G is similar to the cop throttling number of GG. First, recall that the domination
number of a graph G, v(G), is the smallest cardinality of a subset S C V(G) such
that V(G) is the closed neighborhood of S. It was observed in [6] that for any
graph G, th.(G) < v(G) + 1, and we now make a similar observation for the damage
throttling number.

Observation 2.1. For any graph G, thy(G) < v(G).

Next, we investigate the relationship between the damage throttling number and
the cop number of a graph. Although for all graphs G, ¢(G) < th.(G) is trivial, this
is not the case with damage throttling. For example, the graph K, consisting of n

isolated vertices satisfies thy(K,) = 2 < n = ¢(K,,). However, for connected graphs,
we can prove the analogous result for damage throttling.

Proposition 2.2. If G is a connected graph, then ¢(G) < thy(G).

Proof. Let G be a connected graph on n vertices. We exhibit a strategy for k +
dmg, (G) cops to guarantee capture of the robber on GG. Throughout this strategy,
k cops (called active cops) play optimally to prevent damage on G. The active cops
can ensure that the robber can damage at most dmg,(G) vertices. We refer to the
remaining dmg, (G) cops as undercover cops. Whenever a new vertex is damaged
by the robber, an undercover cop moves to occupy that vertex. Since the robber
can damage at most dmg,(G) vertices, one of the cops (active or undercover) is
guaranteed to be able to capture the robber. Thus, for all k, k + dmg,(G) cops
can capture the robber in finite rounds. In particular, for an integer ¢ that realizes
thqe(G), ¢(G) < £+ dmg,(G) = thy(G). O

We now establish a relationship between thy(G) and th.(G) using the following
lemma.

Lemma 2.3. If G is a graph on n vertices and 1 < k < n is an integer, then
dmgy(G) < capty(G) — 1.

Proof. If k < ¢(G), then capt,(G) = oo and dmg,(G) < n < capt,(G) — 1. Now,
suppose ¢(G) < k < n. The robber can damage at most one new vertex each round
before being caught. If k£ cops play optimally to catch the robber on GG, the robber is
caught in round capt,(G). Therefore, the robber can damage at most capt,(G) — 1
vertices. [

Proposition 2.4. For any graph G with |V (G)| > 2, the(G) < th.(G) — 1.

Proof. Suppose G is a graph of order n > 2. Choose an integer ¢(G) < ¢ < n that
realizes th.(G); in other words, choose ¢ such that {+capt,(G) = 1r<r}€1£1 {k+-capt,(G)}.
Then, o
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the(G) = 1%12”{]“ + dmg,(G)}

< ¢+ dmg,(G) (1)
< U+ capt,(G) — 1 (by Lemma (2)
= th.(G) — 1. O

The following corollary characterizes when the bound in Proposition is tight.

Corollary 2.5. The equality thy(G) = th.(G) — 1 holds if and only if there exists
an € > ¢(G) such that dmg,(G) = capt,(G) — 1 and both th.(G) and thy(G) can be
achieved with £ cops.

Proof. Consider each inequality in the proof of Proposition [2.4] By definition, an
integer ¢ realizes th.(G) if and only if ¢+ capt,(G) = th.(G). Furthermore, ¢ realizes
thy(G) if and only if inequality is tight. Thus, requiring that inequality is
also tight completes the characterization of graphs G with thy(G) = th.(G) — 1. O

A natural question would be to investigate the structure of graphs that satisfy

Corollary 2.5

2.1 Graph families such that thy(G) = th.(G) — 1

Although Corollary provides a complete characterization of graphs G that satisfy
thy(G) = th.(G) — 1, the given conditions are not easy to verify. Therefore, further
study of this equality is useful. In order to find several families of graphs that
achieve this equality, we now turn our attention to the k-radius of a graph and use
the following result.

Proposition 2.6. [J] If G is a connected graph on n vertices and 1 < k < n is an
integer, then capt,(G) > radi(G).

The proof of Proposition [2.6| uses a stationary robber, but such a strategy is not
optimal for damage. We now prove the analogous result using a different robber
strategy.

Proposition 2.7. If G is a connected graph on n vertices and 1 < k < n is an
integer, then dmg,(G) > rad,(G) — 1.

Proof. First, note that if rad,(G) < 1, then dmg,(G) > 0 is trivially satisfied. Next,
suppose rady(G) > 2 and consider an arbitrary initial placement of k cops on a subset
S C V(Q) of vertices. Choose a vertex z € V(G) such that d(S,z) is maximum.
Choose u € S such that d(u,x) = d(S,z). Let P be a shortest path in G from u to .
Place the robber on the vertex y in V' (P) such that d(y,u) = 2. If the robber moves
towards z along the path P in each round, then |V(P)| — 2 vertices are damaged.
Since |V (P)| — 1 > radg(G), this means dmg, (G) > rady(G) — 1. O
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As noted in [0, Remark 3.2], Proposition [2.6|yields th.(G) > 1%3? {k +rad,(G)}
as an immediate corollary. Proposition leads us to the following analogous result

for thy(G).

Corollary 2.8. For any graph G, thy(G) > 1I<r}ci2 {k +rady(G)} — 1.

We have established in Proposition [2.4] that for any nontrivial graph G, thy(G) <
th.(G) — 1. While we are also interested in graphs where thy(G) < th.(G) — 1 (see
Section , we now turn our attention to instances when this bound is an equality.
Using our previous results about k-radius, we show the desired equality holds for
several classes of graphs.

Proposition 2.9. Ifth.(G) = 1r<1r1k1£1 {k +radg(G)}, then thy(G) = th.(G) — 1.

Proof. Suppose th.(G) = min {k + rad(G)}. By Corollary ,

1<k<n

thy(G) > 1I<I}§1£l {k+radg(G)} — 1 = th.(G) — 1.
Since thy(G) < th.(G)—1 by Proposition[2.4] it follows that thy(G) = th.(G)—1. O

Next, we apply known results about graphs G for which th.(G) = 11<nkl£ {k +
rad,(G)} in order to show that thy(G) = tho(G) — 1 for these graphs. Recall that a
chordal graph is a graph in which every induced cycle is a Cj.

Proposition 2.10. [6] For any tree or cycle G on n vertices, th.(G) = min {k +
rad(G)}.

Corollary 2.11. For any tree or cycle G, the(G) = th.(G) — 1.

Proposition 2.12. [2] For any connected chordal graph G and integer 1 < k <
\V(G)|, capt,(G) = rady(G).

Corollary 2.13. For any connected chordal graph G, thy(G) = th.(G) — 1.

It is worth noting that the converse of Proposition does not hold; that is,
there exist graphs such that thy(G) = th.(G) — 1 and th.(G) > 1r<r}€i£1 {k +rady(G)}.

The Petersen graph P provides such an example, which we will examine next. First,
recall that a graph G is SRG(n, k, A\, u) if |V(G)| = n, G is k-regular, every pair
of adjacent vertices in G has A common neighbors, and every pair of non-adjacent
vertices in G has g common neighbors. The well-known fact that P is SRG(10, 3,0, 1)
is particularly useful for determining th,(P).

Theorem 2.14. For the Petersen graph P, 121]3? {k +radg(P)} = 3, th.(P) = 4,
and thy(P) = 3. o
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Proof. In order to find 1r<n]€1£1 {k + radi(P)}, note that rad(P) = 2 and (P) = 3.
This gives the following values of rad(P):

2 if k=12
rady(P) =41 if3<k<09;
0 if k£ =10.

So we see that lggn{k +rad(P)} = 3.

Next, note that ¢(P) = 3 [1] and since ¢(P) = v(P), we have the following capture
times:

0o ifk=1,2:
capt,(P) =<1 if3<k<09;
0 if k= 10.

These capture times imply that th.(P) = 4.

Finally, we calculate thy(P) by considering all possible damage numbers. We
know that dmg,(P) = 5 [7] and since v(P) = 3, dmg,(P) = 0 for all integers
3 < k < 10. We now prove that dmg,(P) = 2 by showing that the robber can
always damage two vertices, and that the cops can always prevent the robber from
damaging a third vertex. Since P is SRG(10, 3,0, 1), each pair of adjacent vertices
has no common neighbors and each pair of non-adjacent vertices has exactly one
common neighbor. Thus, while one cop dominates four vertices, two adjacent cops
dominate six vertices and two non-adjacent cops dominate seven.

To show that the robber can always damage two vertices, we note that regardless
of cop placement, the robber will always be adjacent to a vertex not dominated by
either of the cops. Otherwise, the cops could move such that one of them dominates
two of the robber’s neighbors, which contradicts P being SRG(10,3,0,1). So, in
round 1, the robber moves to an adjacent non-dominated and undamaged vertex,
thus damaging their starting vertex. In round 2, the robber damages the vertex they
occupy and moves to an adjacent non-dominated vertex. Note that the vertex the
robber moves to may be its original starting vertex. Thus, dmg,(P) > 2.

To show that the cops can prevent a third damaged vertex, place the cops on
non-adjacent vertices so that they dominate seven vertices. Playing according to
the robber strategy above, at the start of round 2, the robber is on a non-dominated
vertex. Further, the robber is adjacent to three vertices, namely u, the now-damaged
starting vertex; v, an undamaged but dominated vertex; and w, which is undamaged
and may or may not be dominated.

If w is dominated, the cops can stay still in round 2, which forces the robber
back to u. This damages a second vertex, but the robber is now on a previously
damaged vertex. If w is not dominated, then a cop that dominates v stays still,
while the other cop moves to dominate w. This move is possible since every vertex
not adjacent to w has a common neighbor with w. Thus, the only non-dominated
vertex adjacent to the robber is u, and so the robber must move to u. By repeating
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this strategy, the cops restrict the robber’s movement to these two damaged vertices.
Thus, dmg,(P) < 2.

Therefore, dmg,(P) = 2 and we have the following:

5 ifk=1;
dmg,(P)=4¢2 ifk=2;
0 if3<k<10.

These damage numbers imply that thy(P) = 3. O

2.2 Graphs on few vertices

In this subsection, we explore the gap between damage and cop throttling in graphs
with few vertices. As we have seen previously, when (G) cops play optimally on a
graph G, the robber is captured in the first round and no vertices are damaged. As
such, we can expect that for graphs with small enough domination numbers, we will
be able to restrict the gap between damage and cop throttling to just 1.

Lemma 2.15. If G is a nontrivial connected graph with v(G) < 2, then thy(G) =
the(G) — 1.

1, then capt,(G) = 1 and
th(G) — 1. If v(G) = 2,

Proof. Suppose G is a graph on n vertices.

dmg,(G) = 0 for all k& < n; this gives thy(G
then capt,(G) > 2 and capt,(G) = 1 for all n. Furthermore, we know
dmg,(G) > 1 and dmg,(G) = 0 for all 2 < Together, this implies that
thy(G) = 2 = th.(G) — 1. O

Al

It v(G)
) =1
2 < k
k < n.

Most nontrivial graphs with order at most 6 have a domination number of 2.
Thus, Lemma and additional consideration for those graphs with v(G) = 3 allow
us to classify all nontrivial connected graphs on at most 6 vertices as exhibiting a
difference of 1 between damage and cop throttling.

Proposition 2.16. If G is a connected graph of order 2 < n < 6, then thy(G) =
th.(G) — 1.

Proof. Tt is well-known that (G) < % for all connected graphs G with |V(G)| > 2.
If |V(G)| <5, then v(G) < 2 and by Lemma [2.15, thy(G) = th.(G) — 1.

Suppose now that [V (G)| = 6; then, v(G) < $ = 3. If v(G) < 2, then thy(G) =
th.(G) — 1 by Lemma [2.15, Using the Sage code in [I5], we find that the only two
graphs of order 6 with (G) = 3 are those illustrated in Figure [1]



J. CARLSON ET AL./AUSTRALAS. J. COMBIN. 80 (3) (2021), 361-385 369

Figure 1: The two order-6 graphs G with (G) = 3.

Observe that the graph on the left in Figure [1] is a tree and the graph on the
right is chordal. Therefore, by Corollary and Corollary respectively, these
two graphs also have thy(G) = th.(G) — 1 as desired. O

Thus, any nontrivial connected graph of at most 6 vertices will exhibit the lowest
possible gap of 1 between its damage and cop throttling numbers. This motivates us
to consider what the minimum order is of graphs with a difference of more than 1
between thy(G) and th.(G). More generally, we are interested in finding graphs that
exhibit this larger gap of at least 2.

3 Differences between damage and cop throttling

In this section, we turn to examining various graphs for which the gap between
damage throttling and cop throttling is at least two. While these are harder to find,
infinite families of graphs that realize this gap do exist; in particular, we demonstrate
two infinite families in which th.(G) and thy(G) remain constant and one in which
they grow without bound. A graph exhibiting a gap of three is also presented.

First, we continue our discussion of graphs on few vertices by showing that the
smallest graphs exhibiting a gap of two consist of only 7 vertices.

Proposition 3.1. The connected graphs of smallest order such that thy(G) <
th.(G) — 2 have T vertices; there are thirteen of them in total.

Proof. By Proposition [2.16] thy(G) = th.(G) — 1 for any connected graphs of order
6, so it suffices to consider graphs on order 7.

For any 7-vertex graph G, 7(G) < %, so ¥(G) € {1,2,3}. By Lemma , if
G has domination number 1 or 2, then thy(G) = th.(G) — 1. Thus, we need only
consider graphs G of order 7 with v(G) = 3. To find these, we will algorithmically
check every 7-vertex graph to see if it can be dominated by three vertices. Using the
Sage code in [15], we find forty-two such graphs that have v(G) = 3. Of these, we
will show that the twenty-nine graphs displayed in Figure [2| have a gap of only one,

but the thirteen graphs in Figure [3| have the desired gap of two.

Observe that of the graphs in Figure [2 five are trees, fifteen are chordal, and
one is a cycle; by Corollaries and these twenty-one graphs have thy(G) =
th.(G) — 1.
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Figure 2: The twenty-nine order-7 graphs G with v(G) = 3 but thy(G) = th.(G) — 1.
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Figure 3: The thirteen order-7 graphs G with 7(G) = 3 and thy(G) = th.(G) — 2,
with a vertex indicated in black in each graph on which the cop can place to ensure

dmg,(G) = 1.

For each of the remaining eight graphs in Figure [2| and thirteen graphs in Figure
we will directly calculate th.(G) and thy(G). First, by the Python code in [12],
none of these graphs are dismantlable, and so by [4], they are not cop-win. Since
v(G) = 3 for each of these graphs, capt,(G) > 2 and capt,(G) = 1 for 3 < k < 6.
Therefore th.(G) = 4.

We now calculate th,(G). Since v(G) = 3, we have dmg,(G) > 1 and dmg,(G) =
0 for 3 < k < 7. Observe that if dmg,(G) = 1, then G will have thy(G) = 2 and
achieve the desired gap; otherwise, if dmg,(G) > 1, then thy(G) = 3 and the gap
is only one. We thus wish to characterize which of these twenty-one graphs have
dmg, (G) = 1.

Note that in each of the thirteen graphs in Figure [3] if the cop places on the
black vertex, then by passing in each subsequent round, the cop restricts the robber
on only damaging one vertex. Thus, for these graphs, dmg,(G) = 1 and so thy(G) =
th.(G) — 2, as desired. The eight graphs in the last row of Figure [2/ do not contain
such a vertex the cop can place on; this implies the robber can move to a new
vertex in round 1 without getting captured in round 2. As such, dmg,(G) > 1 and
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thy(G) = th.(G) — 1 for these eight graphs. O

If we consider disconnected graphs, the gap between damage and cop throttling
can grow arbitrarily far apart, as exhibited by the following infinite family.

Observation 3.2. For n > 2, thy(K,) = 2 and th.(K,) — 1 =n —1. Thus, asn

increases, thy(K,) and th.(K,) — 1 get arbitrarily far apart.

However, we would like to find examples of infinite families of connected graphs
that exhibit the desired gap. While graphs with a dominating vertex v will not
realize such a gap, we can carefully reduce the number of vertices that v dominates
to restrict the robber’s motion and lower the k-damage numbers. This motivates the
following definitions which are illustrated in Figure [4

Definition 3.3. Recall the definition of the wheel graph W,, of order n as the graph
obtained by adding a dominating vertex, known as the hub, to the cycle C),,_;. For
each integer ¢ > 2, the gear graph of order 2¢ + 1 is denoted G941 and is obtained
from Wy, by deleting every other edge incident to the hub.

Definition 3.4. Further, recall the definition of the fan graph F), as the graph
obtained by adding a dominating vertex to a the path P,_;. We can now analogously
define the accordion graph for each integer ¢ > 2, denoted Asy, as the graph obtained
from Fy, by deleting every other edge incident to the dominating vertex.

Figure 4: The gear and accordion graphs are shown on the left and right respectively.

Next, we show that the gear and accordion graphs are infinite families of con-
nected graphs for which thy(G) = th.(G) — 2.

Theorem 3.5. For each integer £ > 4, if G € {Gapy1, Ao}, then thy(G) = th.(G)—2.
Thus, there ezist infinitely many connected graphs G such that thy(G) < th.(G) — 1.

Proof. Consider Gy for any ¢ > 4. By placing and remaining on the hub vertex,
one cop can restrict the robber to damaging only a single vertex. Since Gy does
not have a dominating vertex, the robber can always damage at least one vertex,
and so we have dmg, (Gasy1) = 1. This implies thy(Gapr1) < 2. Since thy(Gapyq) = 1
only when there is a dominating vertex, thy(Gapy1) = 2.

Observe that Ggpi1 is not cop-win, so consider £ = 2. Place both cops on the
hub vertex. Assuming the robber places optimally on a vertex non-adjacent to the
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hub, the cops can move to either side of the robber in round 1 and capture them in
round 2, giving capty(Gapr1) < 2. Further, capty(Gagy1) > 1, since y(Gapyq) > 2 for
¢ > 4. Thus, capty(Gaory1) = 2 and th.(Gaer1) < 4. Since capty(Gapr1) > 0, we see
that th.(Gas+1) > 3 and conclude that th.(Gapy1) = 4.

Using the same argument, we can show for the accordion graph Ay, that
thy(As) = 2 and th.(Agy) = 4 for all ¢ > 4. Since Gopyq and Ay, are infinite
families, there are infinitely many connected graphs such that thy(G) < th.(G) — 1,
as desired. O]

Notice that for each G € {Gapy1, Ao}, ¢(G) = thy(G). The next proposition
shows that for graphs G with this property, we can more easily determine whether
thy(G) < th.(G) — 1.

Proposition 3.6. If ¢(G) = thy(G), then one of the following is true:
1. 4(G) = ¢(G)
2. thy(G) < th.(G) — 1

Proof. Let ¢(G) = thy(G) and assume thy(G) £ th.(G) — 1. If G is trivial, ¢(G) =
the(G) = v(G). If G is non-trivial, then by Proposition 2.4 thy(G) = ¢(G) =
th.(G) — 1 and so either capt,)(G) = 1 or capt,g)11(G) = 0.

If capt,()(G) = 1, then by definition, some arrangement of ¢(G) cops dominate
the graph and v(G) < ¢(G). However, any dominating set of vertices in a graph
form an initial cop placement which catches the robber, so clearly ¢(G) < v(G).
Therefore, v(G) = ¢(G).

If capt,(G) = 0, then k = n. Thus, if capt.gy41(G) = 0, we must have ¢(G) =
n — 1 and so G has at least one edge. Recall that ¢(G) < v(G) and for graphs with
at least one edge, 7(G) < n — 1. Therefore n — 1 = «(G) and this implies the graph
has at most one edge. The only graphs with one edge are the disjoint union of K,

with some number of isolated vertices. However, we can easily observe that for this
class of graphs, v(G) = ¢(G). O

3.1 A connected graph G with th,(G) < th.(G) — 3

Thus far, we have considered several graphs G that satisfy thy(G) = th.(G) —2. We
can see from our results that every graph G of order 7 has thy(G) > th.(G) — 2.
The thirteen graphs in Figure [3| have a gap of 2, and every other graph G of order 7
will have a gap of 1, either because y(G) < 2 which implies that G is covered under
Lemma [2.15] or because v(G) = 3 and G is one of the special cases from Figure [2]

We now find a graph G that exhibits a larger difference between the cop and
damage throttling numbers. We did not determine whether the graph G in the next
theorem has the minimum order among all graphs with a gap of at least 3, so a
natural problem for future investigation is to determine the minimum possible order
of a graph G for which th,(G) < th.(G) — 3.
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Theorem 3.7. There exists a connected graph G with thy(G) < th.(G) — 3.

Proof. We will show that the graph G in Figure |5 has th.(G) = 6 and thy(G) = 3.

Figure 5: A graph G with th.(G) — thy(G) = 3.

We show first that y(G) = 5. Note that {1, 4,9, 10, 14} is a five-vertex dominating
set. Suppose that a dominating set S of only four vertices exists. In order to dominate
vertices 1, 7, 8, and 14, S must include a vertex from each of {1,2,3}, {5,7,9},
{6,8,10}, and {12,13,14}, respectively. Since the vertices in these four sets each
have degree 2, every vertex in S dominates three vertices and so S can dominate at
most twelve vertices. Therefore no such set S of size four exists.

Observe that GG is not cop-win; so, we consider k > 2. By domination, capt,(G) =
1 for 5 < k < 13 and capt,(G) > 2 for 2 < k < 4. It remains to show that
capty(G) > 4 and capty(G) > 3.

Now consider £ = 2. We will show for any cop placement, the robber evades
capture for at least four rounds. Given a cop placement, if there exists a vertex that
is at least distance 4 away from both cops, then the robber can stay on that vertex,
and will evade capture until at least the fourth round.

So, assume there is no vertex of distance at least 4 from both cops. We can
algorithmically check over all possible cop placements to determine which have this
property; for a Python implementation of this, see [13]. In total, there are thirty-five
such placements, which can be reduced to twelve cases when considering horizontal,
vertical, and rotational symmetries of the graph. In each case, the robber’s strategy
to avoid capture until at least the fourth round is to initially place on

(a) vertex 14, if the cop set is {1,9}, {1,11}, {2,9}, {2,10}, {2,11}, {4,9}, {4,11},
{5,9}, {5,10};

(b) vertex 13, if the cop set is {1,12}, {2,12}; or

(c) vertex 12, if the cop set is {2,13}.

The robber should choose an analogous starting vertex for cop sets which are sym-
metric to these. It is straightforward to verify that the robber cannot be caught in
fewer than four rounds given these initial placements. Thus, capt,(G) > 4.
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For three cops, we proceed similarly to show that no matter where the three
cops place, the robber always has a strategy to avoid capture until at least the third
round. As before, given an initial cop placement, if there exists a vertex that is at
least a distance 3 from all three cops, then the robber can place on that vertex, and
can only be caught in the third round or later.

So assume there is no vertex at least distance 3 away from all cops. Once again,
we will check all possible cop placements to determine which have this property using
the Python code in [I3]. In total, there are sixty-eight such placements, reducible
to nineteen cases when accounting for symmetries of the graph. In each case, the
robber’s strategy to avoid capture until at least the third round is to initially place
on

(a) vertex 14, if the cop set is {1,2,11}, {1,4,11}, {1,5,11}, {2,2,11}, {2,3,11},
(2,411}, {2,511}, {2,611}, {2,7,11}, {2,8,11}, {4,4,11}, {4,511}, {4,7,11}:

(b) vertex 13, if the cop set is {1,4,12}, {2,4,12};
(c) vertex 12, if the cop set is {2,4,13}; or
(d) vertex 3, if the cop set is {2,9,11}, {2,10,11}, {2,11,11}.

The robber should choose an analogous starting vertex for cop sets which are sym-
metric to these. It is easy to check that the robber cannot be caught in fewer than
three rounds using these initial placements. Thus, capt;(G) > 3. We obtain that
th.(G) = 6 from the following:

(=0 ifk=1;

>4 if k=2

>3 ifk=3;

t,(G) < — ’

capty(C) >92  ifk=4
= if 5 <k <13;

=0 ifk=14

Now, considering damage, note that dmg, (G) = 0 for 5 < k < 14. For k = 2, by
placing cops on vertices 4 and 11, we restrict the robber to placing and thereafter
staying on one of {1,7,8,14}. This gives dmg,(G) = 1 and implies that dmg, (G) = 1
for each k € {3,4}. Lastly, if k = 1, the robber can always place such that they are
distance 4 away from the cop since rad(G) = 4. As such, the robber can damage at
least two vertices. In summary:

>2 ifk=1;
dmg, (G){ =1 if2<k<4;
=0 if5<k<14.

Thus, thy(G) = 3, giving a gap of three between the cop and damage throttling
numbers. u
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3.2 The family H,

When searching for graphs with thy(G) < th.(G) — 1, it is natural that graphs with
high capture time are worth investigating. For each integer n > 7, let H,, denote
the graph illustrated in Figure [fl In [10], it was shown that capt(H,) = n — 4,
which can achieved by placing the cop on vertex 3 and moving the cop along vertices
3,2,4,7,8,...,n. Furthermore, this is the highest possible 1-capture time for cop-
win graphs on at least seven vertices. Thus, we dedicate this section to the infinite
family H,,.

Figure 6: The graph H, for n > 7.

We refer to the vertices in {8,9,...,n} as the tail of H, when n > 8. As seen with
many graphs so far, it is useful to consider the domination number before determining
the k-capture time and k-damage number. This is also the case with H,,.

Proposition 3.8. For each integer n > 7, the domination number of H, is

V(H,) = [” S 8} +2.

Proof. For n =7 and n = 8, a dominating set is {1, 7}, so v(H,) < 2 in these cases.
Since there is no dominating vertex in H,, v(H,) = 2 = [%5%] + 2 for n € {7,8}.
For n =9, a dominating set is {1,7,9}, so 7(Hy) < 3. Suppose we can dominate Hy
with only two vertices. To dominate vertex 9, a dominating set must include vertex
8 or 9. However, we cannot dominate vertices 1 through 6 with only one vertex, so
v(Hg) > 2. Thus, y(Hy) =3 = [%58] + 2.

For n > 10, let .S be the set of vertices consisting of 1, 7, and every third vertex on
the tail of H,, starting at 10; note that this is [”T_fﬂ +2 vertices. The set S dominates
H, and so v(H,) < [%%] 4+ 2. Suppose that H, can be dominated by [2:2] 4 1
vertices. In order to dominate the tail, we must include at least every third vertex
in a dominating set S, which requires f”T_S] vertices. At most, this will dominate
vertices 7,8, ...,n. So, only one more vertex can be added to S to dominate vertices
1,2,...,6, but no such vertex exists. Therefore, y(H,) = [%53] + 2. ]

In our investigation of H,, the next step is computing capt, (H,) and th.(H,) as
follows.
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Lemma 3.9. Ifn and k are integers with n > 7 and 1 < k < n, then

SR if 1<k < [%52] + 2

capt,(H,) = (1 if[558 +2<k<n;
0 if k =n.

Proof. Recall that the domination number of H, is y(H,) = [*5®]+2 by Proposition
capt,(H,) = 1 when v(H,) < k < n, and capt,(H,) = 0. Next, consider
2 < k < v(H,) and the following strategy for k cops. Place one cop on vertex 3
and distribute the remaining cops on the path P with V(P) = {3,2,4,7,8,...,n}
to optimize cop throttling on P. Let C be this set of k vertices on which the cops
initially place. Note that for any vertex x € V(P), the distance between x and the
nearest cop is at most "2’]:’:1’“} Let y be the initial position of the cop that is closest
to vertex 3 but not on vertex 3. If the robber places to the left of y, then the robber
is guaranteed to be caught in at most ("Z_k?’__lk | rounds. Otherwise, the cop on vertex
3 can push the robber towards the tail of H,, by moving along the vertices 2,4, 7,8,

and so on. This also guarantees capture of the robber in at most "2;3_’1’“} rounds.

For the lower bound, we argue that any initial cop placement other than C yields

a capture time greater than or equal to that of C. Then, assuming the cops initially
place on C, we produce a strategy for the robber that avoids capture for at least
”2_];’__1’“1 rounds. First, observe that from the perspective of the cops, it is always
optimal for at most two cops to initially place in the set {1,2,...,7}. This is because
v(H7) = 2. Suppose two cops place in the set {1,2,...,7}. Since vertex 7 is the
vertex in {1,2,...7} that is closest to the tail of H,, it is optimal for the two cops
in H; to place on vertices 7 and 3. In this case, if n > 8, the pigeonhole principle

guarantees that there is a vertex z € {8,9,...n} that is at least [%1 >

”2’];’_’1’“} vertices away from the nearest cop. So the robber can stay on vertex z and

avoid capture for at least f”&g?:_lk | rounds. Note that if n = 7, then & = 2 and the

robber is caught in one round anyway.

Now, suppose no cops place in the set {1,2,...7} and thus, n > 9. Let C be such
an initial cop placement in which the rightmost cop is on vertex x and the second
rightmost cop is on vertex y. Let C’ be an initial cop placement obtained from C' by
moving the rightmost cop to vertex 2. We show that the capture time with C’ is at
most the capture time with C'" assuming optimal play from both players besides the
initial position of the cops. We consider the three possible cases for where the robber
could have an optimal initial placement. If the robber initially places to the left of y,
then the modification from C to C’ has no effect on the capture time. If the robber
initially places to the right of x, then the capture time is greater in C' than in C’,
since the robber cannot be captured until a cop reaches vertex 2 or 3. If the robber
initially places between x and y, then a modified robber strategy where the robber
initially places to the right of x will achieve a greater capture time for C, so the
robber would not initially place between x and y. Thus, it suffices to consider only
initial cop placements where there is exactly one cop on the vertices {1,2,...,7}.

In the case that exactly one cop places in {1,2,...7}, it is optimal for that cop to
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start on vertex 3 so that they can push the robber towards the tail of H,, as quickly
as possible. Recall that this is accomplished when that cop moves along the path
P. In this case, it is optimal for the remaining cops to place so that the capture
time on P is minimized. Let S be the set of vertices in a longest subpath of P that
does not contain a cop. If S does not contain vertex 2, then the robber can avoid
capture for (”2_,;’__1'“} rounds by placing at the optimal vertex in S and waiting to be
captured. If S does contain vertex 2, then the robber can avoid capture for [”2_’:’:1’“1
rounds by starting at vertex 5 and moving along vertices 7,8,9, and so on. In this
case, the cop on 3 must move along P to force the robber into the tail of H,. Note
that the capture time is less if the robber starts anywhere else on S because the cop
on vertex 3 can take a shortcut by moving to vertex 4 in the first round. We can
now conclude that capt,(H,) = [%2=2] if 2 < k < y(H,). Finally, observe that if

k=1, capty(H,) =n —4 = [%3E]. O

Theorem 3.10. For all integers n > 7, th.(H,) > [v/2n —7].

Proof. We wish to minimize k + capt,(H,) over 1 < k < n. By Lemma 3.9 k +
capty (H,) = k + 1 for any k satisfying [%52] + 2 < k < n; thus, for such values of
k, we have that k + capt,(H,) > ("T_SW + 3. Further, when &k = n, we have that
k + capt,(H,) = n.

For 1 < k < [%5%] 4+ 2 = y(H,,), we know capt,(H,) = [%255] by Lemma .
Then,

_ - n—3—k S ) k+n—3—k
1§kr2;?Hn) 2k — 1 - 131525(1&) 2k—1 |

We now determine the minimum value of f(k) := k + %2=%. Note that

(2k—1)2—2n+7

k) = (2k —1)2

and so f'(k) = 0 if k = 222=T_ Since k > 1, we obtain k = 2= as our critical

point. For k > %, the function f(k) is concave-up, so f(*2"=7) is the minimum.
Note that
/ 1+v2n =7\ 1+\/2n—7+n—3—1+—v22"_7
2 N 2 (LT _ g

1+\/2n—7+n—3—1+—%§”*7
2 Von—T17
Von—T7+2n—T+2n—7—+2n—7
22n — 7

= V2n—"1.

Since th.(H,) is an integer,

min ){k+ [n_—g_ﬂ} > [vV2n — 7.

1<k<y(Hn 2k — 1
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Considering all possible values of k, we now have that
8
th.(H,) > min { [V2n —T7], PL -‘ + 3,71} .

First, observe that ( W +3< 2 8 + 4 < n for all n > 2. So it remains to show
that [v/2n — 7] < ( W + 3 for all n > 7. To do this, we note {" 8} +3= {"glw
Every n > 7 can be Written asn =3a—1,n=3a—2, orn=3a—3 for some integer

a > 3. In each of these cases, PLTHW = a.

Ilfn=3a—1, [v2n—T7] = [v6a—9];if n=3a—2, [vV2n — 7] = [v/6a — 11];
and if n = 3a — 3, [v2n —7] = [v/6a — 13]. Since [v/6a — 13] < [v/6a —11] <
[v/6a — 9], we only need to consider When [v6a — 9] < a. Because a is an integer,
[v6a — 9] < aif and only if 6a—9 < a®. Since this holds for a > 3, then [/2n — 7] <
a= ( 3 W+3foralln27.

Thus, for all n > 7,

the(H,) > min { V2 —7], [”

8W+3,n}:(my O

Now, we consider dmg,(H,,) and thy(H,).

Lemma 3.11. If n and k are integers with n > 10 and 1 < k < n, then

1223 —1  ifk=1;

n—5—k7 __ 2 <k n—4
dmg,(H,) < zk ! v . <[5 Ln_g
U,(—g—w S;k <:[—§—] +‘2,
0 if [2521+2<k<n

Proof. Recall that by [7], dmg,(H,) = [%2] — 1. Furthermore, note that
dmgy(H,) = 0 when y(H,) = [%5%] +2 < k < n. For 2 < k < [25*], we pro-
vide a cop strategy and argue that given this strategy, the robber can visit a limited
number of unique vertices. In this case, place one cop on vertex 4. Additionally,
place the remaining &k — 1 cops on the tail as follows: starting at the end of the tail,
divide the path into subpaths of length 2(@’,{—2’“} + 1 and place a cop at the center
of each subpath. Thus, in each of these subpaths every vertex is distance at most
n=5=k from a cop. Since

2%—1
n—5—k n—5—k
—(k-1)(2|———— 1)]<6 _—
ot (i ) soe [
any remaining tail vertices not in a subpath are within (”2;5_’1’“} of the cop on vertex

4. So if the robber places on any tail vertex, the two closest cops will move towards

the robber and capture will occur in at most f”;]i_lk | steps. In this case, damage is

n—5—k
2k—1 | L

Otherwise, the robber must place on vertex 1 since vertex 4 dominates vertices
2,3,5, and 6. By remaining still, the cop on vertex 4 limits the robber to damaging

at most
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only vertex 1. So in this case, the robber can always choose to place on the tail
to maximize damage unless the tail is dominated by cops. The tail is dominated
if k—1 > [%7], ie, k > [%*]. Since we assumed 2 < k < [23%], we have

dmg, (H,) < [%2=E] — 1, as desired.

Finally, if [%51] < k < v(H,,), using the strategy above, the cops dominate the
tail of H,. This means that in order to damage a vertex, the robber must place
on vertex 1. Again, the cop on vertex 4 can prevent any further damage. Thus,
dmg,(H,) =1 in this case. O

Theorem 3.12. For each integer a > 3, if n = 2a* — 2a + 6, then thy(H,) <

Vv2n —11 - 1.

Proof. Let k = [2¥2"=117. Note that since n = 24> — 2a + 6,

2

1+ /(20— 1)1
2

= a.

L (14 /2(2a> — 20+ 6) — 11}

By Lemma [3.11} thy(H,) < k+[%255] — 1 for 2 < k < [254]. In order to verify

k-1
that 2 <[22l < 1247 observe that a < 2‘12_3& < [2524] for all @ > 3. Thus,

2

n—5—a
thy(H,) < o )
ol )—“jﬂ 20— 1 W

Since n = 2a% — 2a + 6,

20> —2a+6—-5—a
thy(H,) < —1
a(Hn) < a+[ 20— 1 1

o [(Qa—l)(a—l)w _1

20 — 1

= 2a— 2.

Finally, note that v/2n — 11 = y/(2a — 1)? = 2a — 1 and so,
tha(H,) < v2n — 11 — 1. 0

Lemma 3.13. If a > 3 is an integer and n = 2a®> — 2a + 6, then

[Von—7] - (V2n—11-1) > 2.
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Proof. Note that 4a® —4a + 5 > (2a — 1)* = 4a® — 4a + 1 > 0. Then, we have
4a? —4a+5>(2a—1) = V4a? —4a+5—(2a—1) >0
= {m_@a_n] > 1
;ﬁ 4@2—4a+5—‘ —(2a—1)>1
= [V2n—7] — (V2n—11-1) > 2. O

Corollary 3.14. For every integer a > 3, if n = 2a®> — 2a + 6, then thy(H,) <
the(H,) — 1.

Hence, we have obtained an infinite family of graphs G for which thy(G) <
th.(G) — 2.

4 Graphs with large damage throttling number

In this section, we show that there exist connected graphs with high cop number
and high damage number. Since ¢(G) < th.(G) for any graph G, if it were true
that th.(G) = O(y/n) for all connected graphs, Meyniel’s conjecture would follow.
However, graphs have been found that have cop throttling number asymptotically
larger than \/n.

Corollary 4.1. [2, Corollary 2.3] There exist connected graphs of order n with cop
throttling number Q(n?/3).

We have shown in Propositions [2.2{ and [2.4] that ¢(G) < thy(G) < th.(G) — 1 for
all connected graphs G, so it is natural to ask whether thy(G) = O(y/n) as this would
also imply Meyniel’s conjecture. Note that the argument used to prove Corollary
relies on the fact that capture of the robber is required to achieve a finite cop
throttling number. However, this argument is not sufficient for damage throttling
since capture is not required to achieve a finite damage throttling number. To that
end, we prove the next lemma which is used in the main result of this subsection. It
may also be of independent interest, since it strengthens the result that there exist
connected graphs of order n with cop number Q(y/n).

Lemma 4.2. For any n sufficiently large and constant ¢ < 1, there exists a connected
graph of order n where the robber can safely damage Q2 (n) vertices and evade capture
forever against at most cy/n cops.

Proof. We modify the Moore graph H of degree d = [\/n — 1J and diameter 2,
which is a regular graph of girth 5 and order d?+ 1. This graph is known to have cop
number at least d (this follows from the more general fact that ¢(G) > 6(G) for any
G of girth at least 5 [1]). Let the graph G of order n be obtained from H by picking
a single vertex v of H and adding a path P of length n — 1 — d? that is connected to
v at an endpoint.
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If & < cy/n, then there exists a constant r > 0 such that d — k > ry/n for
n sufficiently large since ¢ < 1. The robber uses the following strategy to safely
damage Q(n) vertices of H in G and evade capture forever against k cops.

After the cops make their initial placements, the robber views any cops on the
path P as being on v instead, ignoring the path. Since d — k > ry/n, the number of
vertices occupied by or adjacent to a cop at any time is at most d—1+(d—1)d < d*+1,
so the robber can choose an initial position not occupied by any cop or adjacent to
any cop.

Call a vertex guarded if it is occupied by or adjacent to a cop. Since the Moore
graph has diameter 2, every vertex in H is within distance 2 of the robber’s current
vertex. Since the Moore graph avoids C3 and Cj, each cop guards at most one
neighbor of the robber. During every odd round, the robber goes to its unguarded
neighbor with the fewest number of damaged neighbors. The robber always has at
least ry/n unguarded neighbors.

During every even round, the robber goes to any unguarded undamaged neighbor.
If in any even round 2¢ the robber has no unguarded undamaged neighbor, then every
unguarded neighbor of the robber’s vertex in the previous odd round 2: — 1 had at
least 7/n damaged neighbors. The closed neighborhoods of the unguarded neighbors
of the robber’s vertex u have no intersection besides u since H avoids C5 and Cjy,
so there must be at least (ry/n)(ry/n — 1) = Q(n) damaged vertices if the robber is
ever forced to go to a damaged vertex in an even round. Thus the robber can safely
damage Q(n) vertices in G. O

The next theorem has almost the same proof as the corresponding theorem in
[2], with the main difference being that in this construction we use the graphs from
Lemma 4.2|instead of arbitrary graphs with Q(y/n) cop number, and the robber uses
a specific evasion strategy that safely damages many vertices instead of an arbitrary
evasion strategy. Figure 2.1 of [2] shows the construction in a more general form.

Theorem 4.3. For n sufficiently large, there exist connected graphs X of order n
with thy(X) = Q(n??).

Proof. We construct a connected graph X with thy(X) = Q(n?3) by starting with
a spider of order n with |n'/?| legs of length approximately n?/®. Then, we replace
approximately half of each leg farthest from the center vertex by a copy of one of the
graphs G from Lemma [4.2| with the same order as the replaced vertices. Each copy
is connected by a single vertex to the end of the leg that remains.

If the number of cops does not already give the bound thy(X) = Q(n??), then
the robber will start on the copy of GG on the leg of the spider with the fewest cops.
It will take at least Q(n2/ 3) rounds for any cops on other legs to reach the robber’s
leg, so the robber can use the strategy in Lemma[d.2]to safely visit a new undamaged
vertex in every even round until it has damaged at least Q(n?/?) vertices. O
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5 Further investigations of damage numbers

In this section, we further explore the k-damage number and its implications for
damage throttling. First, we discuss a necessary condition for ¢(G) = k + dmg,(G)
and characterize graphs for which ¢(G) = 1 + dmg,(G). Then we provide an upper
bound for dmg, (G) in terms of maximum degree, which is a generalization of a bound
for dmg,(G) in [7].

In the proof of Proposition[2.2, we showed ¢(G) < k+dmg,(G) foreach 1 < k < n.
Proposition considers the case where ¢(G) = thy(G) and shows that for such
graphs, either ¢(G) = v(G) or thy(G) < th.(G) — 1. It is easy to observe that
c(G) = thy(G) if and only if there exists an integer ¢ such that ¢(G) = ¢ + dmg,(G).
So characterizing instances where ¢(G) = k + dmg,(G) for some k is useful, as it
produces a class of graphs which are good candidates for achieving a gap of two or
greater between th.(G) and thy(G). First, we prove a helpful lemma.

Lemma 5.1. Suppose G is a connected graph. For each integer 1 < k < n, if
dmg, (G) > 2, then ¢(G) < k + dmg,(G) — 1.

Proof. By Proposition , we know that ¢(G) < thy(G). Apply the same cop strat-
egy used in Proposition , but with dmg,(G) — 1 undercover cops. As G is a
connected graph, the dmg,(G) — 1 undercover cops can catch the robber because
once these cops are deployed, every vertex in the damaged area will either be occu-
pied by a cop, or adjacent to only vertices containing cops. O]

Applying Lemma [5.1] we see the following necessary condition for ¢(G) = k +
dmg,.(G).

Observation 5.2. For any connected graph G and integer k with 1 < k < n, if
o(G) = k + dmg,(G), then dmg,(G) < 1. Furthermore, either dmg, ) (G) = 0 or
dmg,)_1(G) = 1.

For the case where k = 1, we now prove a complete characterization of connected
graphs G which achieve ¢(G) =1 4 dmg;(G).

Proposition 5.3. If G is a connected graph, then ¢(G) = 1 + dmg,(G) if and only
if G has a dominating vertex, or ¢(G) = 2 and there exists v € V(G) such that for
every w ¢ N[v], there exists a vertex x € N[v] such that N(w) C Nlz].

Proof. If ¢(G) = dmg,(G) + 1, then by Lemma [5.1] dmg,(G) < 1, and therefore
c(G) < 2. If ¢(G) = 1, then dmg,(G) = 0 and G must have a dominating vertex.
Otherwise, if ¢(G) = 2, then dmg, (G) = 1. If the robber is ever able to move without
being captured in the same round, then dmg,(G) > 1. Therefore, there must exist
an initial placement of one cop which restricts the robber to a single “safe” vertex.
In other words, there exists some initial cop placement {v} C V(&) such that no
matter where the robber places, the cop can always move or stay still in round 1 to
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prevent the robber from moving. To guarantee this, there must exist v € V(G) such
that for every w ¢ N[v], there exists a vertex « € N[v] such that N(w) C N|x].

Conversely, if G has a dominating vertex, then dmg, (G) = 0 and ¢(G) = 1, which
means ¢(G) = dmg,(G) + 1. If ¢(G) = 2 and there exist v € V(G) such that for
every w ¢ NJv], there exists a vertex x € N[v] such that N(w) C NJz|, then the
cops can prevent damage to all but one vertex. So dmg,(G) = 1 and therefore,
c(G) = dmg, (G) + 1. O

It is worth noting that the set of graphs G for which ¢(G) = 2 and dmg,(G) = 1 is
not empty. In fact, there is an infinite family of graphs that satisfy these conditions.
For example, we can add an edge between a vertex v € V(Cy) and every vertex in
an arbitrary graph H. Furthermore, we can add any number of leaves to the two
neighbors of v in the cycle. This family is illustrated in Figure [7}

Figure 7: An infinite family of graphs satisfying the conditions in Proposition .

In [7], the authors prove the following upper bound for dmg, (G).
Proposition 5.4. [7] For a graph G on n vertices, dmg,(G) < n — A(G) — 1.

We now prove an analogous upper bound for dmg,(G) and apply it to provide
an upper bound for thy(G). For a graph G, let Sy be the set of k-vertex subsets S
of V(G).

Proposition 5.5. For all graphs G on n vertices,

dmg, (G) < min{n — [N[5][}.

Proof. Place k cops on the k vertices of S € Sx. By remaining still, a cop placed on
v € S protects the vertices in N[v] from being damaged. Therefore, using this cop
placement, | N[S]| vertices remain undamaged. O

Corollary 5.6. For all graphs G on n vertices,

T 1<k<n

thy(G) < min {k + gélsnk{n - |N[S]|}} :
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6 Concluding Remarks

As shown in Section [3| there are infinite families of graphs G such that thy(G) <
th.(G) — 2. However, we were not able to verify the existence of an infinite family
of graphs G satisfying thy(G) = th.(G) — a for any a > 3 (we do provide a single
graph for which th;(G) = th.(G) — 3 in Theorem [3.7). Despite this, we believe such
families exist and it would be interesting to find them.

In [7], the authors ask the question: which graphs G satisfy dmg,(G) = n —
A(G)—17 We observe that graphs for which A(G) =n—1 or A(G) = n— 2 achieve
this equality, but this does not characterize all such graphs. For example, the graphs
in Figure [§ achieve equality in this bound, but have A(G) =n — 3.

Figure 8: An infinite family of graphs G with dmg,(G) = |V(G)| — A(G) — 1,
rad(G) = 2, and A(G) = |V(G)] — 3.

We now propose similar questions for the generalized bounds in Proposition 5.5
and Corollary [5.6]

Question 6.1. Which graphs G satisfy dmg,(G) = gnisn{n— |N[S]|} for some integer
€0k

k and furthermore, which graphs satisfy thy(G) = min {k: + gnlsn{n — |N[S]|}}9
€5k

1<k<n
Observe that in Question 6.1} a graph G that realizes the first equality does not

necessarily realize the second. However, a graph that satisfies the second equality
must satisfy the first for some integer k.
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