


In this work, we propose a framework for tactile pose estimation

and manipulation without any prior knowledge about the objects.

Our method first learns an observation model that predicts the

state likelihood probabilities of given tactile images. This obser-

vation model is then integrated into a discrete Bayes filter with a

deterministic motion model. Later, we learn tactile manipulation

policies using the belief estimation from this Bayes filter. The tac-

tile observation model is modeled using deep neural networks and

learned from data generated in simulation. To learn this model,

we build a simulated environment with a parallel gripper and two

visuo-tactile sensors as shown in Figure 2. The simulation allows

us to collect millions of tactile images with the ground truth data in

less than 24 hours. After learning the tactile observation model, we

then consider two control problems. The first is the active tactile

pose estimation where the robot grasps the object from different

states to localize itself in a minimum number of steps. The second

problem is to reach a desired goal state on the object. We apply

the standard deep reinforcement learning method for solving these

tasks. In this setting, the agent takes the belief and goal as input.

We conduct a series of experiments to show the robustness and

performance of our method. In simulation experiments, we first

show that the learned tactile observation model can successfully

estimate the position of the gripper with respect to the novel ob-

jects at 2mm position and 1-degree orientation resolution. Later,

we train agents on a bottle opening task where the gripper needs

to reach a certain state to open the bottle cap. We compare this

method to a common approach where the agent uses recurrent

networks instead of belief estimation. Finally, we transfer the tac-

tile observation model and policy networks to a real robot. Our

models can work in the real world without extensive domain ran-

domization. We only take a single image from the real sensor to

augment the tactile images in simulation. Inspired by the computer

mouse example, we envision that this framework can be used as

a complimentary estimation method to a vision-based estimator.

In this scenario, the vision would estimate the rough pose of the

object and our method can precisely localize the with respect to

the object. The code and supplementary materials can be found at

https://sites.google.com/view/tpem.

2 RELATED WORK

2.1 Tactile Pose Estimation

Pose estimation of objects is an essential skill for autonomous ma-

nipulators. While vision-based methods have shown great success

in this area, tactile pose estimation is still needed to overcome

the shortcomings of the methods that only use visual feedback.

For example, visual feedback can be occluded due to arm motions

or the hand-eye calibration cannot be always reliable. Moreover,

during precise manipulation tasks (e.g. peg-in-hole with low clear-

ance), tactile feedback is shown to be necessary. The previous work

by [4, 5, 9, 11, 17, 41ś43] have shown that tactile feedback can

be used to estimate objects’ poses. The general approach in these

works is to formalize the analytical observation and motion models

of the tactile interactions and use Bayes filters for pose estimation.

A common assumption among these method is that the object is

considered to be static. Suresh et al [47] considers the object mo-

tions and estimates both the object shape and its pose by alternating

between Gaussian process implicit surface regression and factor

graph. Similarly, Liang et al. [37] takes account of the object mo-

tions while it is being held in a multi-fingered hand and localizes

the object pose using derivative-free sampling-based optimization.

These methods typically use a force sensors that is mounted on the

gripper fingers.

With the recent development of visuo-tactile sensors such as

GelSight [53] and DIGIT [34], several work proposed to estimate

the pose of grasped objects using visual data. These sensors are

equipped with a deformable gel on the contact surface. An RGB

camera is placed underneath this gel which captures the deforma-

tion cased by contact interactions. Li et al. [36] uses a GelSight

sensor and apply the RANSAC method to localize a USB connector

to perform USB insertion task. A similar approach is taken by Luo

et al. [38] where they estimate the end-effector position by using

correspondence matching of SIFT features between the current sen-

sor reading and global features of the surface. Izatt et al. [25] uses

the data from a GelSight sensor and performs ICP-based tracking

with the point cloud data acquired from an external RGB-D sensor.

Bauza et al. [2] also uses ICP for pose estimation, however, they

simultaneously reconstruct the shape of object instead of relying

on RGB-D camera. In [46], Sudho et al. learns a tactile observation

model that takes visual-based tactile images and uses a factor graph

to estimate the relative pose of the sensor while the end-effector

is performing planar pushing task. Bauza et al [3] proposes an ap-

proach to localize objects using a learned observation model that

predicts the local shape of the object from visuo-tactile readings.

Later, they match this shape to simulated local shapes with known

poses using FilterReg algorithm.

All the methods mentioned above uses some sort of prior knowl-

edge of the objects or only work with a limited number of objects.

It is desired to get rid of the this assumption and develop methods

that can do pose estimation without the object models. Recently,

Anzai and Takahashi [1] introduced a method called deep gated

multi-modal learning for fusing visual and tactile observations to

estimate the pose changes of different objects. Their method takes

tactile data from a GelSight sensor and visual data from an RGB

camera placed on the end-effector. The visual and tactile data are

encoded using convolutional and recurrent layers. The networks

are trained on 11 objects and tested on 4 novel objects. Contrast to

their work, we do not use any camera images and solely rely on

tactile images. Moreover, our method estimate the actual pose of

the object instead of the relative changes. Finally, we propose to

use this estimation method for solving manipulating tasks using

deep reinforcement learning.

2.2 Tactile Manipulation

The main goal of tactile manipulation is to close the loop for solving

manipulation tasks. It has been shown by several works that tactile

information is not only useful but also necessary to solve precise

manipulation problems. In [35], Lee et al. investigate the represen-

tation learning for visual and tactile fusion for manipulation. They

use a Variational Autoencoder to learn a compact representation

of these two modalities which is then used for learning the peg-in-

hole task with unseen shapes and sizes. She, Wang, and Dong et



al. [45] uses a GelSight sensor to estimate the pose of a gripped ca-

ble and friction forces during a cable sliding task. Wang and Wang

et al. [48] learns a physical feature embedding space by performing

exploratory actions. This embedding is then used to predict the

swing angle for the given control input. Dong et al [15] proposed

to use vision-based tactile images to learn end-to-end policies for

insertion tasks in the real world. A sim-to-real approach for tactile

manipulation is produced by [14]. They calibrate the tactile sensor

in the simulation with real-world data and learn door opening tasks

using deep reinforcement learning.

While we show that end-to-end policy learning is possible for

the tactile manipulation tasks considered in this work, decoupling

the perception and control problems results in faster learning and

better generalization to unseen objects. It is also important to note

that, with a learned tactile pose estimator, various tasks can be

easily learned instead of learning each task from scratch.

2.3 Partial Observability in Deep

Reinforcement Learning

In many real-world scenarios, the robots do not have access to

the underlying state of their environment, instead, they perceive

the world through the sensors that provide partial observations.

While deep reinforcement learning (DRL) has been successfully

applied to robotics tasks with full state information, policy learning

under partial observability is still an ongoing research effort. To

address this problem, the previous work has proposed two main

solutions. The first is to deploy a memory module such as Long

Short Term Memory (LSTM) [23] to the value and policy networks.

The work by Hausknecht et al. [21] proposed the Deep Recurrent

Q-Network which modifies the original Deep Q-Network [39] archi-

tecture by adding LSTM layers to the network. Later, this approach

is also applied to the actor-critic methods [16] and model-based

methods [19].

The second approach is to take a modular approach where the

state estimation is realized by differentiable Bayes filters and the

policy takes the belief estimates as the input. In partially observable

environments, a Bayes filter [10] maintains a posterior probability

(belief) over the states and recursively updates its belief using the

observation and transition models. The recent progress in neural

networks has shown that these models can be learned from data if

their analytical forms do not exist. A differentiable discrete Bayes

filter is proposed by Jonschkowski et al. [26] and showed that it

outperforms LSTM networks in state estimation problems. The

work by Karkus et al. [31] and Jonschkowski et al. [27] learns

Particle filters and the work by Haarnoja et al. [20] learns a Kalman

filter to handle continuous states. Lee and Yi et al. [35] showed how

to fuse different sensor modalities while learning Bayes filters.

Combined with the DRL, the differentiable Bayes filters give

promising results in partially observable robotic environments.

In [30], Karkus et al. introduce QMDP-net which combines the

QMDP planner with a Histogram filter and jointly learns them

to solve simulated navigation and grasping tasks. Wirnshofer et

al. [51] uses a learned particle filter to track objects in the environ-

ment and trained a DQN agent to manipulate these objects. The

agent uses the belief estimates as input to the DQN. Chaplot et

al [8] and Gottipati et al. [18] applied this approach to the active

localization problem with visual feedback. Finally, in [32], the au-

thors proposed to use a learnable Bayes filter to localize a robotic

gripper’s position with respect to the environment image using

tactile feedback. In the following work [33], they train agents using

deep reinforcement learning with belief inputs to solve contact-rich

manipulation tasks using only a single image of the environment

and the tactile observations.

In this work, we take the latter approach where we train an

observation model which provides likelihood probabilities of the

tactile observations which are later used within a discrete Bayes

filter. Then, we train DRL agents for estimating the gripper’s pose

with respect to unknown objects and manipulate them. Our experi-

ments and results presented in related work suggest that learning

policies with Bayes filters result in better performance compared

to the policies learned with recurrent networks.

3 BACKGROUND

3.1 Partial Observability and Bayes Filters

We formulate our pose estimation problem as a partially observable

Markov Decision Process (POMDP) [29] which is defined with a

tuple (S,A,Ω,T ,R,O) where S,A, and Ω are the state, action,

and observation spaces, respectively. T = 𝑝 (𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1) is the

state-action transition function that gives next state probabilities

given the action 𝑎𝑡−1 ∈ A and previous state 𝑠𝑡−1 ∈ S. The ob-

servation model O = 𝑝 (𝑜𝑡 |𝑠𝑡 ) defines the likelihood probabilities

of receiving the observation 𝑜𝑡 ∈ Ω at state 𝑠𝑡 . At each timestep,

the agent also receives a reward 𝑟𝑡 ∈ R provided by the reward

function R(𝑠𝑡 ).

A Bayes filter is a recursive state estimation method that can

be used when agents do not have full access to systems’ states. To

estimate the current state of the agent, Bayes filters maintain a

belief which describes the posterior probability over state space.

This belief is conditioned on the past observations and the actions

𝑏𝑒𝑙 (𝑠𝑡 ) = 𝑝 (𝑠𝑡 |𝑎1:𝑡−1, 𝑜1:𝑡 ) and recursively updated at every time

step using the observation and transition models:

𝑏𝑒𝑙 (𝑠𝑡 ) =
∑

𝑠𝑡−1∈𝑆

T (𝑠𝑡 , 𝑎𝑡−1, 𝑠𝑡−1)𝑏𝑒𝑙 (𝑠𝑡−1)

︸                                    ︷︷                                    ︸

Prediction Update

(1)

𝑏𝑒𝑙 (𝑠𝑡 ) = 𝜂O(𝑜𝑡 , 𝑠𝑡 )𝑏𝑒𝑙 (𝑠𝑡 )
︸               ︷︷               ︸

Observation Update

(2)

where 𝑏𝑒𝑙 (𝑠𝑡 ) is the predicted belief and 𝜂 is the normalization

factor. The Eq. 1 predicts the belief at next time step 𝑏𝑒𝑙 (𝑠𝑡 ) by

summing over the all possible previous states. Then, in Eq. 2, the

belief is updated using the observation received at the new state.

The recursive estimation starts with a prior belief 𝑏𝑒𝑙 (𝑠0) which is

initialized uniformly if there is no knowledge about the system’s

state.

3.2 Reinforcement Learning

In partially observable environments where we have belief estima-

tion, the environment becomes a belief Markov Decision Process

(BMDP). Belief MDP is defined as a tuple (B,A,R, 𝜏, 𝛾) where B







Rewards: For both of the tasks, we use sparse reward functions.

The reward function for active pose estimation task is R(𝑠𝑡 ) = 1

if |𝑠𝑡 − 𝑠𝑡 | = 0 else 0 where 𝑠𝑡 is the current true state and 𝑠𝑡 is the

estimated state. Here, the estimated state is defined as the point in

the belief with highest probability value 𝑠𝑡 = argmax(𝑏𝑒𝑙 (𝑠𝑡 )). For

the reaching task, the reward function is R(𝑠𝑡 , 𝑔) = 1 if |𝑠𝑡 −𝑔| = 0

else 0 where 𝑔 is the goal state. We terminate the episode if the

reward is 1 or the maximum time limit is reached. For both tasks,

the task horizon is 16.

Policy Architecture: Proximal Policy Optimization (PPO) [44]

is an actor-critic RL method that directly learns a policy network as

well as a value network. Different from other actor-critic methods,

PPO limits the updates to the policy network by clipping the policy

gradient objective. This leads to a low-variance and stable learning.

The value and policy networks are consists of 2 1-d convolutional

layers and a single FC layer. Both of the convolutional layers have

one kernel with size 3 and they are followed by the Tanh activation

function. The FC layer for the policy network has 20 units whereas

the value FC layer has 1 unit. The weights of the convolutional

layers are shared between the policy and the value networks. The

agent takes the belief as input to the networks. In the case of learn-

ing a manipulation task, it also takes the goal which is represented

as one-hot vectors. For each state dimension, we stack the belief and

the goal as two-channel vectors and feed them into the network.

We found out that using convolutional layers works better than

fully connected layers because the input to the network has spatial

properties. The architecture for the policy and value network can

be seen in Figure 3.

Multi Dimensional Discrete Action Space: Our policies use

a discrete action space. Similar to the belief space, the action space

is has a factored representation. In the case of discrete action space,

the policy 𝜋 (·|𝑏𝑒𝑙 (𝑠)) is represented as a softmax distribution. If we

have a multi-dimensional action space, we can specify categorical

distribution 𝜋𝜃𝑖 (𝑎𝑖 |𝑏𝑒𝑙 (𝑠)) over actions 𝑎𝑖 ∈ A𝑖 for each dimension

𝑖 . Then, we can define the joint discrete policy as 𝜋 (𝑎 |𝑏𝑒𝑙 (𝑠)) :=

Π
𝑚

𝑖=1
𝜋𝜃𝑖 (𝑎𝑖 |𝑏𝑒𝑙 (𝑠)) where𝑚 is the dimension of the action space.

To implement this, the policy network has a fully connected layer

with the size of
∑
𝑚

𝑖=1
𝐾𝑖 where 𝐾𝑖 = |A𝑖 |. Then, we would apply

softmax to each action space dimension. We use delta position

commands for controlling the gripper. For each action dimension,

the agent can move ±1, ±2 elements in the discrete state space or

stay still. We have 4 state dimensions, thus, in total, we have 20

discrete actions. In position dimensions, each bin corresponds to

a 2mm change and for the orientation dimension, it is a 1-degree

change.

5 EXPERIMENTS

To evaluate our method, we first investigate the performance of the

learned Bayes filter and policies in simulation. Later, we transfer

our models trained in simulation to the real world. As explained in

Section 4.1, we are interested in estimating the pose of a gripper

with the respect to manipulated objects and control the gripper to

move to the desired pose. To this end, we choose the bottle opening

task where the gripper needs to find its pose with respect to a bottle

and move to appropriate to the pose to twist and open the bottle

cap. Here, we have 3 expectations from our method: (I) the pose

Table 1: TOP-5 OBSERVATION MODEL ACCURACY

Validation Set

State top-1 top-2 top-3 top-4 top-5

Position Y 99.98 100.0 100.0 100.0 100.0

Position Z 99.99 100.0 100.0 100.0 100.0

Rotation X 98.85 99.96 99.99 100.0 100.0

Rotation Y 98.32 99.78 99.94 99.96 99.97

Holdout Set

State top-1 top-2 top-3 top-4 top-5

Position Y 99.00 99.92 99.96 99.98 100.0

Position Z 86.83 91.42 94.20 96.32 97.50

Rotation X 75.71 93.50 97.61 99.04 99.56

Rotation Y 76.43 92.52 96.51 98.02 98.67

estimation should be robust and generalize to unseen objects, (II)

the localization and manipulation policies should learn effective

control strategies, (III) our models should be able to transfer to the

real world without fine-tuning or intensive domain randomization.

5.1 Simulation Experiments

Tactile Pose Network: To train the TPN model, we selected 60

bottles from the ShapeNet dataset. 50 of these bottles are used for

the train/validation set and 10 of them are used as the holdout set.

We do a 90/10 percent split for the train/validation set. For the

bottles dataset, we used 4 dimensions 𝑛 = 4 where the first two

is the gripper’s position in y and z axis and the last two are the

orientation around the x and y axes. While we use 4 dimensions

in this experiment, the number of the dimensions can be easily

increased for tasks that requires more than 4 dimensions. We chose

the size of each dimension to be𝑑 = 11. For the position dimensions,

this corresponds to 2cm and for orientation it is 10-degrees.

After training is completed, we run the model on both the vali-

dation and holdout sets and report top-5 accuracy in Table 1 each

state dimension. The results show that the observation model not

only predicts the true state (99.28% mean top-1 validation accuracy)

successfully but also generalizes to the novel objects that were not

present in the training set (84.49% mean top-1 holdout accuracy).

One can say that this model can be directly used to predict the

states and learn policies with state input to the agent instead of

the belief estimation. While this is true in the simulation, the belief

estimations are going to be essential when noise is introduced into

the system which is highly likely in the real-world case. Moreover,

using uncertainty as an input to policy learning allows agents to

trade between taking exploratory actions and actions towards the

goal.

Policy Performance: We train the active pose estimation and

reaching tasks with the training set used in the observation model

and evaluate them using the holdout set. During training, the evalu-

ation policy is executed for 100 episodes after each gradient update

to the agent networks. We compare our method (called TPN-PPO) to

a baseline where we do not use the Bayes filter, instead, the agent

uses an LSTM layer for handling the partial observability. This

baseline (called LSTM-PPO) takes the tactile observations directly





a) Simulation – w/o 

augmentation

b) Background from 

the real sensor

c) Simulation – w/ 

augmentation

d) Grasping image 

from the real sensor

Figure 5: Tactile Image Augmentation - We augment the im-

ages in the simulationwith the background image of the real

sensor for improving the sim-to-real performance.

We report the success rate and the mean episode lengths for each

object in Table 2. As can be seen from the results, the robot is able

to solve this task efficiently in a real-world setting with 81% success

rate. A failure case we identified is that in some cases the policy

moves the gripper in a state where the gripper cannot grasp the

bottle cap, instead, fully closes the gripper. This results in wrong

prediction for the observation model and the policy can not recover.

6 CONCLUSIONS

In this work, we introduce a method that can estimate the pose of a

robotic gripper with respect to objects and manipulate them using

tactile observations. We achieve this without using prior knowledge

about the shape or size of the objects which is desired in real-world

settings. The tactile pose estimation is realized via a factored Bayes

filter with a learned observation model. Furthermore, we learn

policies that can use this belief estimation for solving manipulation

tasks. The performance and robustness of our method are analyzed

through experiments conducted in simulation and the real world.

The main limitation of our work is the assumption that the

manipulated objects are considered to be static during the robot

interactions. While this assumption holds for some objects in the

real world, ideally, we would like our method to consider the motion

of the object. This would also allow objects to be manipulated

without re-grasping. For future work, we also want to explore

different manipulation tasks where our methods can be applied.

Moreover, we would like to go beyond the category-level objects

and develop a tactile observation model that can localize the gripper

with respect to multiple categories of objects. Finally, to further

improve the real-world results, we are planning to explore sim-to-

real methods that could be applied to the visuo-tactile images for

learning policies with visual inputs.
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