Tactile Pose Estimation and Policy Learning for Unknown
Object Manipulation

Tarik Kelestemur
Northeastern University
Boston, MA, United States
kelestemur.t@northeastern.edu

ABSTRACT

Object pose estimation methods allow finding locations of objects
in unstructured environments. This is a highly desired skill for au-
tonomous robot manipulation as robots need to estimate the precise
poses of the objects in order to manipulate them. In this paper, we
investigate the problems of tactile pose estimation and manipula-
tion for category-level objects. Our proposed method uses a Bayes
filter with a learned tactile observation model and a deterministic
motion model. Later, we train policies using deep reinforcement
learning where the agents use the belief estimation from the Bayes
filter. Our models are trained in simulation and transferred to the
real world. We analyze the reliability and the performance of our
framework through a series of simulated and real-world experi-
ments and compare our method to the baseline work. Our results
show that the learned tactile observation model can localize the
pose of novel objects at 2-mm and 1-degree resolution for position
and orientation, respectively. Furthermore, we experiment on a
bottle opening task where the gripper needs to reach the desired
grasp state.

KEYWORDS

tactile pose estimation; tactile manipulation; deep reinforcement
learning

ACM Reference Format:

Tarik Kelestemur, Robert Platt, and Taskin Padir. 2022. Tactile Pose Estima-
tion and Policy Learning for Unknown Object Manipulation. In Proc. of the
21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9-13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

Understanding the physical properties of objects such as their
shapes and poses is an essential skill for robotic manipulation in
unstructured environments. This problem requires fusing multiple
sensor modalities (e.g. vision and touch) in an efficient way. As hu-
mans, we use vision and tactile feedback as complimentary sensor
modalities to manipulate the objects around us. For example, when
we want to use a computer mouse, we first find its rough location
on a table using vision and grab it. Then, we locate the buttons on
the mouse by using the haptic feedback coming from our fingertips.

While vision provides rich and global information about the
environment, it is difficult to extract precise and local features of
the robot-environment interaction. This is particularly important
for applications where the robot is constantly in contact with the

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Robert Platt
Northeastern University
Boston, MA, United States
rplatt@ccs.neu.edu

Taskin Padir
Northeastern University
Boston, MA, United States
tpadir@northeastern.edu

Manipulator

Gripper

Left and Right Tactile Images

Figure 1: Experimental Setup - Our method learns to esti-
mate a robotic gripper pose with respect to manipulated ob-
jects. Later, we use this estimator to learn manipulation poli-
cies. The experimental setup consists of a UR5 arm, a par-
allel gripper, and two visuo-tacile sensors mounted on the
gripper fingers. The robot grasps the object to perform the
pose estimation, then, moves gripper to the desired pose to
solve manipulation tasks.

environment. Moreover, visual sensors are subject to the occlu-
sions by the objects and the robot itself or they might have poor
calibration which results in low reliability and performance. In
these cases, direct sensory feedback between the robot and the
environment is needed. Tactile sensors can determine the contact
information regarding the interaction such as whether the robot is
touching an object or how much force is applied. In robotic manip-
ulation, before the robot can move an object, it needs to estimate
and track the pose of the object in the scene. Once this is achieved,
the robot can perform several manipulation tasks. With the rise of
deep learning, a line of research [50, 52] has introduced successful
pose estimation methods with vision. These methods train on large
datasets of objects with annotated labels and transfer their models
to the real world to be used in tasks such as grasping or pushing.
However, these methods only provide a rough pose estimation of
the objects. Even state-of-the-art methods like [50] can localize the
objects at centimeter resolution. Some manipulation tasks (e.g. peg-
in-hole, cable insertion, etc.) requires sub-centimeter resolution to
be able to achieve high performance. The tactile perception has
been shown that it can address this issue, but the majority of the
previous work [25, 36, 38, 46] requires object models to be known
or they only work with a limited number of trained objects. Our de-
sire is to go beyond this limitation and be able to precisely localize
unseen objects without using any object model.

In this work, we propose a framework for tactile pose estimation
and manipulation without any prior knowledge about the objects.
Our method first learns an observation model that predicts the
state likelihood probabilities of given tactile images. This obser-
vation model is then integrated into a discrete Bayes filter with a
deterministic motion model. Later, we learn tactile manipulation
policies using the belief estimation from this Bayes filter. The tac-
tile observation model is modeled using deep neural networks and
learned from data generated in simulation. To learn this model,
we build a simulated environment with a parallel gripper and two
visuo-tactile sensors as shown in Figure 2. The simulation allows
us to collect millions of tactile images with the ground truth data in
less than 24 hours. After learning the tactile observation model, we
then consider two control problems. The first is the active tactile
pose estimation where the robot grasps the object from different
states to localize itself in a minimum number of steps. The second
problem is to reach a desired goal state on the object. We apply
the standard deep reinforcement learning method for solving these
tasks. In this setting, the agent takes the belief and goal as input.

We conduct a series of experiments to show the robustness and
performance of our method. In simulation experiments, we first
show that the learned tactile observation model can successfully
estimate the position of the gripper with respect to the novel ob-
jects at 2mm position and 1-degree orientation resolution. Later,
we train agents on a bottle opening task where the gripper needs
to reach a certain state to open the bottle cap. We compare this
method to a common approach where the agent uses recurrent
networks instead of belief estimation. Finally, we transfer the tac-
tile observation model and policy networks to a real robot. Our
models can work in the real world without extensive domain ran-
domization. We only take a single image from the real sensor to
augment the tactile images in simulation. Inspired by the computer
mouse example, we envision that this framework can be used as
a complimentary estimation method to a vision-based estimator.
In this scenario, the vision would estimate the rough pose of the
object and our method can precisely localize the with respect to
the object. The code and supplementary materials can be found at
https://sites.google.com/view/tpem.

2 RELATED WORK

2.1 Tactile Pose Estimation

Pose estimation of objects is an essential skill for autonomous ma-
nipulators. While vision-based methods have shown great success
in this area, tactile pose estimation is still needed to overcome
the shortcomings of the methods that only use visual feedback.
For example, visual feedback can be occluded due to arm motions
or the hand-eye calibration cannot be always reliable. Moreover,
during precise manipulation tasks (e.g. peg-in-hole with low clear-
ance), tactile feedback is shown to be necessary. The previous work
by [4, 5, 9, 11, 17, 41-43] have shown that tactile feedback can
be used to estimate objects’ poses. The general approach in these
works is to formalize the analytical observation and motion models
of the tactile interactions and use Bayes filters for pose estimation.
A common assumption among these method is that the object is
considered to be static. Suresh et al [47] considers the object mo-
tions and estimates both the object shape and its pose by alternating

between Gaussian process implicit surface regression and factor
graph. Similarly, Liang et al. [37] takes account of the object mo-
tions while it is being held in a multi-fingered hand and localizes
the object pose using derivative-free sampling-based optimization.
These methods typically use a force sensors that is mounted on the
gripper fingers.

With the recent development of visuo-tactile sensors such as
GelSight [53] and DIGIT [34], several work proposed to estimate
the pose of grasped objects using visual data. These sensors are
equipped with a deformable gel on the contact surface. An RGB
camera is placed underneath this gel which captures the deforma-
tion cased by contact interactions. Li et al. [36] uses a GelSight
sensor and apply the RANSAC method to localize a USB connector
to perform USB insertion task. A similar approach is taken by Luo
et al. [38] where they estimate the end-effector position by using
correspondence matching of SIFT features between the current sen-
sor reading and global features of the surface. Izatt et al. [25] uses
the data from a GelSight sensor and performs ICP-based tracking
with the point cloud data acquired from an external RGB-D sensor.
Bauza et al. [2] also uses ICP for pose estimation, however, they
simultaneously reconstruct the shape of object instead of relying
on RGB-D camera. In [46], Sudho et al. learns a tactile observation
model that takes visual-based tactile images and uses a factor graph
to estimate the relative pose of the sensor while the end-effector
is performing planar pushing task. Bauza et al [3] proposes an ap-
proach to localize objects using a learned observation model that
predicts the local shape of the object from visuo-tactile readings.
Later, they match this shape to simulated local shapes with known
poses using FilterReg algorithm.

All the methods mentioned above uses some sort of prior knowl-
edge of the objects or only work with a limited number of objects.
It is desired to get rid of the this assumption and develop methods
that can do pose estimation without the object models. Recently,
Anzai and Takahashi [1] introduced a method called deep gated
multi-modal learning for fusing visual and tactile observations to
estimate the pose changes of different objects. Their method takes
tactile data from a GelSight sensor and visual data from an RGB
camera placed on the end-effector. The visual and tactile data are
encoded using convolutional and recurrent layers. The networks
are trained on 11 objects and tested on 4 novel objects. Contrast to
their work, we do not use any camera images and solely rely on
tactile images. Moreover, our method estimate the actual pose of
the object instead of the relative changes. Finally, we propose to
use this estimation method for solving manipulating tasks using
deep reinforcement learning.

2.2 Tactile Manipulation

The main goal of tactile manipulation is to close the loop for solving
manipulation tasks. It has been shown by several works that tactile
information is not only useful but also necessary to solve precise
manipulation problems. In [35], Lee et al. investigate the represen-
tation learning for visual and tactile fusion for manipulation. They
use a Variational Autoencoder to learn a compact representation
of these two modalities which is then used for learning the peg-in-
hole task with unseen shapes and sizes. She, Wang, and Dong et

al. [45] uses a GelSight sensor to estimate the pose of a gripped ca-
ble and friction forces during a cable sliding task. Wang and Wang
et al. [48] learns a physical feature embedding space by performing
exploratory actions. This embedding is then used to predict the
swing angle for the given control input. Dong et al [15] proposed
to use vision-based tactile images to learn end-to-end policies for
insertion tasks in the real world. A sim-to-real approach for tactile
manipulation is produced by [14]. They calibrate the tactile sensor
in the simulation with real-world data and learn door opening tasks
using deep reinforcement learning.

While we show that end-to-end policy learning is possible for
the tactile manipulation tasks considered in this work, decoupling
the perception and control problems results in faster learning and
better generalization to unseen objects. It is also important to note
that, with a learned tactile pose estimator, various tasks can be
easily learned instead of learning each task from scratch.

2.3 Partial Observability in Deep
Reinforcement Learning

In many real-world scenarios, the robots do not have access to
the underlying state of their environment, instead, they perceive
the world through the sensors that provide partial observations.
While deep reinforcement learning (DRL) has been successfully
applied to robotics tasks with full state information, policy learning
under partial observability is still an ongoing research effort. To
address this problem, the previous work has proposed two main
solutions. The first is to deploy a memory module such as Long
Short Term Memory (LSTM) [23] to the value and policy networks.
The work by Hausknecht et al. [21] proposed the Deep Recurrent
Q-Network which modifies the original Deep Q-Network [39] archi-
tecture by adding LSTM layers to the network. Later, this approach
is also applied to the actor-critic methods [16] and model-based
methods [19].

The second approach is to take a modular approach where the
state estimation is realized by differentiable Bayes filters and the
policy takes the belief estimates as the input. In partially observable
environments, a Bayes filter [10] maintains a posterior probability
(belief) over the states and recursively updates its belief using the
observation and transition models. The recent progress in neural
networks has shown that these models can be learned from data if
their analytical forms do not exist. A differentiable discrete Bayes
filter is proposed by Jonschkowski et al. [26] and showed that it
outperforms LSTM networks in state estimation problems. The
work by Karkus et al. [31] and Jonschkowski et al. [27] learns
Particle filters and the work by Haarnoja et al. [20] learns a Kalman
filter to handle continuous states. Lee and Yi et al. [35] showed how
to fuse different sensor modalities while learning Bayes filters.

Combined with the DRL, the differentiable Bayes filters give
promising results in partially observable robotic environments.
In [30], Karkus et al. introduce QMDP-net which combines the
QMDP planner with a Histogram filter and jointly learns them
to solve simulated navigation and grasping tasks. Wirnshofer et
al. [51] uses a learned particle filter to track objects in the environ-
ment and trained a DQN agent to manipulate these objects. The
agent uses the belief estimates as input to the DQN. Chaplot et
al [8] and Gottipati et al. [18] applied this approach to the active

localization problem with visual feedback. Finally, in [32], the au-
thors proposed to use a learnable Bayes filter to localize a robotic
gripper’s position with respect to the environment image using
tactile feedback. In the following work [33], they train agents using
deep reinforcement learning with belief inputs to solve contact-rich
manipulation tasks using only a single image of the environment
and the tactile observations.

In this work, we take the latter approach where we train an
observation model which provides likelihood probabilities of the
tactile observations which are later used within a discrete Bayes
filter. Then, we train DRL agents for estimating the gripper’s pose
with respect to unknown objects and manipulate them. Our experi-
ments and results presented in related work suggest that learning
policies with Bayes filters result in better performance compared
to the policies learned with recurrent networks.

3 BACKGROUND

3.1 Partial Observability and Bayes Filters

We formulate our pose estimation problem as a partially observable
Markov Decision Process (POMDP) [29] which is defined with a
tuple (S, A, Q, T, R, 0) where S, A, and Q are the state, action,
and observation spaces, respectively. 7 = p(s¢|s;—1,ar—1) is the
state-action transition function that gives next state probabilities
given the action a;—; € A and previous state s;—; € S. The ob-
servation model O = p(o;|s;) defines the likelihood probabilities
of receiving the observation o; € Q at state s;. At each timestep,
the agent also receives a reward r; € R provided by the reward
function R(s;).

A Bayes filter is a recursive state estimation method that can
be used when agents do not have full access to systems’ states. To
estimate the current state of the agent, Bayes filters maintain a
belief which describes the posterior probability over state space.
This belief is conditioned on the past observations and the actions
bel(s;) = p(st|lai:t-1,01:+) and recursively updated at every time
step using the observation and transition models:

bel(s)) = Y T (st ar-1,5-1)bel(si-1) ()

s;—1€S

Prediction Update

bel(st) = nO(or, st)bel(s:) @)
————
Observation Update

where bel(s;) is the predicted belief and 7 is the normalization
factor. The Eq. 1 predicts the belief at next time step bel(s;) by
summing over the all possible previous states. Then, in Eq. 2, the
belief is updated using the observation received at the new state.
The recursive estimation starts with a prior belief bel(sp) which is
initialized uniformly if there is no knowledge about the system’s
state.

3.2 Reinforcement Learning

In partially observable environments where we have belief estima-
tion, the environment becomes a belief Markov Decision Process
(BMDP). Belief MDP is defined as a tuple (8, A, R, 7, y) where 8

Gripper Frame

Object Frame

World Frame

Figure 2: Top Image: Simulation environment - Bottom-left
Image: Examples from simulated objects - Bottom-right Im-
age: Real-world objects

is the belief space, A is the action space and R : 8 X A — Ris the
reward function. The y is the discount factorand 7: 8x A — B
is belief-transition function. In this formulation, the action space
A is same with the underlying POMDP. In discrete state spaces,
the belief is defined as a categorical distribution.

Goal conditioned RL (GCRL) [28] allows agents to learn poli-
cies that can reach desired goals. The goal of GCRL is to find a policy
n(az|st, g) that is conditioned on the state and the goal and maxi-
mize the expected discounted return: E”[Zt 0 L y!R (51,)] where
T is the maximum horizon and, y € [0, 1] is the discount factor,
and R(s, g) is the goal-conditioned reward function. At the begin-
ning of each episode, an initial state so ~ pp and a goal g ~ pg are
sampled from the state and goal distributions. In the case of BMDP,
the policies and the reward function are conditioned on the belief
instead of the underlying state: (a;|bel(s;), g) and R(bel(s;), g).
With this change, the goals also need to be in the belief space
g € B. The goals can be represented as one-hot vectors which in
the belief space corresponds to a probability distribution where the
probability of goal state is 1 and the rest is 0.

4 METHODS
4.1 Problem Statement

In this paper, we tackle two problems: estimating a gripper’s pose
with respect to an object using tactile feedback and moving the
gripper to the desired pose on the object to achieve a manipulation
task. Below, we explain how these problems are formulated.
Tactile Pose Estimation: To estimate the pose of a gripper
with respect to the objects, we use a discrete Bayes filter (or His-
togram filter) with a learned observation model and a determin-
istic transition function. We represent the observation model as
a neural network and learn it from data generated in simulation.

Formally, the observation model is a function that takes the tactile
images from two fingers and produces state likelihood probabilities:
O(st,0¢) = hg(I}, I;) where 0 is the network parameters, I; and I
are the tactile images acquired from left and right fingers. The tactile
observations are 3-channel h x w RGB images I}, Ir € Q = 73w,
The belief-transition function takes the previous state and the action
to output the next state 7 : f(bel(s;—1), a;-1) = m(st).

Our state space is described as the position and orientation of the
gripper with respect to the object. To simplify things, we place the
objects into the center of the world frame and assign the object’s
frame to the highest point on the object in the z (upward) axis
while keeping the orientation the same as the world frame. The
gripper’s frame is positioned in the middle of the tactile sensors (see
Figure 2). We discretize the positions and orientations and represent
them as state bins where the middle element of bins represent the
origin pose. The discretization resolution for the position is 2mm
and for orientation, it is 1 degree. Since the discretization in each
position and orientation can easily create a large state space, we use
a factored state representation where the state s is a n X d matrix
s € 8 = 2™ where n is the state dimension and d is the size of
that dimension.

Similar to the state space definition, the belief is also represented
as n X d matrix bel(s) € 8 = R™4_ Because we use a factored belief
representation, each row of the belief is a probability mass function
bel(s') Vi = 1,..,n for the corresponding discretized position or
orientation space. To do recursive belief updates, we first shift the
belief by the distance the gripper moved and then apply element-
wise multiplication with the output of the observation model:

bel(s;) = nho(I;, Ir) © f(bel(si-1), ar-1) (3)

The initial belief bel(sp) is uniform in each state dimension.

Tactile Manipulation: Once we are able to localize the grip-
per’s pose, our next goal is to move the gripper to the desired
pose to solve a manipulation task. To this end, we learn a goal-
conditioned policy that takes the the current belief bel(s;) and the
goal g to move the gripper 7 (a;|bel(s;), g). Moreover, we learn a
policy that can estimate the gripper’s pose in minimum number
steps m(a;|bel(s;)) rather than taking random actions. It is impor-
tant to state that the localization and manipulation policies are
trained separately and the manipulation policy does not require
the localization to be learned. Instead, it implicitly learns to localize
gripper to reach the goal.

4.2 Tactile Observation Model

Architecture and Training: For the observation model, which
we call Tactile Pose Network (TPN), we use the ResNet-18 [22]
architecture pre-trained on the ImageNet [13] dataset. The final
fully connected (FC) layer is removed and replaced with two FC
layers which have 2048 and n X d hidden units. The first layer is
followed by a ReLU activation and the second one is normalized
using Softmax. Since we have two images for each state, we call the
forward pass twice and accumulate the gradients during training.
The tactile images are resized to 85 X 64 from 160 x 120. To train
the network, the categorical cross-entropy loss is used. Since we
are using a factored state representation, the loss is calculated as

ResNet-18

Left and Right Tactile Images

p(s¢lo)

bel(st) .

Transition

Actions: a; Tanh

31eU1RIU0)

Value: V(s_t)«——

[
1 . .
N Previous time step

Tanh
\ —

'\ Current time step

Function

Tanh m_ Desired
P aosg ()
= B |
o '

1
1
P /
’/
a”’

Figure 3: The System Framework — Our proposed system has two main components: (a) a factored Bayes filter with a learned
observation model and (b) a policy-value network that uses belief estimations to reach desired goals. The observation model
uses a ResNet network to encode tactile images and produces the state-likelihood probabilities. The deterministic transition
model predicts the belief at the next time step which is then multiplied and normalized with the likelihood probabilities.
Finally, the policy network takes the belief along with the goal to output actions.

the sum of negative log-likelihoods over the state dimensions:
n d
L==3"%" stlog(hy(l. 1)) (4)
i

where sj. is the ground-truth state at i — th dimension and j — th
position in the state dimension. We use Adam optimizer with a
learning rate of 0.0005. The batch size is 64 and the number of
epochs is 20. The training takes 2 hours. The overall architecture
can be seen in Figure 3.

Simulation and Data Collection: We build a simulation envi-
ronment using the PyBullet [12] library as the physics engine and
the TACTO [49] as the renderer for the visuotactile sensors. TACTO
is a recent framework that allows simulating visuotactile sensors. It
currently supports two sensors: DIGIT [34] and OmniTact [40]. In
our simulation and real-world experiments, we use DIGIT sensor
due to its open-source hardware and software implementation. We
placed two DIGIT sensors on the fingertips of a parallel gripper.
The simulation is loaded with 3D objects that are acquired from
ShapeNet [7] dataset and pre-processed using [24] to make them
watertight. We found that this process improves the quality of tac-
tile images. To collect the dataset, the gripper is placed in every
state and the fingers are closed with a position controller with a
limited maximum force. The dataset is populated with the pair of

tactile images (left and right fingers) and the corresponding state.
The data collection takes approximately 24 hours.

Bayes Filter: With the observation model is learned, we then
integrate it into a discrete Bayes filter. The output of the observation
model gives the likelihood probabilities for the given tactile images:
p(stlIr, Iy). To do the factored belief updates, we first reshape the
output of TPN from a vector with size nd to a matrix with shape nxd
where each row represented likelihoods for the corresponding state
dimension. Then, each row is multiplied with the predicted belief
Del(s;) element-wise to generate the belief at the next time step. The
predicted belief is produced by the deterministic belief-transition
function f(bel(s;-1, a;—1) which takes the previous belief and the
action and shifts the belief by the distance the gripper moved.

4.3 Policy Learning

Tasks: To train and test the policies, we developed a simulated task
environment using Gym [6] interface. At the beginning of each
episode, the gripper is placed in a random pose and the belief is
initialized uniformly. At each timestep, the gripper moves to a new
pose according to the action requested and grasps the object to
collect the tactile images. These images are then returned back to
the agent. We use the same bottle dataset collected for the observa-
tion model. Here, we are interested in learning two tasks: Active
Pose Estimation where the agent takes actions to localize itself and
Reaching where the gripper is trying to reach the desired goal pose.

Rewards: For both of the tasks, we use sparse reward functions.
The reward function for active pose estimation task is R(s;) = 1
if |st — s¢| = 0 else 0 where s; is the current true state and s} is the
estimated state. Here, the estimated state is defined as the point in
the belief with highest probability value s; = argmax(bel(s;)). For
the reaching task, the reward function is R(s;,g) = 1 if |s; —g| =0
else 0 where g is the goal state. We terminate the episode if the
reward is 1 or the maximum time limit is reached. For both tasks,
the task horizon is 16.

Policy Architecture: Proximal Policy Optimization (PPO) [44]
is an actor-critic RL method that directly learns a policy network as
well as a value network. Different from other actor-critic methods,
PPO limits the updates to the policy network by clipping the policy
gradient objective. This leads to a low-variance and stable learning.
The value and policy networks are consists of 2 1-d convolutional
layers and a single FC layer. Both of the convolutional layers have
one kernel with size 3 and they are followed by the Tanh activation
function. The FC layer for the policy network has 20 units whereas
the value FC layer has 1 unit. The weights of the convolutional
layers are shared between the policy and the value networks. The
agent takes the belief as input to the networks. In the case of learn-
ing a manipulation task, it also takes the goal which is represented
as one-hot vectors. For each state dimension, we stack the belief and
the goal as two-channel vectors and feed them into the network.
We found out that using convolutional layers works better than
fully connected layers because the input to the network has spatial
properties. The architecture for the policy and value network can
be seen in Figure 3.

Multi Dimensional Discrete Action Space: Our policies use
a discrete action space. Similar to the belief space, the action space
is has a factored representation. In the case of discrete action space,
the policy 7 (-|bel(s)) is represented as a softmax distribution. If we
have a multi-dimensional action space, we can specify categorical
distribution 7, (a;|bel(s)) over actions a; € A; for each dimension
i. Then, we can define the joint discrete policy as n(a|bel(s)) =
72 g, (ai|bel(s)) where m is the dimension of the action space.
To implement this, the policy network has a fully connected layer
with the size of X7, K; where K; = |A;|. Then, we would apply
softmax to each action space dimension. We use delta position
commands for controlling the gripper. For each action dimension,
the agent can move *1, +2 elements in the discrete state space or
stay still. We have 4 state dimensions, thus, in total, we have 20
discrete actions. In position dimensions, each bin corresponds to
a 2mm change and for the orientation dimension, it is a 1-degree
change.

5 EXPERIMENTS

To evaluate our method, we first investigate the performance of the
learned Bayes filter and policies in simulation. Later, we transfer
our models trained in simulation to the real world. As explained in
Section 4.1, we are interested in estimating the pose of a gripper
with the respect to manipulated objects and control the gripper to
move to the desired pose. To this end, we choose the bottle opening
task where the gripper needs to find its pose with respect to a bottle
and move to appropriate to the pose to twist and open the bottle
cap. Here, we have 3 expectations from our method: (I) the pose

Table 1: TOP-5 OBSERVATION MODEL ACCURACY

Validation Set

State top-1 | top-2 | top-3 | top-4 | top-5
PositionY 99.98 | 100.0 | 100.0 | 100.0 | 100.0
Position Z 99.99 | 100.0 | 100.0 | 100.0 | 100.0
Rotation X 98.85 | 99.96 | 99.99 | 100.0 | 100.0
Rotation Y 98.32 | 99.78 | 99.94 | 99.96 | 99.97

Holdout Set

State top-1 | top-2 | top-3 | top-4 | top-5
Position Y 99.00 | 99.92 | 99.96 | 99.98 | 100.0
Position Z 86.83 | 91.42 | 94.20 | 96.32 | 97.50
Rotation X 75.71 | 93.50 | 97.61 | 99.04 | 99.56
Rotation Y 76.43 | 92.52 | 96.51 | 98.02 | 98.67

estimation should be robust and generalize to unseen objects, (II)
the localization and manipulation policies should learn effective
control strategies, (III) our models should be able to transfer to the
real world without fine-tuning or intensive domain randomization.

5.1 Simulation Experiments

Tactile Pose Network: To train the TPN model, we selected 60
bottles from the ShapeNet dataset. 50 of these bottles are used for
the train/validation set and 10 of them are used as the holdout set.
We do a 90/10 percent split for the train/validation set. For the
bottles dataset, we used 4 dimensions n = 4 where the first two
is the gripper’s position in y and z axis and the last two are the
orientation around the x and y axes. While we use 4 dimensions
in this experiment, the number of the dimensions can be easily
increased for tasks that requires more than 4 dimensions. We chose
the size of each dimension to be d = 11. For the position dimensions,
this corresponds to 2cm and for orientation it is 10-degrees.

After training is completed, we run the model on both the vali-
dation and holdout sets and report top-5 accuracy in Table 1 each
state dimension. The results show that the observation model not
only predicts the true state (99.28% mean top-1 validation accuracy)
successfully but also generalizes to the novel objects that were not
present in the training set (84.49% mean top-1 holdout accuracy).
One can say that this model can be directly used to predict the
states and learn policies with state input to the agent instead of
the belief estimation. While this is true in the simulation, the belief
estimations are going to be essential when noise is introduced into
the system which is highly likely in the real-world case. Moreover,
using uncertainty as an input to policy learning allows agents to
trade between taking exploratory actions and actions towards the
goal.

Policy Performance: We train the active pose estimation and
reaching tasks with the training set used in the observation model
and evaluate them using the holdout set. During training, the evalu-
ation policy is executed for 100 episodes after each gradient update
to the agent networks. We compare our method (called TPN-PPO) to
a baseline where we do not use the Bayes filter, instead, the agent
uses an LSTM layer for handling the partial observability. This
baseline (called LSTM-PPO) takes the tactile observations directly

Active Pose Estimation

100 BTN GRT IR

A

— TPN-PPO - Train
TPN-PPO - Holdout
—— LSTM-PPO - Train

0 50000 100000 150000 200000 250000 300000

0 50000

100000 150000

Training Steps

200000 250000 300000

Mean Success Rate

—— LSTM-PPO - Holdout

Reaching

— TPN-PPO - Train
TPN-PPO - Holdout

—— LSTM-PPO - Train

—— LSTM-PPO - Holdout

100000 150000 200000 250000 300000

Mean Episode Length

Mo,
ot
WAL

IS

0 50000 100000 150000

Training Steps

200000 250000 300000

Figure 4: The Policy Learning Curves — This figure shows the success rates and mean episode lengths over the course of policy
learning. We train the policies on a dataset with 50 bottles and evaluate during the training with 10 unseen bottles. The
training is averaged over 4 different random seeds. The policies trained with belief estimation outperforms the policies with
the recurrent network in terms of sample-efficiency and final performance.

and feeds them into the ResNet-18 network. Similar to the TPN,
this ResNet-18 is also pre-trained on the ImageNet dataset. The last
FC layer of the ResNet architecture is followed by a ReLu activation.
To encode the goal state, we use a single FC layer with 128 hidden
units which are followed by a ReLu. The feature vectors from the
ResNet encoder and goal encoder are then concatenated and fed
into a single layer LSTM layer with a hidden size of 1024. The LSTM
layer is followed by ReLu activation and another FC layer with 512
hidden units. Finally, the output of this layer is fed into two FC
layers representing the policy and value networks. The weights of
the network except the last FC layers are shared between value and
policy networks. We report the mean success rate and mean episode
lengths over the course of training in Figure 5. The learning curves
are averaged over 4 runs with different random seeds. The policy
learning curves show that TPN-PPO outperforms the LSTM-PPO
significantly in terms of both learning time and the final success
rate. Moreover, it is clear that the policies are able to solve the tasks
with the unseen objects as well as the training objects. The overall
training for the TPN-PPO (including the observation model) takes
approximately 4 hours whereas the training the LSTM-PPO takes 6
hours.

5.2 Robot Experiments:

We transfer the observation model and policy networks to the real
world to evaluate our method on a real robot. An OnRobot RG2
parallel gripper is attached to a UR5 arm and two DIGIT sensors are
mounted on the finger of the gripper. The reason we can effectively
transfer our models to real world is that, we augment the tactile im-
ages in simulation with the background image taken from the real
sensor. This calibration is realized by the TACTO simulator where
it calculates the pixel-wise difference before and after the touch
and adding it to the background from the real sensor. We also add
Gaussian noise to the tactile images during the training of the TPN

Table 2: SUCCESS RATE & MEAN EPISODE LENGTHS

Bottles 1 [2 | 3] 4] 5
Success Rate 16/20 | 17/20 | 16/20 | 14/20 | 18/20
Mean Episode Length 857 | 6.42 | 547 | 819 | 7.09

to make the real-world predictions more robust. Another reason is
that due to the sequential nature of the recursive belief estimation,
the belief of pose is corrected in the consecutive timesptes, if obser-
vation module made a wrong prediction. In real-world experiments,
the task for the robot is to align the gripper with the bottles’ cap and
open it. Here, the goal is defined as the origin pose of the bottle cap.
Once the gripper reaches this pose, it simply rotates the last link
of the manipulator to open the cap. The actions for the robots are
the same as the simulation i.e. move the end-effector in each state
dimension by a fixed distance. To execute the actions, we solve the
inverse kinematic problem and send the joint angles to the position
controller running on the UR5. We used 5 bottles which are placed
on a table. Note that the models of the real world bottles are not
used in the training set. For each object, we run the policy 20 times
starting from different initial poses. Even though the optimal policy
can solve this task on an average of 4 steps in the simulation, due to
noise from the real tactile readings, the policy takes longer to solve
in the real world. The robot is allowed to take 20 actions before
we terminate the episode. After each action is taken, we look at
the error between estimated belief and the goal state e = |5; — g|
and terminate the episode if the error is less than 3. The episode
is considered successful if the gripper was able to rotate the cap.
We want to note that even though we used a fixed goal pose for
this task, the reaching policy is able to reach any pose in the state
space. This allows solving sequential manipulation tasks where the
gripper needs to reach multiple goals.

a) Simulation — w/o b) Background from c) Simulation — w/ d) Grasping image
augmentation the real sensor augmentation from the real sensor

Figure 5: Tactile Image Augmentation - We augment the im-
ages in the simulation with the background image of the real
sensor for improving the sim-to-real performance.

We report the success rate and the mean episode lengths for each
object in Table 2. As can be seen from the results, the robot is able
to solve this task efficiently in a real-world setting with 81% success
rate. A failure case we identified is that in some cases the policy
moves the gripper in a state where the gripper cannot grasp the
bottle cap, instead, fully closes the gripper. This results in wrong
prediction for the observation model and the policy can not recover.

6 CONCLUSIONS

In this work, we introduce a method that can estimate the pose of a
robotic gripper with respect to objects and manipulate them using
tactile observations. We achieve this without using prior knowledge
about the shape or size of the objects which is desired in real-world
settings. The tactile pose estimation is realized via a factored Bayes
filter with a learned observation model. Furthermore, we learn
policies that can use this belief estimation for solving manipulation
tasks. The performance and robustness of our method are analyzed
through experiments conducted in simulation and the real world.

The main limitation of our work is the assumption that the
manipulated objects are considered to be static during the robot
interactions. While this assumption holds for some objects in the
real world, ideally, we would like our method to consider the motion
of the object. This would also allow objects to be manipulated
without re-grasping. For future work, we also want to explore
different manipulation tasks where our methods can be applied.
Moreover, we would like to go beyond the category-level objects
and develop a tactile observation model that can localize the gripper
with respect to multiple categories of objects. Finally, to further
improve the real-world results, we are planning to explore sim-to-
real methods that could be applied to the visuo-tactile images for
learning policies with visual inputs.

ACKNOWLEDGMENTS

This research is supported by the National Science
Foundation under Award Number 1928654 and the U.S. Office
of Naval Research under award number N00014—19—-1-2131.

The authors would like thank Iris Wang, Joel Willick
and Hillel Hochsztein for their help with manufacturing
the DIGIT sensor used in this work, and Ondrej Biza for
his insights on the neural network design for policy
learning.

REFERENCES

[1] Tomoki Anzai and Kuniyuki Takahashi. 2020. Deep Gated Multi-modal Learning:
In-hand Object Pose Changes Estimation using Tactile and Image Data. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
Las Vegas, NV, USA, 9361-9368. https://doi.org/10.1109/IROS45743.2020.9341799

[2] Maria Bauza, Oleguer Canal, and Alberto Rodriguez. 2019. Tactile mapping and
localization from high-resolution tactile imprints. In 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 3811-3817.

[3] Maria Bauza, Eric Valls, Bryan Lim, Theo Sechopoulos, and Alberto Rodriguez.

2020. Tactile object pose estimation from the first touch with geometric contact

rendering. arXiv preprint arXiv:2012.05205 (2020).

Antonio Bicchi,] Kenneth Salisbury, and David L Brock. 1993. Contact sensing

from force measurements. The International Journal of Robotics Research 12, 3

(1993), 249-262.

Joao Bimbo, Petar Kormushev, Kaspar Althoefer, and Hongbin Liu. 2015. Global

estimation of an object’s pose using tactile sensing. Advanced Robotics 29, 5

(2015), 363-374.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAl Gym.

arXiv:arXiv:1606.01540

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-

iong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model

Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford University —

Princeton University — Toyota Technological Institute at Chicago.

Devendra Singh Chaplot, Emilio Parisotto, and R. Salakhutdinov. 2018. Active

Neural Localization. ArXiv abs/1801.08214 (2018).

[9] S. Chhatpar and M. Branicky. 2005. Particle filtering for localization in robotic
assemblies with position uncertainty. 2005 IEEE/RST International Conference on
Intelligent Robots and Systems (2005), 3610-3617.

[10] Cristina Garcia Cifuentes, Jan Issac, Manuel Wiithrich, Stefan Schaal, and Jean-
nette Bohg. 2016. Probabilistic articulated real-time tracking for robot manipula-
tion. IEEE Robotics and Automation Letters 2, 2 (2016), 577-584.

[11] Craig Corcoran and Robert Platt. 2010. A measurement model for tracking hand-
object state during dexterous manipulation. In 2010 IEEE International Conference
on Robotics and Automation. IEEE, 4302-4308.

[12] Erwin Coumans and Yunfei Bai. 2016-2021. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.org.

[13] JiaDeng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

[14] Zihan Ding, Ya-Yen Tsai, Wang Wei Lee, and Bidan Huang. 2021. Sim-to-
Real Transfer for Robotic Manipulation with Tactile Sensory. arXiv preprint
arXiv:2103.00410 (2021).

[15] Siyuan Dong, Devesh K Jha, Diego Romeres, Sangwoon Kim, Daniel Nikovski,
and Alberto Rodriguez. 2021. Tactile-RL for Insertion: Generalization to Objects
of Unknown Geometry. arXiv preprint arXiv:2104.01167 (2021).

[16] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
In International Conference on Machine Learning. PMLR, 1407-1416.

[17] Klaas Gadeyne and Herman Bruyninckx. 2001. Markov techniques for object
localization with force-controlled robots. In 10th Int’l Conf. on Advanced Robotics.

[18] Sai Krishna Gottipati, Keehong Seo, Dhaivat Bhatt, Vincent Mai, Krishna Murthy,
and Liam Paull. 2019. Deep active localization. IEEE Robotics and Automation
Letters 4, 4 (2019), 4394-4401.

[19] David Ha and Jirgen Schmidhuber. 2018. World models. arXiv preprint
arXiv:1803.10122 (2018).

[20] Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. 2016. Backprop
kf: Learning discriminative deterministic state estimators. In Advances in Neural
Information Processing Systems. 4376-4384.

[21] Matthew Hausknecht and Peter Stone. 2015. Deep recurrent q-learning for
partially observable mdps. In 2015 aaai fall symposium series.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

[23] Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

[24] Jingwei Huang, Yichao Zhou, and Leonidas Guibas. 2020. ManifoldPlus: A Robust
and Scalable Watertight Manifold Surface Generation Method for Triangle Soups.
arXiv preprint arXiv:2005.11621 (2020).

[25] Gregory Izatt, Geronimo Mirano, Edward Adelson, and Russ Tedrake. 2017. Track-
ing objects with point clouds from vision and touch. In 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 4000-4007.

[26] Rico Jonschkowski and Oliver Brock. 2016. End-To-End Learnable Histogram
Filters. In Workshop on Deep Learning for Action and Interaction at NIPS.

4

flaas’

[5

[

[7

[

[8

=

Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. 2018. Differentiable
Particle Filters: End-to-End Learning with Algorithmic Priors. In Proceedings of
Robotics: Science and Systems. Pittsburgh, Pennsylvania. https://doi.org/10.15607/
RSS.2018.XIV.001

Leslie Pack Kaelbling. 1993. Learning to achieve goals. In IJCAL Citeseer, 1094—
1099.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Artificial intelligence
101, 1-2 (1998), 99-134.

Peter Karkus, David Hsu, and Wee Sun Lee. 2017. Qmdp-net: Deep learning for
planning under partial observability. In Advances in Neural Information Processing
Systems. 4694-4704.

Peter Karkus, David Hsu, and Wee Sun Lee. 2018. Particle filter networks with
application to visual localization. arXiv preprint arXiv:1805.08975 (2018).

Tarik Kelestemur, Colin Keil, John P. Whitney, Robert Platt, and Taskin Padur.
2020. Learning Bayes Filter Models for Tactile Localization. In 2020 IEEE/RST
International Conference on Intelligent Robots and Systems (IROS). IEEE, 9253-9258.
https://doi.org/10.1109/IROS45743.2020.9341420

Tarik Kelestemur, Tagkin Padir, and Robert Platt. 2021. Policy Learning for Vi-
sually Conditioned Tactile Manipulation. In 2021 IEEE/RSY International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 9253-9258. https:
//doi.org/10.1109/IROS45743.2020.9341420

Mike Lambeta, Po-Wei Chou, Stephen Tian, Brian Yang, Benjamin Maloon, Victo-
ria Rose Most, Dave Stroud, Raymond Santos, Ahmad Byagowi, Gregg Kammerer,
et al. 2020. Digit: A novel design for a low-cost compact high-resolution tactile
sensor with application to in-hand manipulation. IEEE Robotics and Automation
Letters 5, 3 (2020), 3838-3845.

Michelle A. Lee, Yuke Zhu, Peter Zachares, Matthew Tan, Krishnan Srinivasan,
Silvio Savarese, Li Fei-Fei, Animesh Garg, and Jeannette Bohg. 2020. Making
Sense of Vision and Touch: Learning Multimodal Representations for Contact-
Rich Tasks. IEEE Transactions on Robotics 36, 3 (2020), 582-596. https://doi.org/
10.1109/TRO.2019.2959445

Rui Li, Robert Platt, Wenzhen Yuan, Andreas ten Pas, Nathan Roscup, Man-
dayam A Srinivasan, and Edward Adelson. 2014. Localization and manipulation
of small parts using gelsight tactile sensing. In 2014 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. IEEE, 3988-3993.

[37] Jacky Liang, Ankur Handa, Karl Van Wyk, Viktor Makoviychuk, Oliver Kroemer,

and Dieter Fox. 2020. In-hand object pose tracking via contact feedback and gpu-
accelerated robotic simulation. In 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 6203-6209.

Shan Luo, Wenxuan Mou, Kaspar Althoefer, and Hongbin Liu. 2015. Localizing
the object contact through matching tactile features with visual map. In 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 3903-3908.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

[40

[41

[42

"~
&

[44

[45

[46

N
=

(48

[49

[50]

[51

[52

o
&

nature 518, 7540 (2015), 529-533.

Akhil Padmanabha, Frederik Ebert, Stephen Tian, Roberto Calandra, Chelsea
Finn, and Sergey Levine. 2020. Omnitact: A multi-directional high-resolution
touch sensor. In 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 618-624.

Anna Petrovskaya, Oussama Khatib, Sebastian Thrun, and Andrew Y Ng. 2006.
Bayesian estimation for autonomous object manipulation based on tactile sensors.
In Proceedings 2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006. IEEE, 707-714.

Robert Platt, Frank Permenter, and Joseph Pfeiffer. 2011. Using bayesian filtering
to localize flexible materials during manipulation. IEEE Transactions on Robotics
27,3 (2011), 586-598.

Brad Saund, Shiyuan Chen, and Reid Simmons. 2017. Touch based localization of
parts for high precision manufacturing. In 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 378-385.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

Yu She, Shaoxiong Wang, Siyuan Dong, Neha Sunil, Alberto Rodriguez, and
Edward Adelson. 2019. Cable manipulation with a tactile-reactive gripper. arXiv
preprint arXiv:1910.02860 (2019).

Paloma Sodhi, Michael Kaess, Mustafa Mukadam, and Stuart Anderson. 2020.
Learning tactile models for factor graph-based state estimation. arXiv e-prints
(2020), arXiv-2012.

Sudharshan Suresh, Maria Bauza, Kuan-Ting Yu, Joshua G Mangelson, Alberto
Rodriguez, and Michael Kaess. 2020. Tactile SLAM: Real-time inference of shape
and pose from planar pushing. arXiv preprint arXiv:2011.07044 (2020).

Chen Wang, Shaoxiong Wang, Branden Romero, Filipe Veiga, and Edward
Adelson. 2020. SwingBot: Learning Physical Features from In-hand Tactile
Exploration for Dynamic Swing-up Manipulation. In 2020 IEEE/RST Interna-
tional Conference on Intelligent Robots and Systems (IROS). 5633-5640. https:

//doi.org/10.1109/IROS45743.2020.9341006
Shaoxiong Wang, Mike Lambeta, Po-Wei Chou, and Roberto Calandra. 2020.

Tacto: A fast, flexible and open-source simulator for high-resolution vision-based
tactile sensors. arXiv preprint arXiv:2012.08456 (2020).

Bowen Wen and Kostas Bekris. 2021. BundleTrack: 6D Pose Tracking for
Novel Objects without Instance or Category-Level 3D Models. arXiv preprint
arXiv:2108.00516 (2021).

Florian Wirnshofer, P. Schmitt, Georg von Wichert, and W. Burgard. 2020. Control-
ling Contact-Rich Manipulation Under Partial Observability. In Robotics: Science
and Systems.

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. 2017.
Posecnn: A convolutional neural network for 6d object pose estimation in clut-
tered scenes. arXiv preprint arXiv:1711.00199 (2017).

Wenzhen Yuan, Siyuan Dong, and Edward H Adelson. 2017. Gelsight: High-
resolution robot tactile sensors for estimating geometry and force. Sensors 17, 12
(2017), 2762.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tactile Pose Estimation
	2.2 Tactile Manipulation
	2.3 Partial Observability in Deep Reinforcement Learning

	3 Background
	3.1 Partial Observability and Bayes Filters
	3.2 Reinforcement Learning

	4 Methods
	4.1 Problem Statement
	4.2 Tactile Observation Model
	4.3 Policy Learning

	5 Experiments
	5.1 Simulation Experiments
	5.2 Robot Experiments:

	6 Conclusions
	Acknowledgments
	References

