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Abstract: Recently, a variety of new equivariant neural network model architec-
tures have been proposed that generalize better over rotational and reflectional
symmetries than standard models. These models are relevant to robotics because
many robotics problems can be expressed in a rotationally symmetric way. This
paper focuses on equivariance over a visual state space and a spatial action space
– the setting where the robot action space includes a subset of SE(2). In this sit-
uation, we know a priori that rotations and translations in the state image should
result in the same rotations and translations in the spatial action dimensions of the
optimal policy. Therefore, we can use equivariant model architectures to make Q
learning more sample efficient. This paper identifies when the optimal Q func-
tion is equivariant and proposes Q network architectures for this setting. We show
experimentally that this approach outperforms standard methods in a set of chal-
lenging manipulation problems.
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1 Introduction

A key question in policy learning for robotics is how to leverage structure present in the robot
and the world to improve learning. This paper focuses on a fundamental type of structure present
in visuo-motor policy learning for most robotics problems: translational and rotational invariance
with respect to camera viewpoint. Specifically, the reward and transition dynamics of most robotics
problems can be expressed in a way that is invariant with respect to the camera viewpoint from
which the agent observes the scene. In spite of the above, most visuo-motor policy learning agents
do not leverage this invariance in camera viewpoint. The agent’s value function or policy typically
considers different perspectives on the same scene to be different world states. A popular way
to combat this problem is through visual data augmentation, i.e., to create additional samples or
experiences by randomly translating and rotating observed images [1] but keeping the same labels.
This can be used in conjunction with a contrastive term in the loss function which helps the system
learn an invariant latent representation [2, 3]. While these methods can improve generalization, they
require the neural network to learn translational and rotational invariance from the augmented data.

Our key idea in this paper is to model rotational and translation invariance in policy learning us-
ing neural network model architectures that are equivariant over finite subgroups of SE(2). These
equivariant model architectures reduce the number of free parameters using steerable convolutional
layers [4]. Compared with traditional methods, this approach creates an inductive bias that can sig-
nificantly improve the sample efficiency of the model, the number of environmental steps needed to
learn a policy. Moreover, it enables us to generalize in a very precise way: everything learned with
respect to one camera viewpoint is automatically also represented in other camera perspectives via
selectively tied parameters in the model architecture. We focus our work on Q learning in spatial
action spaces, where the agent’s action space spans SE(2) or SE(3). We make the following contri-
butions. First, we identify the conditions under which the optimal Q function is SE(2) equivariant.
Second, we propose neural network model architectures that encode SE(2) equivariance in the Q
function. Third, since most policy learning problems are only equivariant in some of the state vari-
ables, we propose partially equivariant model architectures that can accommodate this. Finally, we
compare equivariant models against non-equivariant counterparts in the context of several robotic
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manipulation problems. The results show that equivariant models are more sample efficient than
non-equivariant models, often by a significant margin. Supplementary video and code are available
at https://pointw.github.io/equi_q_page.

2 Related Work

Data Augmentation: Data augmentation techniques have long been employed in computer vision to

encode the invariance property of translation and reflection into neural networks [5, 6]. Recent work
demonstrates the use of data augmentation improves the data efficiency and the policy’s performance
in reinforcement learning [7, 8, 9]. In the context of robotics, data augmentation is often used to
generate additional samples [1, 10, 11]. In contrast to learning the equivariance property using data
augmentation, our work utilizes the equivariant network to hard code the symmetries in the structure
of the network to achieve better sample efficiency.

Contrastive Learning: Another approach to learning a representation that is invariant to translation

and rotation is to add a contrastive learning term to the loss function [2]. This idea has been applied
to reinforcement learning in general [3] and robotic manipulation in particular [12]. While this
approach can help the agent learn an invariant encoding of the data, it does not necessarily improve
the sample efficiency of policy learning.

Equivariant Learning: Equivariant model architectures hard-code E(2) symmetries into the structure

of the neural network and have been shown to be useful in computer vision [13, 4, 14]. In reinforce-
ment learning, some recent work applies equivariant models to structure-finding problems involving
MDP homomorphisms [15, 16]. In addition, Mondal et al. [17] recently applied an E(2)-equivariant
model to Q learning in an Atari game domain, but showed limited improvement. To our knowledge,
equivariant model architectures have not been explored in the context of robotics applications.

Spatial Action Representations: Several researchers have applied policy learning in spatial action

spaces to robotic manipulation. A popular approach is to do Q learning with a dense pixel action
space using a fully convolutional neural network (this is the FCN approach we describe and extend
in Section 4.2) [18, 19, 20, 21]. Variations on this approach have been explored in [22, 23]. The
FCN approach has been adapted to a variety of different manipulation tasks with different action
primitives [24, 25, 26, 27, 28, 1, 29, 30, 31]. In this paper, we extend the work above by proposing
new equivariant architectures for the spatial action space setting.

3 Problem Statement

We are interested in solving complex robotic manipulation problems such as the packing and con-
struction problems shown in Fig 1. We focus on problems expressed in a spatial action space. This
section identifies conditions under which the Q function is SE(2)-invariant. The next section de-
scribes how these invariance properties translate into equivariance properties in the neural network.

Manipulation as an MDP in over a visual state space and a spatial action space: We assume that the

manipulation problem is formulated as a Markov decision process (MDP): M = (S,A, T,R, γ).
We focus on MDPs in visual state spaces and spatial action spaces [29, 20, 31]. The state space
is factored into the state of the objects in the world, expressed as an n-channel h ⇥ w image
I 2 Sworld = R

n⇥h⇥w, and the state of the robot (including objects held by the robot) srbt 2 Srbt,
expressed arbitrarily. The total state space is S = Sworld ⇥ Srbt. The action space is expressed
as a cross product of SE(2) (hence it is spatial) and a set of additional arbitrary action variables:
A = SE(2)⇥Aarb. The spatial component of action expresses where the robot hand is to move and
the additional action variables express how it should move or what it should do. For example, in the
pick/place domains shown in Fig 1, Aarb = {PICK, PLACE}, giving the agent the ability to move
to a pose and close the fingers (pick) or move and open the fingers (place). We will sometimes de-
compose the spatial component of action asp 2 SE(2) into its translation and rotation components,
asp = (x, θ). The goal of manipulation is to achieve a desired configuration of objects in the world,
as expressed by a reward function R : S ⇥A ! R.

Translation and Rotation in SE(2): We are interested in learning policies that are invariant to trans-

lation and rotation of the state and action. To do that, we define rotation and translation of state
and action as follows. Let g 2 SE(2) be an arbitrary rotation and translation in the plane and let
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(a) Block Stacking (b) Bottle Arrangement (c) House Building

(d) Covid Test (e) Box Palletizing (f) Bin Packing

Figure 1: The experimental environments implemented in PyBullet [32]. The left image in each sub
figure shows an initial state of the environment; the right image shows the goal state.

s = (I, srbt) 2 Sworld ⇥ Srbt be a state. g operates on s by rotating and translating the image I , but
leaving srbt unchanged: gs = (gI, srbt), where gI denotes the image I translated and rotated by
g. For action a = (asp, aarb), g rotates and translates asp but not aarb: ga = (gasp, aarb). Notice
that both S and A are closed under g 2 SE(2), i.e. that 8g 2 SE(2), a 2 A =) ga 2 A and
s 2 S =) gs 2 S.

Assumptions: We assume that the reward and transition dynamics of the system are invariant with

respect to translation and rotation of state and action as defined above, and that the translation and
rotation operations on state and action are invertible.

Assumption 3.1 (Goal Invariance). The manipulation objective is to achieve a desired configuration
of objects in the world without regard to the position and orientation of the scene. That is, R(s, a) =
R(gs, ga) for all g 2 SE(2).

Assumption 3.2 (Transition Invariance). The outcome of robot actions is invariant to translations
and rotations of both the scene and the action. Specifically, T (s, a, s0) = T (gs, ga, gs0) for all
g 2 SE(2).

Assumption 3.3 (Invertibility). Translations and rotations in state and action are invertible. That
is, 8g 2 SE(2), g�1(gs) = s and g�1(ga) = a.

Assumptions 3.1 and 3.2 are satisfied in problem settings where the objective and the transition
dynamics can be expressed intrinsically to the world without reference to an external coordinate
frame imposed by the system designer. These assumptions are satisfied in many manipulation do-
mains including all those shown in Fig 1. In House Building, for example, the reward and transition
dynamics of the system are independent of the coordinate frame of the image or the action space.
Assumption 3.3 is needed to guarantee the Q function invariance described in the next section.

4 Approach

Assumptions 3.1, 3.2, and 3.3 imply that the optimal Q function is invariant to translations and
rotations in SE(2).

Proposition 4.1. Given an MDP M = (S,A, T,R, γ) for which Assumptions 3.1, 3.2, and 3.3 are
satisfied, the optimal Q function is invariant to translation and rotation, i.e. Q⇤(s, a) = Q⇤(gs, ga),
for all g 2 SE(2). (Proof in Appendix A.)

Our key idea is to use the invariance property of Proposition 4.1 to structure Q learning (and make
it more sample efficient) by defining a neural network that is hard-wired to encode only invariant Q
functions. However, in order to accomplish this in the context of DQN, we must allow for the fact
that state is an input to the neural network while action values are an output. This neural network
is therefore a function q : S ! R

A, where R
A denotes the space of functions {A ! R}. The

invariance property of Proposition 4.1 now becomes an equivariance property,

q(gs)(a) = q(s)(g�1a), (1)

where q(s)(a) denotes the Q value of action a in state s. We implement this constraint using equiv-
ariant convolutional layers as described below.
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