
Action Priors for Large Action Spaces in Robotics

Ondrej Biza
Northeastern University

Boston, MA, USA

biza.o@northeastern.edu

Dian Wang
Northeastern University

Boston, MA, USA

wang.dian@northeastern.edu

Robert Platt
Northeastern University

Boston, MA, USA

rplatt@ccs.neu.edu

Jan-Willem van de Meent
Northeastern University

Boston, MA, USA

j.vandemeent@northeastern.edu

Lawson L.S. Wong
Northeastern University

Boston, MA, USA

lsw@ccs.neu.edu

ABSTRACT

In robotics, it is often not possible to learn useful policies using pure

model-free reinforcement learning without significant reward shap-

ing or curriculum learning. As a consequence, many researchers

rely on expert demonstrations to guide learning. However, acquir-

ing expert demonstrations can be expensive. This paper proposes

an alternative approach where the solutions of previously solved

tasks are used to produce an action prior that can facilitate explo-

ration in future tasks. The action prior is a probability distribution

over actions that summarizes the set of policies found solving pre-

vious tasks. Our results indicate that this approach can be used

to solve robotic manipulation problems that would otherwise be

infeasible without expert demonstrations. Source code is available

at https://github.com/ondrejba/action_priors.

KEYWORDS

reinforcement learning; deep learning; action prior; robotics; robotic

manipulation

ACM Reference Format:

Ondrej Biza, DianWang, Robert Platt, Jan-Willem van deMeent, and Lawson

L.S. Wong. 2021. Action Priors for Large Action Spaces in Robotics. In Proc.

of the 20th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2021), Online, May 3ś7, 2021, IFAAMAS, 13 pages.

1 INTRODUCTION

Advances in deep learning have made model-free robot control a

viable alternative to model-based motion planning [7, 14, 33]. How-

ever, the complexity of tasks solvable by these approaches without

extra supervision is limited, partly due to sample inefficiency of

deep learning. Hand-crafted temporal abstraction of end-to-end

motions such as picking, placing and pushing are a compelling

alternative, as they allow agents to reason over longer timescales

[13, 36, 37]. In particular, Zeng et al. [37] proposed a pixel-wise

The 3rd, 4th, and 5th authors are listed in alphabetical order and contributed equally.
The authors thank Yunus Terzioglu, Tarik Kelestemur, and our anonymous reviewers
for helpful feedback. This work was supported by the Intel Corporation, the 3M Cor-
poration, National Science Foundation (1724257, 1724191, 1763878, 1750649, 1835309),
NASA (80NSSC19K1474), startup funds from Northeastern University, the Air Force
Research Laboratory (AFRL), and DARPA..

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3ś7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

parameterization of the action space, where each pixel in the ob-

served image of the workspace corresponds to a reaching action to

that position followed by a pick or place.

While both low-level action spaces with long time horizons and

pixel-wise action spaces are difficult to explore, the pixel-wise pa-

rameterization makes this challenge more explicit: the agent is

presented with thousands of possible actions, and usually only

a handful of them enable the agent to make progress toward its

goal. Exploration challenges like this are often addressed using re-

ward shaping, curriculum learning, or imitation learning. However,

these methods require additional supervision that maybe difficult

to provide. Ideally, our agent could learn new skills without expert

supervision.

In this paper, we construct priors over the action space ś action

priors ś that inform the agent of actions that were useful in the

context of previously learned tasks. The idea of action priors has

existed for some time. Sherstov and Stone [25] considered a single

action prior for all states; later, action priors were extended to state-

specific priors [1, 6, 21, 22]. However, to date, action priors have not

been applied outside of learning in grid-world-like environments

with small action spaces [6, 21, 22, 25] and planning in factored

models [1].

In contrast, we train action priors in environments with image

states and pixel-wise action spaces with thousands of actions. To

that end, we represent an action prior as a single fully-convolutional

neural network trained to summarize a library of pre-trained poli-

cies. We distinguish between a set of training tasks, which we solve

using imitation learning, and a held-out set of testing tasks to be

solved without expert information. The role of action priors is to

bias exploration on the testing tasks toward actions that were found

to be useful when solving the training tasks.

We evaluate our approach on 16 robotic block stacking tasks.

We proceed in three stages. First, our agent uses imitation learning

to find near-optimal solutions to a subset of the 16 tasks. Second,

we condense these near-optimal policies onto a state-dependent

probability distribution over actions (i.e. the action prior) that gives

high probability to any action that was part of one of the near-

optimal policies. Finally, we use the action prior to bias exploration

when solving a new task. In the block stacking domain, this action

prior gives a high probability to picking actions that are likely to

lift a block of some type or placing actions that are likely to result

in a stable placement. Although we explicitly focus on robotic

a
rX

iv
:2

1
0
1
.0

4
1
7
8
v
2

[c

s.
R

O
]

 1
5
 F

e
b
 2

0
2
1

(a) (b) (c) (d)

Figure 1: Our PyBullet block stacking setup. (a) a simulated UR5 arm and a 60×60 cm workspace with blocks, (b) a simulated

top-down depth camera image of the workspace, (c) and (d) are examples of the goals states of 2 of our 16 block stacking tasks.

manipulation, our approach should generalize well to any problem

in robotics with a large action space.

This paper makes two main contributions. First, we show that a

state-conditioned action prior is an effective way to transfer knowl-

edge from previously solved tasks to new tasks in a robotic manipu-

lation domain. Our experimental results indicate that this approach

can dramatically increase the probability of visiting a goal state

during exploration. Second, we introduce a method of learning a

state-conditioned action prior in situations where the previously

learned policies are valid over different regions of the state/action

space. This problem only occurs in large state/action spaces such as

in robotic manipulation, and we believe we are the first to address

it.

2 RELATED WORK

Action priors bias action selection during the exploration phase

of learning towards actions that were previously determined to be

viable. This information can either be specified by an expert [1] or

extracted from policies from previously solved tasks [1, 6, 21, 22, 25].

Note that action priors refer to a different construct than policy

priors [5, 34], as action priors do not involve posterior inference of

policy parameters.

Sherstov and Stone [25] eliminated actions not optimal for any

previous task in a state-agnostic way. Together with their trans-

fer learning algorithm, the state-agnostic action prior increases

learning speed in grid-world mazes. Fernández-Rebollo and Veloso

[6], Rosman and Ramamoorthy [21, 22] explored state-specific ac-

tion priors in similar discrete-state-space MDPs. Fernández-Rebollo

and Veloso [6] alternated between rolling out the policy being

learned and a policy sampled from a library. The probability distri-

bution over the library of policies was updated online to maximize

rewards for the current task. Rosman and Ramamoorthy [21, 22]

filled in the pseudo-counts of Dirichlet distributions used to select

actions in each state by a weighted-sum of actions selected by pre-

viously learned policies. Abel et al. [1] combined action priors and

hand-crafted object-oriented representations [4] to improve the

run time of dynamic programming policy search for a Minecraft

environment and a real-world robotic manipulation task.

In contrast to pre-defined factored representations in Abel et al.

[1], we learn the action prior and model-free policies from pixels.

The Dirichlet prior [21, 22] is not easily extensible to continuous

state spaces; instead, we learn the action prior as a convolutional

network. Compared to Fernández-Rebollo and Veloso [6], we can-

not keep a library of policies loaded in memory, as each policy

is parameterized by a large convolutional networkśwe distill all

policies into a single action prior network.

In concurrent work, Ajay and Agrawal [2], Pertsch et al. [19]

learned action priors over fixed-length sequences of actions (also

called skill priors). Both approaches use varitional autoencoders

to learn representations for action sequences, and can be used to

solve composite robotic manipulation tasks. Singh et al. [26] studied

action priors (here called behavior priors) in a settingwhere training

and testing tasks differ in terms of the objects being manipulated,

but are otherwise the same.

The topic of efficient exploration is closely related to action

prior. Methods in this category often do not use additional informa-

tion, such as prior policies. Instead, they use a notion of surprise

or information content of a visited state. These quantities can be

measured by counting the number of times states were visited [27]

or by model-based approaches [11, 17]. Our problem statement is

incomparable with these approaches, as we exploit additional infor-

mation from previously learned tasks, which facilitates much more

targeted exploration compared to the notion of surprise alone.

Transfer learning has been studied extensively both in classi-

cal reinforcement learning [28] and in deep reinforcement learning

[9, 16, 29]. Goyal et al. [9], Teh et al. [29] learned a so-called default

policy while learning multiple specialized policies in a multi-task

or a multi-goal RL. To transfer to new tasks, Teh et al. [29] used the

KL-divergence between the default policy and a new policy as reg-

ularization, and Goyal et al. [9] used their default policy to quantify

the notion of a "decision state": a state in which we need make a

decision based on the task we want to solve (e.g., a crossroads in a

maze). Their agent is then encouraged to explore decision states

by adding an intrinsic reward. Both Goyal et al. [9], Teh et al. [29]

focuses their experimental evaluation on navigation tasks, with the

latter transfer method only being applicable to discrete-state-space

domains (due to them using count-based exploration). Parisotto

et al. [16] distill policies from training tasks into a single student,

which is then used to initialize the testing policy.

3 BACKGROUND

We model the pick and place robotics tasks in this paper as Markov

Decision Processes (MDPs, [3]) M = ⟨𝑆,𝐴, 𝑃, 𝑅, 𝜌0, 𝛾⟩. 𝑆 and 𝐴

represent the sets of state and actions, 𝑃 : 𝑆×𝐴 → 𝑃𝑟 (𝑆) is a

Algorithm 1 Action prior learning

Input: Set of training tasks 𝑇 = {𝑇1,𝑇2, ...,𝑇𝑁 }.

Output: Action prior network 𝑓AP.

1: procedure LearnAP

2: for 𝑇𝑖 in 𝑇 do

3: Train an expert policy 𝜋𝑖 for task 𝑇𝑖 .

4: Collect𝐾 transitions by rolling out 𝜋𝑖 . Store visited

states in 𝐷𝑖 .

5: end for

6: Concatenate datasets {𝐷1, 𝐷2, .., 𝐷𝑁 } into 𝐷 .

7: Train task classifier 𝑓C : 𝑆 → Δ
𝑁−1 on 𝐷 (Section 5.1).

8: Collect optimal action sets for 𝜋1, . . . , 𝜋𝑁 on 𝐷 .

9: Merge optimal action sets using 𝑓C and add the union

set to 𝐷 (Section 5.2).

10: Train action prior network 𝑓AP on 𝐷 (Section 5.3).

11: Return 𝑓AP.

12: end procedure

transition function that returns a probability mass/density over

states and the reward function 𝑅 : 𝑆×𝐴 → R maps state-action

pairs to their expected rewards. We consider MDPs an initial state

distribution 𝜌0 and a discount factor 𝛾 .

A policy 𝜋 : 𝑆×𝐴→ [0, 1] captures the decision making process

of an agent as the probability distribution over actions for each

state. Each policy has an associated state-action value function

𝑄𝜋 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +𝛾E𝑠′∼𝑃,𝑎′∼𝜋 [𝑄𝜋 (𝑠
′, 𝑎′)], the discounted return

when executing action 𝑎 in state 𝑠 and following policy 𝜋 thereafter.

In this paper, we consider MDPs with the following properties:

• States are represented as images,

• the action space is large, usually one action per state pixel,

• the time horizon is short, around 10 time steps, and

• rewards are sparse.

Learning an optimal policy for this class of MDPs without ad-

ditional information is extremely difficult because there is only a

handful of optimal actions in each state. Hence, the probability of

getting a reward for a sequence of random actions is minuscule.

4 PROBLEM STATEMENT

Let 𝑇train = {𝑇1,𝑇2, ...,𝑇𝑁 } be a set of training tasks expressed as

MDPs. A task 𝑇𝑖 = ⟨𝑆,𝐴, 𝑃𝑖 , 𝑅𝑖 , 𝜌0, 𝛾⟩ shares its definition with

all other tasks except for its reward and transition function. For

example, a task of building a tower from blocks of height two and

a task of building a tower of height three clearly have a different

reward function. Even though the dynamics of picking and placing

objects are the same for both tasks, the former task terminates

when a tower of two is built, whereas the latter does not. Therefore,

there are small variations in the transition function between the

tasks related to terminal states.

We assume we have access to an expert policy 𝜋𝑖 for each train-

ing task 𝑖 together with a dataset of on-policy transitions 𝐷𝑖 . Given

a testing task 𝑇𝑁+1 (different in its transition and reward dynamics

from training tasks), our goal is to learn the best possible policy.

We formalize this as summarizing experience from previous tasks

(𝐷𝑖 , 𝜋𝑖)
𝑁
𝑖=1 in some function (such as an action prior) parameter-

ized by 𝜙 . The parameters are then used in some training process

Algorithm 2 Action prior exploration

Input: Reinforcement learning agent 𝑓 RL, action prior net-

work 𝑓AP, action prior probability threshold 𝜎 , task 𝑇 .

1: procedure ExploreAP

2: while Stopping condition not reached do

3: Get environment state 𝑠 .

4: if Explore then

5: 𝐴∗ ←
{
𝑎
�� 𝑎 ∈ 𝐴 ∧ 𝑓AP (𝑠, 𝑎) > 𝜎

}
.

6: Randomly sample 𝑎 ∼ Uniform(𝐴∗).

7: else

8: Choose 𝑎 according to 𝑓 RL (e.g. 𝑎 with maximum

Q-value in DQN).

9: end if

10: Execute action 𝑎 in the environment.

11: Observe reward 𝑟 and next state 𝑠 ′.

12: Add tuple (𝑠, 𝑎, 𝑟, 𝑠 ′) into the replay buffer.

13: Perform a learning step of 𝑓 RL.

14: end while

15: end procedure

𝜋 (𝜙) resulting in a policy for the testing task. We then indirectly

maximize the success of the testing policy by manipulating 𝜙 .

argmax
𝜙

E𝜋 (𝜙),𝜌0,𝑃𝑁 +1

[
∞∑︁

𝑡=0

𝛾𝑡𝑅𝑁+1 (𝑠𝑡 , 𝑎𝑡)

]
. (1)

5 ACTION PRIORS

Given a set of expert policies 𝜋1, . . . , 𝜋𝑁 for training tasks𝑇𝑖 ∈ 𝑇train,

we define the action prior to be a policy

𝜋AP (𝑠, 𝑎) = 𝜂 max
𝑖∈[1...𝑁]

𝜋𝑖 (𝑠, 𝑎),

where 𝜂 is normalizes 𝜋AP. For example, if 𝜋1, . . . , 𝜋𝑁 are determin-

istic, then𝜋AP assigns equal probability to each action𝜋1 (𝑠) . . . 𝜋𝑁 (𝑠).

Algorithm 1 outlines the procedure we use to train the action

prior. First, we train expert policies for the 𝑁 training tasks. Action

priors are invariant to the method used to train them (Section B).

Then in Step 4, for each task 𝑖 and policy 𝜋𝑖 , we obtain a sample of

on-policy states by rolling out 𝜋𝑖 .

Next, in Step 7, we train a classifier 𝑓𝐶 that predicts the task

that is most likely to have caused the agent to visit a state. This is

important because the policies 𝜋𝑖 are not all valid over the entire

state space. For example, a policy trained to assemble the structure

in Figure 1a (tower from two cubes and a small roof) has never

seen the state shown in Figure 1b (a house built from two blocks, a

brick and a large roof). To determine the set of policies applicable

in a given state, we train a task classifier 𝑓𝐶 : 𝑆 → Δ
𝑁−1 (Section

5.1), which predicts the tasks in which a state is most frequently

encountered. This allows the action prior to ignore policies for tasks

that are not relevant to a particular state.

Then, in Step 8 of Algorithm 1, after training the policies 𝜋𝑖
and the task classifier 𝑓𝐶 , we collect the training dataset for the

action prior (Section 5.2). The dataset contains an equal number of

states for each task, which are obtained by rolling out the learned

policies 𝜋𝑖 . For each state, we compute a binarymask that represents

the union of actions that are optimal (in any task) given a set

of policies. The set of applicable policies is predicted by the task

classifier. Step 10 of Algorithm 1 trains the action prior network

𝑓AP : 𝑆×𝐴 → [0, 1] to predict the probability of an action being

optimal for any task in a given state (Section 5.3). Finally, we create

an action prior policy 𝜋AP (𝑠, 𝑎) based on the action prior network

𝑓AP. By thresholding the probabilities predicted by 𝑓AP, we get a

set of proposed actions 𝐴∗(s) for state 𝑠 . We set 𝜋AP (𝑠, 𝑎) to be a

uniform distribution over 𝐴∗ (𝑠) with actions outside of the optimal

set being assigned zero probability.

5.1 Learning the Task Classifier

The task classifier 𝑓𝐶 : 𝑆 → Δ
𝑁−1 determines which of the ex-

pert policies are relevant in the context of a particular state. To

train this classifier, we use a dataset of states and categorical labels

{(𝑠𝑖 , 𝑦𝑖)}
𝑀
𝑖=1. We construct this dataset by generating policy rollouts

for each task. If a state 𝑠 was visited during a rollout of a policy for

a task 𝑦 ∈ {1, . . . , 𝑁 } we include the pair (𝑠,𝑦) in the dataset. Note

that this results in a dataset where class labels for each state are not

unique, as each state could have been encountered during rollouts

for multiple tasks (e.g. the initial state with all objects placed on the

ground appears in all tasks). We can interpret the data as samples

𝑠𝑖 , 𝑦𝑖 ∼ 𝑝 (𝑠,𝑦) from a distribution 𝑝 (𝑠,𝑦) = 𝑝 (𝑠 |𝑦)𝑝 (𝑦) in which

𝑝 (𝑦) is a uniform prior over tasks (i.e. the training dataset is bal-

anced), and 𝑝 (𝑠 |𝑦) is the fraction of rollouts for each task in which

state 𝑠 appears. The classifier now approximates the conditional

distribution 𝑝 (𝑦 | 𝑠) ∝ 𝑝 (𝑠,𝑦) ∝ 𝑝 (𝑠 |𝑦).

We implement 𝑓𝐶 as a neural network NN(𝑠) that predicts logits

for all classes, which we normalize using a softmax function

𝑝 (𝑦 | 𝑠) ≃ 𝑓𝐶 (𝑠) = softmax(NN(𝑠)), (2)

and train the classifier using a cross-entropy loss

𝐿𝐶 = −
1

𝑀

𝑀∑︁

𝑖=1

|𝑇 |∑︁

𝑗=1

I[𝑦𝑖 = 𝑗] log 𝑓𝐶 (𝑠) 𝑗 . (3)

To determine if policy for task 𝑗 is applicable in state 𝑠 , we check if

the predicted probability 𝑓𝐶 (𝑠) 𝑗 is above some threshold 𝛿 .

Since neural classifiers in general do not have well-calibrated

probabilities, our approximation of 𝑝 (𝑦 | 𝑠) can be overconfident

[10]. That said, we find that this classification strategy works suffi-

ciently well for our purposes in practice.

5.2 Approximating Optimal Action Sets

For an ideal action prior, we wold like to determine the set of actions

𝐴∗ (𝑠) that are optimal for any task in state 𝑠 . Given an expert policy

𝜋𝑖 for task 𝑖 and corresponding value function 𝑄𝜋𝑖 , we define the

optimal action set for state 𝑠 as

𝐴∗ (𝑠) =

𝑁⋃

𝑖=1

{
𝑎

���� 𝑄𝜋𝑖 (𝑠, 𝑎) = max
𝑎′∈𝐴

𝑄𝜋𝑖 (𝑠, 𝑎
′)

}
. (4)

We expect the cardinality of 𝐴∗ (𝑠) to be high in our domain,

as there are many equivalent ways of picking and placing objects.

Since our learned expert policies tend to be noisy, it is however

non-trivial to determine the set of optimal actions without carefully

setting a threshold for each trained model.

Instead, we restrict the optimal actions set to one action per

task with the optimal action for the 𝑖th task denoted by 𝑎∗𝑖 =

argmax𝑎 𝜋𝑖 (𝑠, 𝑎) with ties broken randomly. These action form

an approximate optimal actions set

𝐴∗ (𝑠) = {𝑎∗1, 𝑎
∗
2, ..., 𝑎

∗
𝑁 }. (5)

𝐴∗ (𝑠), which we can compute, is a subset of the ground-truth

set 𝐴∗ (𝑠). We deal with the problem of increasing the number of

proposed optimal actions in Section 5.3. Furthermore, we restrict

the optimal actions set to only the task determined to be applicable

by the task classifier (Section 5.1).

5.3 Learning the Action Prior

We use the approximate optimal action sets𝐴∗ (𝑠) to learn an action

prior 𝑓AP : 𝑆×𝐴 → [0, 1], which takes the form of a multi-task

classifier that returns binary predictions for all actions 𝐴 given a

state 𝑠 ∈ 𝑆 . We train this classifier using pairs of states and optimal

actions masks {(𝑠𝑖 ,𝑚𝑖)}
𝐿
𝑖=1. We collect training states by rolling

out the learned policies for each task for a fixed number of time

steps. For each state, we then compute the optimal mask, which

for each action 𝑎 contains a bit that indicates whether this action is

part of the approximate optimal action set

𝑚𝑖,𝑎 = I

[
𝑎 ∈ 𝐴∗ (𝑠𝑖)

]
. (6)

We train this multi-task classifier using a standard logistic loss

𝐿AP = −
1

𝐿

𝐿∑︁

𝑖=1

|𝐴 |∑︁

𝑗=1

𝑚𝑖 𝑗 log 𝑓AP (𝑠𝑖 , 𝑎 𝑗) +

(1 −𝑚𝑖 𝑗) log
(
1 − 𝑓AP (𝑠𝑖 , 𝑎 𝑗)

)
. (7)

As discussed above, the training masks contain only a subset

of the union of optimal action sets for all tasks. We can view this

problem from the perspective of precision-recall trade-off. A model

that achieves a low 𝐿AP value will have high precision (i.e., it will

avoid false-positive optimal actions), but it might have low recall

because not every optimal action is represented in the training data.

This trade-off can be controlled by moving the decision bound-

ary I[𝑓AP (𝑠, 𝑎) ≥ 𝜎] that determines if an action is deemed optimal.

Experimentally, we found that setting 𝜎 to a low value (i.e., increas-

ing recall and decreasing precision) results in a large increase in

the success rate of the action prior exploration policy.

5.4 Action prior exploration

Algorithm 2 summarizes how we use the action prior for explo-

ration when training a reinforcement learning agent on a new task.

We follow the standard recipe of alternating between selecting ran-

dom actions (exploration) and action according to the policy being

learned (exploitation). The most common and one of the simplest

approaches to controlling this trade-off is an 𝜖-greedy exploration

policy with the value of 𝜖 decaying over time (e.g., this approach

was used in the original deep Q-network paper [15]).

We use an 𝜖-greedy strategy in which, during exploration, we

select actions uniformly at random from the set actions for which

the action prior exceeds a threshold 𝜎

𝐴∗ (𝑠) =
{
𝑎
�� 𝑎 ∈ 𝐴 ∧ 𝑓AP (𝑠, 𝑎) > 𝜎

}
. (8)

This results in a more focused exploration compared to selecting

actions uniformly at random from the full set 𝐴.

REFERENCES
[1] David Abel, D. Ellis Hershkowitz, Gabriel Barth-Maron, Stephen Brawner, Kevin

O’Farrell, James MacGlashan, and Stefanie Tellex. 2015. Goal-Based Action Priors.
In Proceedings of the Twenty-Fifth International Conference on Automated Planning
and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015. 306ś314.

[2] Anurag Ajay and Pulkit Agrawal. 2020. Learning Action Priors for Visuomotor
transfer. International Conference on Machine Learning workshop on Inductive
Biases, Invariances and Generalization in RL (BIG).

[3] Richard Bellman. 1957. A Markovian Decision Process. Journal of Mathematics
and Mechanics 6, 5 (1957), 679ś684.

[4] Carlos Diuk, Andre Cohen, and Michael L. Littman. 2008. An object-oriented
representation for efficient reinforcement learning. InMachine Learning, Proceed-
ings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland,
June 5-9, 2008. 240ś247.

[5] Finale Doshi-Velez, David Wingate, Nicholas Roy, and Joshua B. Tenenbaum.
2010. Nonparametric Bayesian Policy Priors for Reinforcement Learning. In
Advances in Neural Information Processing Systems 23: 24th Annual Conference
on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9
December 2010, Vancouver, British Columbia, Canada. 532ś540.

[6] Fernando Fernández-Rebollo and Manuela M. Veloso. 2006. Probabilistic policy
reuse in a reinforcement learning agent. In 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan,
May 8-12, 2006. 720ś727.

[7] Chelsea Finn and Sergey Levine. 2017. Deep visual foresight for planning robot
motion. In 2017 IEEE International Conference on Robotics and Automation, ICRA
2017, Singapore, Singapore, May 29 - June 3, 2017. 2786ś2793.

[8] RobertM. French. 1999. Catastrophic forgetting in connectionist networks. Trends
in Cognitive Sciences 3, 4 (1999), 128 ś 135.

[9] Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Hugo Larochelle,
Matthew Botvinick, Yoshua Bengio, and Sergey Levine. 2019. InfoBot: Transfer
and Exploration via the Information Bottleneck. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[10] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration
of Modern Neural Networks. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. 1321ś
1330.

[11] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter
Abbeel. 2016. VIME: Variational Information Maximizing Exploration. In Ad-
vances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. 1109ś
1117.

[12] Stephen James, Andrew J. Davison, and Edward Johns. 2017. Transferring End-
to-End Visuomotor Control from Simulation to Real World for a Multi-Stage
Task. In 1st Annual Conference on Robot Learning, CoRL 2017, Mountain View,
California, USA, November 13-15, 2017, Proceedings. 334ś343.

[13] Robert Platt Jr., Colin Kohler, and Marcus Gualtieri. 2019. Deictic Image Mapping:
An Abstraction for Learning Pose Invariant Manipulation Policies. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. 8042ś8049.

[14] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
2018. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. Int. J. Robotics Res. 37, 4-5 (2018), 421ś436.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nat. 518, 7540 (2015),
529ś533.

[16] Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. 2016. Actor-Mimic:
Deep Multitask and Transfer Reinforcement Learning. In 4th International Con-
ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

[17] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017.
Curiosity-driven Exploration by Self-supervised Prediction. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017. 2778ś2787.

[18] Ken Perlin. 1985. An image synthesizer. In Proceedings of the 12th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH 1985, San

Francisco, California, USA, July 22-26, 1985. 287ś296.
[19] Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. 2020. Accelerating Reinforce-

ment Learning with Learned Skill Priors. Conference on Robot Learning (CoRL).
[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional

Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference
Munich, Germany, October 5 - 9, 2015, Proceedings, Part III. 234ś241.

[21] Benjamin Rosman and Subramanian Ramamoorthy. 2012. What good are actions?
Accelerating learning using learned action priors. In 2012 IEEE International
Conference on Development and Learning and Epigenetic Robotics, ICDL-EPIROB
2012, San Diego, CA, USA, November 7-9, 2012. 1ś6.

[22] Benjamin Rosman and Subramanian Ramamoorthy. 2015. Action Priors for
Learning Domain Invariances. IEEE Trans. Auton. Ment. Dev. 7, 2 (2015), 107ś118.

[23] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive Neural Networks. CoRR abs/1606.04671 (2016).

[24] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[25] Alexander A. Sherstov and Peter Stone. 2005. Improving Action Selection in
MDP’s via Knowledge Transfer. In Proceedings, The Twentieth National Conference
on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA. 1024ś1029.

[26] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey
Levine. 2020. Parrot: Data-Driven Behavioral Priors for Reinforcement Learning.
CoRR abs/2011.10024 (2020).

[27] Alexander L. Strehl and Michael L. Littman. 2005. A theoretical analysis of Model-
Based Interval Estimation. InMachine Learning, Proceedings of the Twenty-Second
International Conference (ICML 2005), Bonn, Germany, August 7-11, 2005. 856ś863.

[28] Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement
Learning Domains: A Survey. J. Mach. Learn. Res. 10 (2009), 1633ś1685.

[29] Yee Whye Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirk-
patrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. 2017. Distral: Robust
multitask reinforcement learning. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA. 4496ś4506.

[30] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. 2094ś2100.

[31] Dian Wang, Colin Kohler, and Robert Platt. 2020. Policy learning in SE(3) action
spaces. Conference on Robot Learning (CoRL).

[32] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. 2016. Dueling Network Architectures for Deep Reinforcement
Learning. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016. 1995ś2003.

[33] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A.
Riedmiller. 2015. Embed to Control: A Locally Linear Latent Dynamics Model for
Control from Raw Images. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada. 2746ś2754.

[34] David Wingate, Noah D. Goodman, Daniel M. Roy, Leslie Pack Kaelbling, and
Joshua B. Tenenbaum. 2011. Bayesian Policy Search with Policy Priors. In IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011. 1565ś1570.

[35] Kevin Zakka, Andy Zeng, Johnny Lee, and Shuran Song. 2020. Form2Fit: Learn-
ing Shape Priors for Generalizable Assembly from Disassembly. In 2020 IEEE
International Conference on Robotics and Automation, ICRA 2020, Paris, France,
May 31 - August 31, 2020. 9404ś9410.

[36] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and
Thomas A. Funkhouser. 2018. Learning Synergies Between Pushing and Grasping
with Self-SupervisedDeep Reinforcement Learning. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2018, Madrid, Spain, October
1-5, 2018. 4238ś4245.

[37] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois Robert Hogan,
Maria Bauzá, Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo, Nima Fazeli,
Ferran Alet, Nikhil Chavan Dafle, Rachel Holladay, Isabella Morona, Prem Qu
Nair, Druck Green, Ian J. Taylor, Weber Liu, Thomas A. Funkhouser, and Al-
berto Rodriguez. 2018. Robotic Pick-and-Place of Novel Objects in Clutter with
Multi-Affordance Grasping and Cross-Domain Image Matching. In 2018 IEEE In-
ternational Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia,
May 21-25, 2018. 1ś8.

A STACKING GRAMMAR

Instead of arbitrarily choosing tasks, we characterize the whole family of possible tasks. Here, we define a simple grammar of stacking tasks.

It only captures the notion of a stack, so it cannot represent tasks such as two blocks in a row. The only notion of two blocks being near one

another is if a long block or a long roof can be put on top of them.

We have the following terminals: one block (1b), two blocks next to each other (2b), one brick (1l), short roof (1r) and long roof (2r). The

non-terminals are ground (G), wildcard (W), short (S) and long (L). The starting symbol is the ground.

The rules allow for stacking of long objects (two blocks next to each other or one long block) on long objects, short on short and short on

long. We separate the different possible outcomes of a rule by commas.

• G→ 1bS, 2bW, 1lW

• W→ S, L

• S→ 1bS, 1b, 1r

• L→ 1lW, 2bW, 1l, 2b, 2r

If we restrict the maximum height to three and only select structures that end with a roof, we get the 16 tasks used in our experiments.

B EXPERT POLICIES

Action priors as well as our weight sharing and Actor-Mimic baselines require expert policies for training tasks. Next, we describe the

methods we used to train expert policies in Fruits World and Block Stacking, but action priors are invariant to these design decisions. In both

cases, we start with a replay buffer pre-populated with expert demonstrations and learn a near-optimal policy, which we also call an expert.

This might seem redundant, but, as you will see, a method that is used to generate expert demonstrations is not always able to select the

optimal action in an arbitrary state. Moreover, the expert demonstrations contain optimal actions, not distributions over all actions, which

are required by Actor-Mimic [16].

Fruits World:We use the same DQN both for the experts and for training on the testing task (Section C.1), but the expert version is given

a pre-populated replay buffer. The buffer contains 50k transitions generated by a policy that executes the optimal action with 50% probability,

and a random action otherwise. The optimal action can be easily computed given the full state of the environment. The expert is trained for

50k steps offline on this buffer; then, it is trained online for another 50k steps with new experiences mixed into the pre-populated buffer.

Simulated Block Stacking: We use an imitation learning method called SDQfD [31] to learn expert policies. Similarly to above, it

requires a replay buffer pre-populated with expert demonstrations. Following Wang et al. [31], we start in the goal state (i.e., with a simulator

initialized so that a particular goal structure is build), pick blocks from the top of the structure, and place them in empty spots on the ground.

Since all actions are reversible, a deconstruction episode played backward looks like the agent is building the goal structure. We consider the

reversed episodes to be expert demonstrations. Programming an initialization function for each structure and a deconstruction policy is

much easier than having a custom planner for each task. Note that the initialization function and deconstruction policy is used only for

training tasks, not the testing task.

The objective of SDQfD is a weighted sum of a temporal-difference loss 𝐿TD (as in DQN [15]) and a term 𝐿SLM (with weight 𝜔) that

penalizes action not selected by an expert with high predicted values

𝐿SDQfD = 𝐿TD + 𝜔 𝐿SLM . (9)

During training, the method identifies the set of non-expert actions 𝐴𝑠,𝑎𝑒 with values higher than the value of an expert action 𝑎𝑒 minus a

margin 𝑙 (𝑎𝑒 , 𝑎) (positive constant for 𝑎𝑒 ≠ 𝑎; zero otherwise)

𝐴𝑠,𝑎𝑒 = {𝑎 ∈ 𝐴 | 𝑄 (𝑠, 𝑎) > 𝑄 (𝑠, 𝑎𝑒) − 𝑙 (𝑎𝑒 , 𝑎)}. (10)

The penalty called a "strict large margin" is then applied to the values of all actions in 𝐴𝑠,𝑎𝑒

𝐿SLM =
1

|𝐴𝑠,𝑎𝑒 |

∑︁

𝑎∈𝐴𝑠,𝑎𝑒

𝑄 (𝑠, 𝑎) + 𝑙 (𝑎𝑒 , 𝑎) −𝑄 (𝑠, 𝑎𝑒). (11)

We pre-train SDQfD on a replay buffer with expert demonstrations for 10k steps. After pre-training, we alternate between taking one

environment step according to the current policy and performing a training step. We maintain two separate buffers: one for expert and one

for on-policy transitions. Each batch of training data contains an equal number of samples from both buffers. The strict large margin is only

computed for the expert data.

C EXPERIMENT DETAILS

C.1 Fruits World

We use the same neural network for both the DQN and the action prior: it has two hidden layers with 256 neurons and we use the ReLU

non-linearity in-between. The DQN predicts a Q-value for each action and the action prior predicts the log probability of an action being

optimal for each action separately.

Baseline DQNs are trained for 100k steps with an 𝜖-greedy policy that linearly decreases from 1.0 to 0.1 over 80k steps. The learning rate

was set to 5 ∗ 10−4 and we use prioritized replay with default parameters, dueling network and double Q-learning [24, 30, 32].

Num. fruits AP (ours) DQN AM-share AM-freeze AM-prog

Mid. Fin. Mid. Fin. Mid. Fin. Mid. Fin. Mid. Fin.

Fruit combinations

1 1 1 1 1 1 1 0.88 0.94 0.98 1

2 1 1 1 1 1 1 0.75 0.85 0.9 0.99

3 1 1 0.98 1 0.98 1 0.77 0.85 0.82 0.96

4 0.97 1 0.02 0.68 0.05 0.8 0.78 0.84 0.84 0.93

Mean 0.99 1 0.75 0.92 0.76 0.95 0.8 0.87 0.89 0.97

Fruit sequences

1 1 1 1 1 1 1 1 1 0.98 0.99

2 1 1 0.99 1 0.99 1 0.99 1 0.87 0.95

3 0.94 0.99 0.54 0.96 0.59 0.97 0.59 0.97 0.47 0.71

4 0.77 0.93 -0.02 0 -0.02 0 -0.02 0 -0.02 -0.01

Mean 0.93 0.98 0.63 0.74 0.64 0.74 0.64 0.74 0.58 0.66

Table 3: Additional Fruits World results accompanying Figure 2. We report the average reward over 10 runs in the middle of

training (Mid.) and at the end (Fin.). Num. fruits refers to the number of fruits the agent is supposed to pickśit determines the

difficulty of the task. Each row is an average over all tasks involving picking up the specified number of fruits.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Problem statement
	5 Action Priors
	5.1 Learning the Task Classifier
	5.2 Approximating Optimal Action Sets
	5.3 Learning the Action Prior
	5.4 Action prior exploration

	6 Experiments
	6.1 Domains
	6.2 Fruits World experiments
	6.3 PyBullet block stacking experiments
	6.4 Real-world robot experiments

	7 Discussion and Conclusion
	References
	A Stacking Grammar
	B Expert Policies
	C Experiment Details
	C.1 Fruits World
	C.2 Simulated Block Stacking
	C.3 Real-World Block Stacking

	D Additional Results

