2101.04178v2 [cs.RO] 15 Feb 2021

arxiv

Action Priors for Large Action Spaces in Robotics

Ondrej Biza
Northeastern University
Boston, MA, USA
biza.o@northeastern.edu

Jan-Willem van de Meent
Northeastern University
Boston, MA, USA
j.vandemeent@northeastern.edu

ABSTRACT

In robotics, it is often not possible to learn useful policies using pure
model-free reinforcement learning without significant reward shap-
ing or curriculum learning. As a consequence, many researchers
rely on expert demonstrations to guide learning. However, acquir-
ing expert demonstrations can be expensive. This paper proposes
an alternative approach where the solutions of previously solved
tasks are used to produce an action prior that can facilitate explo-
ration in future tasks. The action prior is a probability distribution
over actions that summarizes the set of policies found solving pre-
vious tasks. Our results indicate that this approach can be used
to solve robotic manipulation problems that would otherwise be
infeasible without expert demonstrations. Source code is available
at https://github.com/ondrejba/action_priors.

KEYWORDS

reinforcement learning; deep learning; action prior; robotics; robotic
manipulation

ACM Reference Format:

Ondrej Biza, Dian Wang, Robert Platt, Jan-Willem van de Meent, and Lawson
L.S. Wong. 2021. Action Priors for Large Action Spaces in Robotics. In Proc.
of the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2021), Online, May 3-7, 2021, IFAAMAS, 13 pages.

1 INTRODUCTION

Advances in deep learning have made model-free robot control a
viable alternative to model-based motion planning [7, 14, 33]. How-
ever, the complexity of tasks solvable by these approaches without
extra supervision is limited, partly due to sample inefficiency of
deep learning. Hand-crafted temporal abstraction of end-to-end
motions such as picking, placing and pushing are a compelling
alternative, as they allow agents to reason over longer timescales
[13, 36, 37]. In particular, Zeng et al. [37] proposed a pixel-wise

The 3rd, 4th, and 5th authors are listed in alphabetical order and contributed equally.
The authors thank Yunus Terzioglu, Tarik Kelestemur, and our anonymous reviewers
for helpful feedback. This work was supported by the Intel Corporation, the 3M Cor-
poration, National Science Foundation (1724257, 1724191, 1763878, 1750649, 1835309),
NASA (80NSSC19K1474), startup funds from Northeastern University, the Air Force
Research Laboratory (AFRL), and DARPA..

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3-7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

Dian Wang
Northeastern University
Boston, MA, USA
wang.dian@northeastern.edu

Robert Platt
Northeastern University
Boston, MA, USA
rplatt@ccs.neu.edu

Lawson L.S. Wong
Northeastern University
Boston, MA, USA
Isw@ccs.neu.edu

parameterization of the action space, where each pixel in the ob-
served image of the workspace corresponds to a reaching action to
that position followed by a pick or place.

While both low-level action spaces with long time horizons and
pixel-wise action spaces are difficult to explore, the pixel-wise pa-
rameterization makes this challenge more explicit: the agent is
presented with thousands of possible actions, and usually only
a handful of them enable the agent to make progress toward its
goal. Exploration challenges like this are often addressed using re-
ward shaping, curriculum learning, or imitation learning. However,
these methods require additional supervision that maybe difficult
to provide. Ideally, our agent could learn new skills without expert
supervision.

In this paper, we construct priors over the action space — action
priors — that inform the agent of actions that were useful in the
context of previously learned tasks. The idea of action priors has
existed for some time. Sherstov and Stone [25] considered a single
action prior for all states; later, action priors were extended to state-
specific priors [1, 6, 21, 22]. However, to date, action priors have not
been applied outside of learning in grid-world-like environments
with small action spaces [6, 21, 22, 25] and planning in factored
models [1].

In contrast, we train action priors in environments with image
states and pixel-wise action spaces with thousands of actions. To
that end, we represent an action prior as a single fully-convolutional
neural network trained to summarize a library of pre-trained poli-
cies. We distinguish between a set of training tasks, which we solve
using imitation learning, and a held-out set of testing tasks to be
solved without expert information. The role of action priors is to
bias exploration on the testing tasks toward actions that were found
to be useful when solving the training tasks.

We evaluate our approach on 16 robotic block stacking tasks.
We proceed in three stages. First, our agent uses imitation learning
to find near-optimal solutions to a subset of the 16 tasks. Second,
we condense these near-optimal policies onto a state-dependent
probability distribution over actions (i.e. the action prior) that gives
high probability to any action that was part of one of the near-
optimal policies. Finally, we use the action prior to bias exploration
when solving a new task. In the block stacking domain, this action
prior gives a high probability to picking actions that are likely to
lift a block of some type or placing actions that are likely to result
in a stable placement. Although we explicitly focus on robotic

%

(a) (b)

.‘A - 7,,- ‘

| _a

. .

Y y
© ()

Figure 1: Our PyBullet block stacking setup. (a) a simulated UR5 arm and a 60x60 cm workspace with blocks, (b) a simulated
top-down depth camera image of the workspace, (c) and (d) are examples of the goals states of 2 of our 16 block stacking tasks.

manipulation, our approach should generalize well to any problem
in robotics with a large action space.

This paper makes two main contributions. First, we show that a
state-conditioned action prior is an effective way to transfer knowl-
edge from previously solved tasks to new tasks in a robotic manipu-
lation domain. Our experimental results indicate that this approach
can dramatically increase the probability of visiting a goal state
during exploration. Second, we introduce a method of learning a
state-conditioned action prior in situations where the previously
learned policies are valid over different regions of the state/action
space. This problem only occurs in large state/action spaces such as
in robotic manipulation, and we believe we are the first to address
it.

2 RELATED WORK

Action priors bias action selection during the exploration phase
of learning towards actions that were previously determined to be
viable. This information can either be specified by an expert [1] or
extracted from policies from previously solved tasks [1, 6, 21, 22, 25].
Note that action priors refer to a different construct than policy
priors [5, 34], as action priors do not involve posterior inference of
policy parameters.

Sherstov and Stone [25] eliminated actions not optimal for any
previous task in a state-agnostic way. Together with their trans-
fer learning algorithm, the state-agnostic action prior increases
learning speed in grid-world mazes. Fernandez-Rebollo and Veloso
[6], Rosman and Ramamoorthy [21, 22] explored state-specific ac-
tion priors in similar discrete-state-space MDPs. Fernandez-Rebollo
and Veloso [6] alternated between rolling out the policy being
learned and a policy sampled from a library. The probability distri-
bution over the library of policies was updated online to maximize
rewards for the current task. Rosman and Ramamoorthy [21, 22]
filled in the pseudo-counts of Dirichlet distributions used to select
actions in each state by a weighted-sum of actions selected by pre-
viously learned policies. Abel et al. [1] combined action priors and
hand-crafted object-oriented representations [4] to improve the
run time of dynamic programming policy search for a Minecraft
environment and a real-world robotic manipulation task.

In contrast to pre-defined factored representations in Abel et al.
[1], we learn the action prior and model-free policies from pixels.
The Dirichlet prior [21, 22] is not easily extensible to continuous
state spaces; instead, we learn the action prior as a convolutional

network. Compared to Fernandez-Rebollo and Veloso [6], we can-
not keep a library of policies loaded in memory, as each policy
is parameterized by a large convolutional network—we distill all
policies into a single action prior network.

In concurrent work, Ajay and Agrawal [2], Pertsch et al. [19]
learned action priors over fixed-length sequences of actions (also
called skill priors). Both approaches use varitional autoencoders
to learn representations for action sequences, and can be used to
solve composite robotic manipulation tasks. Singh et al. [26] studied
action priors (here called behavior priors) in a setting where training
and testing tasks differ in terms of the objects being manipulated,
but are otherwise the same.

The topic of efficient exploration is closely related to action
prior. Methods in this category often do not use additional informa-
tion, such as prior policies. Instead, they use a notion of surprise
or information content of a visited state. These quantities can be
measured by counting the number of times states were visited [27]
or by model-based approaches [11, 17]. Our problem statement is
incomparable with these approaches, as we exploit additional infor-
mation from previously learned tasks, which facilitates much more
targeted exploration compared to the notion of surprise alone.

Transfer learning has been studied extensively both in classi-
cal reinforcement learning [28] and in deep reinforcement learning
[9, 16, 29]. Goyal et al. [9], Teh et al. [29] learned a so-called default
policy while learning multiple specialized policies in a multi-task
or a multi-goal RL. To transfer to new tasks, Teh et al. [29] used the
KL-divergence between the default policy and a new policy as reg-
ularization, and Goyal et al. [9] used their default policy to quantify
the notion of a "decision state": a state in which we need make a
decision based on the task we want to solve (e.g., a crossroads in a
maze). Their agent is then encouraged to explore decision states
by adding an intrinsic reward. Both Goyal et al. [9], Teh et al. [29]
focuses their experimental evaluation on navigation tasks, with the
latter transfer method only being applicable to discrete-state-space
domains (due to them using count-based exploration). Parisotto
et al. [16] distill policies from training tasks into a single student,
which is then used to initialize the testing policy.

3 BACKGROUND

We model the pick and place robotics tasks in this paper as Markov
Decision Processes (MDPs, [3]) M = (S,A P,R, po,y)- S and A
represent the sets of state and actions, P : SXA — Pr(S) is a

Algorithm 1 Action prior learning

Algorithm 2 Action prior exploration

Input: Set of training tasks T = {T1, T, ..., Tn }-
Output: Action prior network fap.

1: procedure LEARNAP

2: for T; in T do

3 Train an expert policy n; for task T;.
4: Collect K transitions by rolling out ;. Store visited
states in D;.

5 end for

6: Concatenate datasets {D1, Do, .., Dy } into D.

7: Train task classifier fc : S — AN™! on D (Section 5.1).

8: Collect optimal action sets for 7y, ..., 7n on D.

9: Merge optimal action sets using fc and add the union
set to D (Section 5.2).

10: Train action prior network fap on D (Section 5.3).

11: Return fap.

12: end procedure

transition function that returns a probability mass/density over
states and the reward function R : SXA — R maps state-action
pairs to their expected rewards. We consider MDPs an initial state
distribution pg and a discount factor y.

A policy 7 : SXA — [0, 1] captures the decision making process
of an agent as the probability distribution over actions for each
state. Each policy has an associated state-action value function
Qx(s,a) =R(s,a) + YEy.p g~x [Qr(s’,a’)], the discounted return
when executing action a in state s and following policy 7 thereafter.

In this paper, we consider MDPs with the following properties:

e States are represented as images,

e the action space is large, usually one action per state pixel,
o the time horizon is short, around 10 time steps, and

e rewards are sparse.

Learning an optimal policy for this class of MDPs without ad-
ditional information is extremely difficult because there is only a
handful of optimal actions in each state. Hence, the probability of
getting a reward for a sequence of random actions is minuscule.

4 PROBLEM STATEMENT

Let Tirain = {T1, T2, ..., IN} be a set of training tasks expressed as
MDPs. A task T; = (S, A, Pi,R;, po, y) shares its definition with
all other tasks except for its reward and transition function. For
example, a task of building a tower from blocks of height two and
a task of building a tower of height three clearly have a different
reward function. Even though the dynamics of picking and placing
objects are the same for both tasks, the former task terminates
when a tower of two is built, whereas the latter does not. Therefore,
there are small variations in the transition function between the
tasks related to terminal states.

We assume we have access to an expert policy 7; for each train-
ing task i together with a dataset of on-policy transitions D;. Given
a testing task Ti41 (different in its transition and reward dynamics
from training tasks), our goal is to learn the best possible policy.
We formalize this as summarizing experience from previous tasks
(Dj, ni)f-\il in some function (such as an action prior) parameter-
ized by ¢. The parameters are then used in some training process

Input: Reinforcement learning agent fgy,, action prior net-
work fap, action prior probability threshold o, task T.

1: procedure EXPLOREAP

2 while Stopping condition not reached do

3 Get environment state s.

4 if Explore then

5: A_*<—{a|aeA/\pr(s,a)>0'}.

6 Randomly sample a ~ Uniform(A*).

7 else

8 Choose a according to fgy, (e.g. a with maximum

Q-value in DQN).

9: end if

10: Execute action a in the environment.

11 Observe reward r and next state s”.
12: Add tuple (s, a,r,s”) into the replay buffer.
13: Perform a learning step of fgy.

14: end while

15: end procedure

7(¢) resulting in a policy for the testing task. We then indirectly
maximize the success of the testing policy by manipulating ¢.
(e8]

Y Rns1 (s, ar) |- (1)
t=0

arg;nax]E,,((ﬁ),po’pl\,+1

5 ACTION PRIORS

Given a set of expert policies 7y, . . ., 7y for training tasks T; € Tipain,
we define the action prior to be a policy

map(s,a) =n max 7i(s,a),
i€[1...N]

where 7 is normalizes 7ap. For example, if 7y, . . ., 7 are determin-
istic, then map assigns equal probability to each action 71 (s) . . . a7 (s).

Algorithm 1 outlines the procedure we use to train the action
prior. First, we train expert policies for the N training tasks. Action
priors are invariant to the method used to train them (Section B).
Then in Step 4, for each task i and policy 7;, we obtain a sample of
on-policy states by rolling out ;.

Next, in Step 7, we train a classifier fr that predicts the task
that is most likely to have caused the agent to visit a state. This is
important because the policies 7; are not all valid over the entire
state space. For example, a policy trained to assemble the structure
in Figure 1a (tower from two cubes and a small roof) has never
seen the state shown in Figure 1b (a house built from two blocks, a
brick and a large roof). To determine the set of policies applicable
in a given state, we train a task classifier fo : S — AN-1 (Section
5.1), which predicts the tasks in which a state is most frequently
encountered. This allows the action prior to ignore policies for tasks
that are not relevant to a particular state.

Then, in Step 8 of Algorithm 1, after training the policies ;
and the task classifier fr, we collect the training dataset for the
action prior (Section 5.2). The dataset contains an equal number of
states for each task, which are obtained by rolling out the learned
policies ;. For each state, we compute a binary mask that represents
the union of actions that are optimal (in any task) given a set

of policies. The set of applicable policies is predicted by the task
classifier. Step 10 of Algorithm 1 trains the action prior network
fap : SXA — [0,1] to predict the probability of an action being
optimal for any task in a given state (Section 5.3). Finally, we create
an action prior policy zap(s, a) based on the action prior network
fap- By thresholding the probabilities predicted by fap, we get a
set of proposed actions A*(s) for state s. We set map (s, a) to be a
uniform distribution over A*(s) with actions outside of the optimal
set being assigned zero probability.

5.1 Learning the Task Classifier

The task classifier fo : § — AN~! determines which of the ex-
pert policies are relevant in the context of a particular state. To
train this classifier, we use a dataset of states and categorical labels
{(si, yi) }?ﬁ 1- We construct this dataset by generating policy rollouts
for each task. If a state s was visited during a rollout of a policy for
atask y € {1,..., N} we include the pair (s, y) in the dataset. Note
that this results in a dataset where class labels for each state are not
unique, as each state could have been encountered during rollouts
for multiple tasks (e.g. the initial state with all objects placed on the
ground appears in all tasks). We can interpret the data as samples
si,Yi ~ p(s,y) from a distribution p(s,y) = p(s|y)p(y) in which
p(y) is a uniform prior over tasks (i.e. the training dataset is bal-
anced), and p(s | y) is the fraction of rollouts for each task in which
state s appears. The classifier now approximates the conditional
distribution p(y|s) « p(s,y) « p(s|y).

We implement fi- as a neural network NN(s) that predicts logits
for all classes, which we normalize using a softmax function

p(y1s) = fe(s) = softmax(NN(s)), @
and train the classifier using a cross-entropy loss
1 Mo
Lo ==57 >, DMy = jllog fe(s);. 3
i=1 j=1
To determine if policy for task j is applicable in state s, we check if
the predicted probability fc(s); is above some threshold §.

Since neural classifiers in general do not have well-calibrated
probabilities, our approximation of p(y | s) can be overconfident
[10]. That said, we find that this classification strategy works suffi-
ciently well for our purposes in practice.

5.2 Approximating Optimal Action Sets

For an ideal action prior, we wold like to determine the set of actions
A*(s) that are optimal for any task in state s. Given an expert policy
i for task i and corresponding value function Qy,, we define the
optimal action set for state s as

N
A*(s) = U {a

i=1

Or,(5.) = max Qr s, a’)} @

We expect the cardinality of A*(s) to be high in our domain,
as there are many equivalent ways of picking and placing objects.
Since our learned expert policies tend to be noisy, it is however
non-trivial to determine the set of optimal actions without carefully
setting a threshold for each trained model.

Instead, we restrict the optimal actions set to one action per
task with the optimal action for the ith task denoted by a} =

arg max, ; (s, a) with ties broken randomly. These action form
an approximate optimal actions set

A*(s) = {a}, a},ay }. (5)

A* (s), which we can compute, is a subset of the ground-truth
set A*(s). We deal with the problem of increasing the number of
proposed optimal actions in Section 5.3. Furthermore, we restrict
the optimal actions set to only the task determined to be applicable
by the task classifier (Section 5.1).

5.3 Learning the Action Prior

We use the approximate optimal action sets A*(s) to learn an action
prior fap : SXA — [0, 1], which takes the form of a multi-task
classifier that returns binary predictions for all actions A given a
state s € S. We train this classifier using pairs of states and optimal
actions masks {(s;, mi)}‘l{‘: . We collect training states by rolling
out the learned policies for each task for a fixed number of time
steps. For each state, we then compute the optimal mask, which
for each action a contains a bit that indicates whether this action is
part of the approximate optimal action set

mig=1 [a c A“*(sl-)] . ©6)
We train this multi-task classifier using a standard logistic loss
1 & Al
Lap=-7 ; j;mij log fap(si,aj) +
(1 - mjj)log (1 - far(si.a))) - ™)

As discussed above, the training masks contain only a subset
of the union of optimal action sets for all tasks. We can view this
problem from the perspective of precision-recall trade-off. A model
that achieves a low Lap value will have high precision (i.e., it will
avoid false-positive optimal actions), but it might have low recall
because not every optimal action is represented in the training data.

This trade-off can be controlled by moving the decision bound-
ary I[fap(s, a) > o] that determines if an action is deemed optimal.
Experimentally, we found that setting o to a low value (i.e., increas-
ing recall and decreasing precision) results in a large increase in
the success rate of the action prior exploration policy.

5.4 Action prior exploration

Algorithm 2 summarizes how we use the action prior for explo-
ration when training a reinforcement learning agent on a new task.
We follow the standard recipe of alternating between selecting ran-
dom actions (exploration) and action according to the policy being
learned (exploitation). The most common and one of the simplest
approaches to controlling this trade-off is an e-greedy exploration
policy with the value of € decaying over time (e.g., this approach
was used in the original deep Q-network paper [15]).

We use an e-greedy strategy in which, during exploration, we
select actions uniformly at random from the set actions for which
the action prior exceeds a threshold o

A*(s):{aiaeA/\pr(s,a) >0'}. (8)

This results in a more focused exploration compared to selecting
actions uniformly at random from the full set A.

1.0 Model

— AP (ours)
DQN

0.8 —— AM-share

—— AM-reeze

AM-prog

0.6

0.4

Reward

0.2

0.0

o

0 20000 4008 0000 80000 100000

00 6
Training Step

(a) Pick up four fruits in any order.

1.00 Model
—— AP (ours)
0.75 DON
—— AM-share
050 AM-freeze
AM-prog
025
=4
£ o.00
&

’ i
-0.25 \[

-0.50
-0.75

-1.00

0 20000 4008 60000 80000 100000

00
Training Step
(b) Pick up four fruits in a specific order.

Figure 2: Transfer learning results in Fruits World. There are
five distinct fruits in the environment and the agent should
pick up between one and four of them. Picking can be done
either (a) in any order or (b) in a particular order. We use
all possible tasks for fruit combinations (30 tasks) and sam-
ple 20 tasks for fruit sequences. The results were obtained
by leave-one-out cross-validation, where we learn an action
prior over N — 1 tasks and perform transfer learning on the
Nth task. We plot the learning curves for the hardest tasks
here, see Table 3 in the Appendix for all results. We report
means and its 95% confidence intervals over 10 runs.

It is possible that a new task will require the agent to select an
action that was not optimal in any previous tasks. In this context,
it could be beneficial to occasionally select a completely random
action during the exploration step. But, we find it to decrease the
success rate of the action prior exploration policy. We hypothesize
that by setting ¢ to a low value (around 0.1) the action prior gener-
alizes to actions that were not necessarily optimal for any previous
task but are nevertheless plausible.

6 EXPERIMENTS

We demonstrate the effectiveness of action priors in two domains:
a proof-of-concept Fruits World (Section 6.2) and a block stacking
robotic manipulation experiment in the PyBullet physics simulator
(Section 6.3). Policies learned in PyBullet can be deployed on a

real-world UR5 robotic arm (Section 6.4). The key question we aim
to answer is if action priors enable a deep Q-network (DQN) to
learn tasks that were previously out of reach.

6.1 Domains

Fruits World is a grid-world-like domain. The world is a 5x5 grid
with five distinct fruits placed in random positions (the positions
change at the start of each episode). There are 25 actions, one for
each position. The agent must pick a subset of fruits either in a
particular order (sequences) or in any order (combinations); each
subset constitutes a different task. When the agent thinks it finished
the task, it must execute the 25th action to get a reward and reset the
environment. A reward of 1 is given for successfully picking up the
target fruits. Due to its combinatorial nature, this environment is
surprisingly difficult to solve
with model-free deep reinforce-
ment learning. Hence, we also
give the agent a reward of -0.1 &‘
for picking up the wrong fruit
and only allow it to put the right &g
fruits in the basket.

The state is a 5X5X5 tensor “
with the first two dimensions
corresponding to the grid. If O
fruit is present in a grid cell,
its ID is one-hot encoded in the
third dimension. Otherwise, the
values in the grid cell are all zero.
In combinations, a sixth channel is added to the observation: the
positions corresponding to fruits the agent has added to its bas-
ket are set to one. In sequences, the agent is given an additional
sequence of one-hot encoded IDs of fruits it has picked.

We use a deep Q-network as a model-free agent. All neural
networks are a multilayer perceptron with two hidden layers (see
C.1 in the Appendix).

PyBullet block stacking is a set of simulated tasks involving
stacking blocks of various shapes and sizes with a robotic arm
(Figure 1). The robot observes the workspace with a depth cam-
era from above (Figure 1 (b)), receiving a 90x90 image with pixel
values corresponding to heights. It can execute a top-down pick
or place action at a specified coordinate with fixed hand rotation.
Before executing a pick action, the robot will take a 24x24 picture
centered at the coordinates, where it is executing the pick action.
If it successfully picks up an object, it uses the in-hand image to
decide where to place it.

We discretize the action space as a 90X90 grid, each cell corre-
sponding to one pixel of the observation. We instantiate 16 different
block stacking tasks: each one builds a structure of a width of one or
two small blocks and a height of two or three blocks; each structure
has a roof on top. Figure 1 (c) and (d) show goal states of building
a tower from two small blocks and a small roof and of building a
structure from two small blocks followed by one long block and a
large roof respectively. Each task is represented as a string (e.g. a
small roof on top of a small block is "1b1r") and we use a context-free
grammar to generate all possible tasks with particular parameters
(Appendix Section A).

Goal: J&'
Basket: _/J

Figure 3: Sequential fruit
picking task.

Method

Final success rate on task

1bir 2bilr 2b2r 1l1r 112r 1b{b1r 2b1bir 2b2bir
4 i i
t 1t M - ¥

DON RS 100% 0% 0% 100% 100% 0% 0% 0%
DQN RS, WS 98% 0% 0% 99% 100% 0% 0% 0%
DON HS 97% 0% 0% 100% 100% 0% 0% 0%
DQN HS, WS 97% 0% 2% 100% 99% 3% 0% 0%
DON AP 100% 100% 98% 99% 100% 100% 93% 0%
DON AP, WS 100% 96% 97% 99% 99% 99% 92% 0%

2b2b2r 2bi1lir 2b1l2r 111bi1r 112b1r 112b2r 111l1r 11112r

O 2 Lin A

EE BN

DON RS 0% 0% 0% 0% 0% 0% 0% 0%
DON RS, WS 0% 0% 0% 0% 0% 0% 0% 0%
DON HS 0% 0% 0% 10% 0% 0% 5% 92%
DQN HS, WS 0% 0% 0% 3% 0% 0% 3% 96%
DQON AP 95% 96% 0% 100% 99% 90% 93% 97%
DON AP, WS 0% 97% 0% 100% 100% 98% 100% 99%

Table 1: Transfer experiments in the block stacking domain. We consider "DQN AP, WS" the main contribution of this paper.
Each column reports the final success rate averaged over 100 episodes after training. The baselines and ablations of our method
we consider are random action selection (RS), heuristic action selection (HS), weight sharing (WS) and action prior (AP).

Both the 90x90 observation and the 24X24 in-hand image are
encoded using a modified version of U-Net [20, 31]. We chose this
model because it can produce detailed segmentation maps. The
task our DQN, which we use for model-free learning, and action
prior models solve is comparable to image segmentation: we make
a prediction for each pixel of the input image. In the DQN case,
the U-Net predicts a single state-action value for each pixel of the
input image. In the action prior case, the model produces a logit for
each pixel of the observation. The exact architecture of our U-Net
is depicted in Figure 7 in the appendix.

6.2 Fruits World experiments

We sample 20 and 30 tasks for fruits sequences and combinations
tasks respectively (Section 6.1). Action priors are tested in a leave-
one-out transfer experiment: an action prior is trained on 19 and
29 tasks respectively; it is then used for exploration on the held-out
task. This process is repeated for each task. Expert policies for the
training tasks use imitation learning (Section B).

Our comparison in Figure 2 involves action priors (AP), a ran-
domly initialized deep Q-network (DQN) and three baselines based
on Actor-Mimic [16] (AP-share, AP-freeze and AP-prog). Actor-
Mimic first trains a student to mimic the policies of all experts. The
student weights are then used to initialize the agent when learning
the testing task. We followed the original implementation! except
for us having a student with N heads, one for each training task.

1URL: https://github.com/eparisotto/ ActorMimic, visited 21/02/08.

This deviation from the original paper is due to the state of our
environment not containing any information about which task the
agent is solving. In contrast, Parisotto et al. [16] test their method
on several Atari games, each with a distinct state space.

In all cases, we remove the N student heads and transfer the
weights of the hidden layers. In AM-share, all weights are trainable;
AM-freeze only learns the final fully-connected layer. AM-prog is
based on Rusu et al. [23], where each hidden layer of the agent
network receives both features from the previous agent layer and
from the previous student layer. Hence, there are two networks,
student and agent, but only the agent is trained. We do not use
an adaptation layer suggested by [23] because we only have one
student network.

Action priors significantly outperform all baseline in fruits com-
binations (Figure 2a) and are the only method to solve any fruits
sequences task (Figure 2b). In the former, AM-prog and AM-freeze
have similar performance, whereas random initialization and AM-
share train much slower. We hypothesize that AM-share overwrites
the student weights at the start of training, causing it to perform
similarly to random initialization. The negative rewards at the start
of training received by action priors in Figure 2b can be explained
by AP picking up the wrong fruits (small negative reward), and the
other methods failing to pick up any fruit (zero reward).

(a) 0 = 0.1, empty hand (b) o = 0.1, cube in hand

(d) o = 0.5, cube in hand

(c) o = 0.5, empty hand

Figure 4: Visualizing actions proposed by an action prior
(red crosses) with the probability threshold o set to 0.1 (top
row) and 0.5 (bottom row). In the first column, the robot is
supposed to pick up an object, in the second column, it is
holding a cube in its hand and wants to place it. The images
shown are pictures from a depth camera mounted at the top
of the workspace in simulation.

6.3 PyBullet block stacking experiments

We perform two experiments in this domain: one focused on model-
free learning with action priors and the other solely on exploration
using action priors. The first experiment matches the setup in Sec-
tion 6.2: we use 15 out of the 16 block stacking tasks to learn an
action prior, which we subsequently test on the 16th task (Table 1).
An imitation learning method called SDQfD facilitates the expert
policies for the training tasks (Section B). The second experiment
evaluates the success rate of action prior policies on all tasks with-
out additional training (Figure 5 shows two example tasks, Figure
9 contains the results for all tasks). We measure success rate as a
function of the action prior probability threshold ¢ and the presence
or absence of a task classifier.

Experiment #1 compares our method with two baselines. DQN
AP is a deep Q-network with action prior exploration. We test ran-
dom and heuristic action selection. As our observations are depth
images taken from the top of the workspace, the heuristic only al-
lows selecting actions that act on parts of the observation with non-
zero height. Therefore, it forces the agent to interact with objects.
But, not all interactions necessarily lead to desirable outcomes—the
agent often ends up pushing objects out of the workspace. We call
the two methods DQN RS and DQN HS respectively.

As a second mechanism for speeding up learning, we employ
weight sharing in the unseen task. Because an action prior summa-
rizes the information contained in experts for the 15 training tasks,
we initialize the DQN for the 16th testing task with the action prior

£ B
Z
530
s —— task classifier
S e
5 o5 no task classifier
0
(%]
3
wn
15

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

'y
]

N
n

= N
n <)

g
=}

success probability (%)

5
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

Figure 5: Success rates for "1b1r" and "2b1l1r" using explo-
ration with an action prior as a function of 0. We compare
action priors trained with and without task classifier.

weights. To mitigate catastrophic forgetting [8], we include a L?
penalty between the original action prior weights and the current
DON weight; it is added to the DQN loss function with a weight of
wws. We test weight sharing both with random and heuristic base-
lines (DQN RS, WS and DQN HS, WS) and action priors (DQN
AP, WS).

ADQN with an action prior can solve all tasks except for "2b2b1r"
and "2b1l2r" (Table 1). As shown in Figure 9, the success rates of
action priors on these tasks without training is between 1 and 4%.
Hence, a more targeted action prior might be needed.

The DQN sharing weights with the action prior does not lead
to noticeable benefits. In fact, it fails to learn "2b2b2r" unlike the
non-weight-sharing variant. Since the purpose of weight sharing is
to improve training speed of the network, it only provides minor
benefits due to exploration being the main challenge in our domains.

As we expected, both the heuristic and random action selection
baselines are unable to solve most of the tasks. Random actions
succeed on the three simplest tasks ("1b1r", "2b1r" and "2b2r"), and
heuristic selection increases the number to four (plus "11112r"). In
the rest of the tasks, the success rates of the baseline exploration
policies are close to zero; therefore, no learning method including
weight sharing can succeed.

Experiment #2 evaluates two variants of action prior each again
trained in leave-one-out fashion on 15 tasks and tested on the 16th
task. In this experiment, we only log the success rate of the action
prior policy without learning on the testing task.

Figure 5 shows examples of action prior success rates for tasks
"1b1r" and "2b1l1r". We plot the success rates as a function of the
action prediction threshold o and the presence or absence of a task
classifier. The success rates are measured by rolling out episodes in

the test task (depicted in the top-left corner) with actions selected
by the action prior policy w4p. We show results for all tasks in
Appendix Figure 9.

The main trends in Figure 5 (and the Appendix Figure 9) are that
(a) more complicated tasks benefit more from the task classifier and
that (b) almost all action priors that use a task classifier benefit from
a decrease in the prediction probability threshold. The increase in
success rates for action priors with task classifiers in more complex
tasks can be explained by them needing a targeted and precise
exploration policy: a task classifier ensures that the training data
for the action prior does not mark actions from irrelevant tasks as
optimal. On the other hand, we are unsure as to why action priors
without task classifiers perform well on simple tasks. See Figure 4
for example of sets of actions proposed by action priors.

6.4 Real-world robot experiments

In theory, policies trained in our PyBullet simulation can be trans-
ferred to a real-world robot, as both setups use a depth camera and
a robotic arm with the same action spaces. However, in practice
noise in the real-world observations often confuses the policies
trained with perfect depth images.

To make our models more robust, we re-train the action prior
DOQNs with weight sharing (DQN AP, WS) in the transfer learning
experiment in Section 6.3 with two modifications to the environ-
ment. First, we add Perlin noise, a type of correlated gradient noise,
to the simulated depth images [12, 18]. The noise models blobs of
lower and higher estimated depth values that are present in the
real-world images. Next, we initialize all objects in the environment
with small rotations compared to their default orientations. In our
previous experiments, all objects had the same orientation, as the
agent cannot control the rotation of the robot hand. However, the
initialization of the real-world scene will inevitably be less precise.

Our setup is depicted in Figure 6 and described in details in
Appendix Section C.3. We pick 8 of the 16 trained policies for
testing. Each such policy is run for ten episodes and we report
the fraction of successful episodes (Table 2). Most policies reach
around 80% — 90% success rate. Two common failure modes are the
robot failing to find the small roof because of noise in the depth
image and the robot accidentally knocking down a structure when
placing a block. The latter cannot always be attributed to a bad
policy—our gripper sometimes releases objects off-center. Since the
real-world gripper is significantly larger than the simulated one, it
fails if objects get pushed too close to each other.

7 DISCUSSION AND CONCLUSION

In this work, we proposed a method for efficient exploration us-
ing action priors. Our approach to learning action priors involves
solving a set of training tasks with imitation learning and summa-
rizing the learned policies in a single action prior neural network.
This network is trained on sets of optimal actions predicted by the
policies with an addition of a task classifier that determines which
policies are relevant in each state.

In contrast to prior work on action priors, which has predom-
inantly considered grid-world-like environments, our method is
applicable to domains with image states and thousands of actions.
In addition to a proof-of-concept Fruits World domain, where it

a Depth Camera

Figure 6: Our pick and place experiment with a UR5 robotic
arm. The robot observes the workspace with a depth camera
mounted above it, and it can choose to either pick or place
an object with a top grasp and fixed orientation.

Task Successes | # Pick Failures # Place Failures

1b1r 9/10 1 0

1l1r 8/10 2

112r 9/10 1 0
1b1bir 9/10 1 0
1l1bir 10/10 0 0
112b2r 8/10 1 1
1l1l1r 7/10 1 2
11112r 8/10 0 2

Table 2: Real-world experiment with a UR5 robotic arm (Fig-
ure 6). The environment was set up in the same way as the
simulated workspace and we evaluated policies trained in
simulation in 10 trials. Each trial had a budget of 20 time
steps. We break down failures into two components: pick
failures and place failures. Pick failures mean that the ro-
bot could not find the desired object or it could not pick it
with sufficient precision. Place failures occur when the ro-
bot fails to place an object on the appropriate structure or it
topples the structure over.

always finds near-optimal policies, we demonstrate performance
on a simulated robotic block stacking task. A deep Q-network aug-
mented with an action prior can solve 14 out of the 16 block stacking
tasks within 100k episodes. Moreover, the policies trained in sim-
ulation can also be deployed on the real robotic arm with only a
small drop in their success rates.

A future direction of our work is to develop action priors that
are suitable to learning online during training on a new task. In
this way, the action prior would progressively increase the chance
of hitting the goal state while exploring. A natural extension of
our manipulation task is to consider a full SE(3) action space (i.e.
grasping from any angle).

REFERENCES

(1]

[10]

[11

[12

[13

[14]

[15

[16]

[17]

[18]

David Abel, D. Ellis Hershkowitz, Gabriel Barth-Maron, Stephen Brawner, Kevin
O’Farrell, James MacGlashan, and Stefanie Tellex. 2015. Goal-Based Action Priors.
In Proceedings of the Twenty-Fifth International Conference on Automated Planning
and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015. 306-314.

Anurag Ajay and Pulkit Agrawal. 2020. Learning Action Priors for Visuomotor
transfer. International Conference on Machine Learning workshop on Inductive
Biases, Invariances and Generalization in RL (BIG).

Richard Bellman. 1957. A Markovian Decision Process. Journal of Mathematics
and Mechanics 6, 5 (1957), 679-684.

Carlos Diuk, Andre Cohen, and Michael L. Littman. 2008. An object-oriented
representation for efficient reinforcement learning. In Machine Learning, Proceed-
ings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland,
June 5-9, 2008. 240-247.

Finale Doshi-Velez, David Wingate, Nicholas Roy, and Joshua B. Tenenbaum.
2010. Nonparametric Bayesian Policy Priors for Reinforcement Learning. In
Advances in Neural Information Processing Systems 23: 24th Annual Conference
on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9
December 2010, Vancouver, British Columbia, Canada. 532-540.

Fernando Fernandez-Rebollo and Manuela M. Veloso. 2006. Probabilistic policy
reuse in a reinforcement learning agent. In 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan,
May 8-12, 2006. 720-727.

Chelsea Finn and Sergey Levine. 2017. Deep visual foresight for planning robot
motion. In 2017 IEEE International Conference on Robotics and Automation, ICRA
2017, Singapore, Singapore, May 29 - June 3, 2017. 2786-2793.

Robert M. French. 1999. Catastrophic forgetting in connectionist networks. Trends
in Cognitive Sciences 3, 4 (1999), 128 — 135.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Hugo Larochelle,
Matthew Botvinick, Yoshua Bengio, and Sergey Levine. 2019. InfoBot: Transfer
and Exploration via the Information Bottleneck. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration
of Modern Neural Networks. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. 1321~
1330.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter
Abbeel. 2016. VIME: Variational Information Maximizing Exploration. In Ad-
vances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. 1109—
1117.

Stephen James, Andrew J. Davison, and Edward Johns. 2017. Transferring End-
to-End Visuomotor Control from Simulation to Real World for a Multi-Stage
Task. In 1st Annual Conference on Robot Learning, CoRL 2017, Mountain View,
California, USA, November 13-15, 2017, Proceedings. 334-343.

Robert Platt Jr., Colin Kohler, and Marcus Gualtieri. 2019. Deictic Image Mapping:
An Abstraction for Learning Pose Invariant Manipulation Policies. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. 8042-8049.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
2018. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. Int. J. Robotics Res. 37, 4-5 (2018), 421-436.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, loannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nat. 518, 7540 (2015),
529-533.

Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. 2016. Actor-Mimic:
Deep Multitask and Transfer Reinforcement Learning. In 4th International Con-
ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017.
Curiosity-driven Exploration by Self-supervised Prediction. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017. 2778-2787.

Ken Perlin. 1985. An image synthesizer. In Proceedings of the 12th Annual Con-
ference on Computer Graphics and Interactive Techniques, SGGRAPH 1985, San

[19

[20

[21

[22

[23

S
=)

[25

[26

[30

[31

(32]

@
&

[34

[35

[37

Francisco, California, USA, July 22-26, 1985. 287-296.

Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. 2020. Accelerating Reinforce-
ment Learning with Learned Skill Priors. Conference on Robot Learning (CoRL).
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference

Munich, Germany, October 5 - 9, 2015, Proceedings, Part III. 234-241.
Benjamin Rosman and Subramanian Ramamoorthy. 2012. What good are actions?

Accelerating learning using learned action priors. In 2012 IEEE International
Conference on Development and Learning and Epigenetic Robotics, ICDL-EPIROB
2012, San Diego, CA, USA, November 7-9, 2012. 1-6.

Benjamin Rosman and Subramanian Ramamoorthy. 2015. Action Priors for
Learning Domain Invariances. IEEE Trans. Auton. Ment. Dev. 7, 2 (2015), 107-118.
Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive Neural Networks. CoRR abs/1606.04671 (2016).

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.
Alexander A. Sherstov and Peter Stone. 2005. Improving Action Selection in
MDP’s via Knowledge Transfer. In Proceedings, The Twentieth National Conference
on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA. 1024-1029.
Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey
Levine. 2020. Parrot: Data-Driven Behavioral Priors for Reinforcement Learning.
CoRR abs/2011.10024 (2020).

Alexander L. Strehl and Michael L. Littman. 2005. A theoretical analysis of Model-
Based Interval Estimation. In Machine Learning, Proceedings of the Twenty-Second
International Conference (ICML 2005), Bonn, Germany, August 7-11, 2005. 856-863.
Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement
Learning Domains: A Survey. . Mach. Learn. Res. 10 (2009), 1633-1685.

Yee Whye Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirk-
patrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. 2017. Distral: Robust
multitask reinforcement learning. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA. 4496—4506.

Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. 2094-2100.
Dian Wang, Colin Kohler, and Robert Platt. 2020. Policy learning in SE(3) action
spaces. Conference on Robot Learning (CoRL).

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. 2016. Dueling Network Architectures for Deep Reinforcement
Learning. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016. 1995-2003.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A.
Riedmiller. 2015. Embed to Control: A Locally Linear Latent Dynamics Model for
Control from Raw Images. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada. 2746-2754.

David Wingate, Noah D. Goodman, Daniel M. Roy, Leslie Pack Kaelbling, and
Joshua B. Tenenbaum. 2011. Bayesian Policy Search with Policy Priors. In IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011. 1565-1570.

Kevin Zakka, Andy Zeng, Johnny Lee, and Shuran Song. 2020. Form2Fit: Learn-
ing Shape Priors for Generalizable Assembly from Disassembly. In 2020 IEEE
International Conference on Robotics and Automation, ICRA 2020, Paris, France,
May 31 - August 31, 2020. 9404-9410.

Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and
Thomas A. Funkhouser. 2018. Learning Synergies Between Pushing and Grasping
with Self-Supervised Deep Reinforcement Learning. In 2018 IEEE/RSF International
Conference on Intelligent Robots and Systems, IROS 2018, Madrid, Spain, October
1-5, 2018. 4238-4245.

Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois Robert Hogan,
Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo, Nima Fazeli,
Ferran Alet, Nikhil Chavan Dafle, Rachel Holladay, Isabella Morona, Prem Qu
Nair, Druck Green, Ian J. Taylor, Weber Liu, Thomas A. Funkhouser, and Al-
berto Rodriguez. 2018. Robotic Pick-and-Place of Novel Objects in Clutter with
Multi-Affordance Grasping and Cross-Domain Image Matching. In 2018 IEEE In-
ternational Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia,
May 21-25, 2018. 1-8.

A STACKING GRAMMAR

Instead of arbitrarily choosing tasks, we characterize the whole family of possible tasks. Here, we define a simple grammar of stacking tasks.
It only captures the notion of a stack, so it cannot represent tasks such as two blocks in a row. The only notion of two blocks being near one
another is if a long block or a long roof can be put on top of them.

We have the following terminals: one block (1b), two blocks next to each other (2b), one brick (11), short roof (1r) and long roof (2r). The
non-terminals are ground (G), wildcard (W), short (S) and long (L). The starting symbol is the ground.

The rules allow for stacking of long objects (two blocks next to each other or one long block) on long objects, short on short and short on
long. We separate the different possible outcomes of a rule by commas.
G — 1bS, 2bW, 11W
W—-S§ L
S — 1bS, 1b, Ir
L — 11W, 2bW, 1], 2b, 2r

If we restrict the maximum height to three and only select structures that end with a roof, we get the 16 tasks used in our experiments.

B EXPERT POLICIES

Action priors as well as our weight sharing and Actor-Mimic baselines require expert policies for training tasks. Next, we describe the
methods we used to train expert policies in Fruits World and Block Stacking, but action priors are invariant to these design decisions. In both
cases, we start with a replay buffer pre-populated with expert demonstrations and learn a near-optimal policy, which we also call an expert.
This might seem redundant, but, as you will see, a method that is used to generate expert demonstrations is not always able to select the
optimal action in an arbitrary state. Moreover, the expert demonstrations contain optimal actions, not distributions over all actions, which
are required by Actor-Mimic [16].

Fruits World: We use the same DQN both for the experts and for training on the testing task (Section C.1), but the expert version is given
a pre-populated replay buffer. The buffer contains 50k transitions generated by a policy that executes the optimal action with 50% probability,
and a random action otherwise. The optimal action can be easily computed given the full state of the environment. The expert is trained for
50k steps offline on this buffer; then, it is trained online for another 50k steps with new experiences mixed into the pre-populated buffer.

Simulated Block Stacking: We use an imitation learning method called SDQfD [31] to learn expert policies. Similarly to above, it
requires a replay buffer pre-populated with expert demonstrations. Following Wang et al. [31], we start in the goal state (i.e., with a simulator
initialized so that a particular goal structure is build), pick blocks from the top of the structure, and place them in empty spots on the ground.
Since all actions are reversible, a deconstruction episode played backward looks like the agent is building the goal structure. We consider the
reversed episodes to be expert demonstrations. Programming an initialization function for each structure and a deconstruction policy is
much easier than having a custom planner for each task. Note that the initialization function and deconstruction policy is used only for
training tasks, not the testing task.

The objective of SDQfD is a weighted sum of a temporal-difference loss Ltp (as in DQN [15]) and a term Lgy) (with weight w) that
penalizes action not selected by an expert with high predicted values

Lspom = Ltp + @ LsLm-)

During training, the method identifies the set of non-expert actions As g, with values higher than the value of an expert action a, minus a
margin I(ae, a) (positive constant for a. # a; zero otherwise)

Asa, ={a € A|Q(s,a) > Q(s, ae) — I(ae, a)}. (10)
The penalty called a "strict large margin” is then applied to the values of all actions in A 4,
1
Lspm=—— >, Q(s.a) +(aea) - Q(s,ac). (11)
Asal 4

We pre-train SDQfD on a replay buffer with expert demonstrations for 10k steps. After pre-training, we alternate between taking one
environment step according to the current policy and performing a training step. We maintain two separate buffers: one for expert and one
for on-policy transitions. Each batch of training data contains an equal number of samples from both buffers. The strict large margin is only
computed for the expert data.

C EXPERIMENT DETAILS
C.1 Fruits World

We use the same neural network for both the DQN and the action prior: it has two hidden layers with 256 neurons and we use the ReLU
non-linearity in-between. The DON predicts a Q-value for each action and the action prior predicts the log probability of an action being
optimal for each action separately.

Baseline DQNGs are trained for 100k steps with an e-greedy policy that linearly decreases from 1.0 to 0.1 over 80k steps. The learning rate
was set to 5 * 10™* and we use prioritized replay with default parameters, dueling network and double Q-learning [24, 30, 32].

Each action prior network is trained for 10k steps with a learning rate of 0.01. For the transfer experiments, we train a DQN with the
same parameters as in the training tasks, except it uses an action prior for exploration, or it is initialized with Actor-Mimic weights (see
Section 6.2).

C.2 Simulated Block Stacking

We use a modified version of the U-Net architecture [20] for all our networks in this experiment. The schema of the fully-convolutional
network is included in Figure 7.

To train the SDQfD, we collect 50k expert trajectories obtained by reversing deconstruction experience [35]. We pre-train model on this
experience for 10k steps. Then we train the model while it interacts with the simulator for 40k episode. Each episode has a maximum length
of 20. The learning rate is set to 5 + 107> and both the large margin weight and the margin coefficients are set to 0.1. There is no exploration,
the batch size is set to 32 and the discount to 0.9. We run five simulated environments in parallel-we take one step in each environment,
collect the transitions, take one training step of the SDQfD and repeat.

For the training datasets, we collect 20k steps for each of the 15 tasks used to train an action prior and concatenate the experience. The task
classifier is trained on this data for 20k steps with a learning rate of 1073, weight decay of 10~ and batch size set to 32. We use a probability
threshold for relevant tasks 8 of 0.05. Action priors are trained with the same settings except for a batch size of 50 for 10k training steps.

In the transfer experiment, we use an action prior probability threshold o of 0.1. During exploration, the model only selects actions
proposed by the action prior. We train a DQN for 100k episodes with the modified e-greedy policy. € linearly decays from 1.0 to 0.01 for 80k
episodes. The learning rate is set to 107%, batch size to 32 and the discount factor to 0.9. We use prioritized experience replay with default
parameters, but we do not use the weighting of the sampled transitions in the loss function.

In the weight sharing experiments, the weights L? penalty oy s is set to 0.1.

C.3 Real-World Block Stacking

We tested the trained model on a Universal Robots UR5 arm with a Robotiq 2F-85 Gripper. The observation is provided by an Occipital
Structure sensor pointing to the workspace from top-down. Figure 6 shows the robot experiment setup. All task parameters mirror the
simulation. We run 10 trials for each task, and the maximum number of steps for each trial is 20. Figure 8 shows an example run of task
112b2r.

D ADDITIONAL RESULTS

Table 9 shows results for experiment #2 (Section 6.3) for all 16 tasks. As we stated in the main text, we found that task classifier helps in
complex tasks and decreasing the probability threshold o tends to increase the success rates of the action priors that use the task classifier.

H indu|
‘ $9 ‘AUOD EXE
821 ‘AUOD £XE
jood xew
a5z nuoo exe

/1 induj

‘ 26 ‘AUOD EXE
‘ 2€ ‘AU0D EXE
‘ $9 ‘AUOD EXE
‘ 9 ‘AU0D £XE
821 ‘oo exe
821 oo exe

jood xew

jood xew

)
L
()
Q
8
S
=<
a
o

[z ‘Moo exg
|95z tuoo gxe
214G ‘AU0D £Xg
952 AUOD £XE
2jeualeduod
962 ‘AU0D £XE
952 AU0D £XE

ndino

2 ‘AU0D gXg
a]euaeouod
aidwes dn
a]euaeouod
ajdwes dn
a]euaeouod
o|dwes dn
a]euaeouod
ojdwes dn
A

‘ 26 ‘AUOD EXE
£

‘ 26 ‘AU0D £XE

26 ‘AU0D £XE

‘ $9 ‘AUOD EXE
£

‘ $9 ‘AU0D £XE

$9 ‘AUOD £XE

821 ‘oo exe
£

821 oo exe

821 oo exe

[z ‘Moo exe

|95z tuod exe

Figure 7: A modified U-Net network architecture. The inputs are a 90x90 depth image of the environment I and a 24x24 zoomed-
in image of an object the robot picked up. If the robot is not holding anything, all pixel values are set to zero. 3x3 conv, 32
means a convolutional layer with 32 filters of size 3. All max pooling layers use a kernel of size 2 and a stride of 2. We omit
the ReLU activations in the diagram.

Figure 8: One example run of the 112b2r task.

z
330
s —— task classifier
g 25 —— no task classifier
@
2
@
15

N
=3

=
©

—
IS

success probability (%)
=
o

-
N

:

success proba
w > w o N -]

success probability (%)

H o NN W
u o u o u

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

N
o ®

16

10 45
g, ‘ w' §4_0‘. ?320'.
Z Zs Z3s z |-
524 a 7 330 215
8 8 8 8
022 S 6 025 [
1 s S5 510
g g 4 gls gos
S18 —’/\/ 3 210 a
2 2 2 2

: 0 0.0

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

o
o

.5
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

10 _ 45 7
R25 Ra0 &
208 z >35 26
gos 3 20 2 3.0 s
° ° 025 ©4
80.4 al5 a a
m 2 @20 23
So2 810 215 8
2 2 S1.0 //’/—\ 32
05 o 1

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

.5
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

e _3.0 7 16
g 8 g L1a
Sa a5 6 <
2z z 2 212
z Z2 H H
33 520 25 210
S f15 K K
g2 g g4 S8
2 @? L0 a3 26
[W ﬂl Q
81 8 8 g
o © 0.5 S5 o 4
1 3 3 3 /\/
2 a 2 a

0 0.0 1 2

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
prediction threshold

Figure 9: We show the same results as in Figure 5 in the main test, but for all 16 tasks

Num. fruits AP (ours) DQON AM-share ~ AM-freeze AM-prog
Mid. Fin. Mid. Fin. Mid. Fin. Mid. Fin. Mid. Fin.

Fruit combinations

1 1 1 1 1 1 1 0.88 094 0.98 1
2 1 1 1 1 1 1 075 085 0.9 099
3 1 1 0.98 1 0.98 1 0.77 0.85 082 0.96
4 0.97 1 0.02 068 005 08 078 0.84 084 093
Mean 0.99 1 0.75 092 076 095 08 0.87 0.89 0.97
Fruit sequences
1 1 1 1 1 1 1 1 1 098 0.99
2 1 1 0.99 1 0.99 1 0.99 1 0.87 0.95
3 0.94 099 054 096 059 097 059 097 047 071
4 077 093 -002 0 -002 0 -002 0 -0.02 -0.01

Mean 093 098 063 074 0064 074 0.64 074 058 0.66

Table 3: Additional Fruits World results accompanying Figure 2. We report the average reward over 10 runs in the middle of
training (Mid.) and at the end (Fin.). Num. fruits refers to the number of fruits the agent is supposed to pick—-it determines the
difficulty of the task. Each row is an average over all tasks involving picking up the specified number of fruits.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Problem statement
	5 Action Priors
	5.1 Learning the Task Classifier
	5.2 Approximating Optimal Action Sets
	5.3 Learning the Action Prior
	5.4 Action prior exploration

	6 Experiments
	6.1 Domains
	6.2 Fruits World experiments
	6.3 PyBullet block stacking experiments
	6.4 Real-world robot experiments

	7 Discussion and Conclusion
	References
	A Stacking Grammar
	B Expert Policies
	C Experiment Details
	C.1 Fruits World
	C.2 Simulated Block Stacking
	C.3 Real-World Block Stacking

	D Additional Results

