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Contribution to the field

Statistics is arguably the most powerful of all scientific instruments. For the last century, statistics has been dominated by two
alternative approaches: Error statistics and Bayesian statistics. Unfortunately, both approaches suffer from technical and
philosophical problems. These problems create biases in scientific inference and also lead these approaches to misrepresent the
uncertainty in scientific inference leading to the replication crisis in science. We believe that the evidential approach can provide a
correction to statistics. Evidential statistics is a cluster of statistical methods and approaches being developed to meet a set of
desiderata or meta-criteria that were selected so as to impose desirable inferential properties on those methods.
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1 Why this research topic

We have undertaken this research topic for several reasons: First to promote and disseminate the ideas and techniques of evidential statistics
to ecologists and evolutionary biologists so that their research might benefit increased clarity that evidential thinking engenders. And, second
to encourage statisticians to think how their own work relates to this emerging approach to the fundamental problems of statistics.

2 How to read this volume

Selecting an optimal order to read the papers of this research topic requires decisions on the part of the reader. The papers are not
ordered in any developmental fashion, but simply by the order that they were first published. Another difficulty is that there are two target
audiences for this research topic: First, quantitative scientists, primarily ecologists and evolutionary biologists, who might wish to apply
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Evidential Statistics and Science

evidential thinking to their own research; and second, statisticians who might be interested in furthering the technical development of
evidential statistics.

Table 1 lays out the primary themes considered in each paper and identifies authorship abbreviations. Those readers who would like
to begin with statistical principles, then move to applications, and then conclude with more philosophical considerations might read the topic
in the order of DPT&L, P&T, Ly, TLPD&J, S&T, M&S, FTZJ&M, CC&H, T&G, S&B, JKECS&T, L., B&B, S&H. For readers who might
prefer to begin with philosophy, and move to application, and then finish with technical details, a reasonable order might be: B&B, S&H,
JKECS&T, T&G, La, S&B, FTZJ&M, CC&H, DPT&L, P&T, Ly, TLPD&J, M&S, S&T.

<Table 1 near here>
3 What is evidential statistics

Statistics is arguably the most powerful of all scientific instruments. For the last century, statistics has been dominated by two alternative
approaches: Error statistics' and Bayesian statistics. Unfortunately, both approaches suffer from technical and philosophical problems (see
Taper and Ponciano, 2016 for discussion). These problems make the instrument of statistics like the Hubble telescope before its optics were
corrected in 1993: A fantastic tool not living up to its full potential.

We believe that the evidential approach can provide a similar technical correction to statistics. Evidential statistics is a cluster of statistical
methods and approaches being developed to meet a set of desiderata or meta-criteria that were selected so as to impose desirable inferential
properties on those methods (see JKECS&T for a list of desiderata).

The central question for evidence is simple: Which of two models of reality is better supported by the data? More technically, evidence is a
data-based estimate of the difference of the divergences of each of the distributions implicit in two models to the data distribution resulting
from an unknown true generating process (see Lele, 2004; and TLPD&J). Several salient features of the evidentialist perspective are
immediately obvious: First, evidence is comparative, second, neither model is given a favored status, and third, that a “true” model is not
assumed to be in the model set.

These guiding principles allows evidential statistics to draw on and refine elements from error statistics, likelihoodism, Bayesian statistics,
information criteria, and robust methods, evidential statistics to create an approach that smoothly incorporates model identification, model

2

! By error statistics we mean that subcategory of frequentist statistics that uses error probabilities as the primary inferential quantity including Fisherian significance, null
hypothesis significance testing, Neyman-Pearson hypothesis testing, and severe testing. The term classical statistics is sometimes applied to this grouping, but this can
be considered a misnomer as Bayesian statistics predates these methods considerably.

This is a provisional file, not the final typeset article
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uncertainty, model comparison, parameter estimation, parameter uncertainty, pre-data control of error, post-data assessment of uncertainty,
and post-data strength of evidence into a single coherent framework.

4 Some implications of evidential statistics for science

The implications of evidential statistics for science are manifold. For brevity, we focus here on the impact an evidential approach could
have on the replication crisis (Pashler and Wagenmakers, 2012). The replication crisis presents a profound challenge to both statistics and
science. As more replication of scientific studies is attempted, it is being found that studies tend not to replicate at their nominal rates. This
is undermining both trust in statistics by scientists and trust in science by the general population.

Virtually all models are to some degree misspecified (see TLPD&J for a technical definition of “misspecified”). Misspecification in itself is
not a bad thing. A true model would be enormously complex and would be neither comprehensible nor estimable. What is dangerous is
inference that doesn’t acknowledge misspecification. With Neyman-Person Hypothesis testing (NPHT), error rates become distorted when
both models are misspecified. Error rates can be less than, equal to, or greater than their nominal rates (DPT&L) making nominal rate
replication extremely unlikely. Furthermore, under some reasonable model space geometries, a NPHT will select the wrong model with
probabilities that go to 1 as sample size increases (DPT&L). In contrast, evidential model selection reliability seems in simulation to be
estimated unbiasedly (Taper et al. 2019) and all evidential error rates go to 0 as sample size increases (DPT&L).

None of Fisherian significance (FS), null hypothesis significance tests (NHST), or NPHT can produce evidence for the null model
(DPT&L). This is problematic because often it is the null which of scientific interest. Statisticians teach that “absence of evidence is not
evidence of absence”, but the need of scientists to say something about the null model forces this warning to be often ignored. In evidential
statistics reference and alternative models are always correctly treated symmetrically (DPT&L, TLPD&J, JKECS&T) for inference,
although this does not imply that decision thresholds need to be symmetric.

When scientists, reviewers, and journals that do recognize that FS, NHST, and NPHT do not produce evidence for the null, a common
response is publication bias, the tendency not to publish studies with attained P-values less than 0.05 (Franco et al. 2014). This “file drawer
problem” creates several biases in the literature. First, of course, is the lack of studies showing evidence for the null. More insidiously,
because all tests are stochastic, a number of studies are published falsely showing significant evidence for the alternative (Type I errors).
These are not balanced in the literature by the many studies in the file drawer.

The immense pressure on scientists to publish leads many, intentionally or unintentionally, into questionable research practices to avoid the
file drawer problem. One of these is “cherry picking”, the retroactive selection of data and/or statistics so as to achieve significance
(Ioannides, 2019). Another is HARKing, Hypothesizing After Results are Known (Kerr, 1998). Both have drastic effects on the replication
crisis.
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Evidential analysis gives scientists statistically correct language (TLPD&J) to speak about strong evidence for the null versus the alternative,
strong evidence for the alternative versus the null, and evidence that doesn’t clearly distinguish between the two models. All of which are of
scientific interest. Even results that can’t distinguish between models tell us where more data is needed. The results of any well-designed
scientific study now have meaning and could potentially be publishable—regardless of significance.

Undertaken in an evidential statistics context, HARKing is a legitimate and even beneficial practice (Taper and Gogan, 2002). The evidence
in HARKing has always been clear, although estimation of the uncertainty remained a problem (Taper and Lele, 2004). Bootstrapping of
evidential comparisons now improves the understanding of the uncertainty of even HARKed results (Taper & Lele 2011, Taper et al. 2019,
TLPD&J).

5 Comments on the articles:

5.1 Shimodaira and Terada (S&T)

At the heart of ecology is a search to better understand and characterize the relationship between species as well as that of a group of species
and their environmental variables. On the other hand, a central topic in evolutionary studies is inferring the ancestral relationships of a set of
extant species. In both cases, graph theory has become the theoretical foundation upon which the biological edifices in these two fields are
constructed. In ecology, species are thought as nodes in a diagram and the relationships between species are represented as edges uniting
any two nodes. In evolution, a phylogenetic binary tree is a diagram representing the evolutionary relationships among a set of extant
species, which are shown as the tips (leaves) of the tree. Each interior node in the tree connects with three other nodes: two descendants and
one ancestor.

The binary phylogenetic trees are called bifurcating trees because there are two branches leading out from each interior node. Proceeding
from the present-day species of interest backwards in time under this binary framework eventually leads to a common ancestor , the root of
the tree. In that context, one particular “tree topology” is one specific construction of the possible set of relationships among the species of
interest and represents a single hypothesis about the ancestral relationships between these species, all the way back to their most recent
common ancestor. How many such hypotheses can one posit with n species? With two species the answer is one, with three species the
answer is three, with four it’s fifteen, with five it’s one hundred and five and in general, with n species it’s (2n — 3)!/(2"%(n — 2)!). For
example, for six species, the number considered by S&T, one could posit 945 such trees.

In such setting, it quickly becomes obvious that good treatments of the statistical problems of multi-model selection and multiple hypotheses
testing are key to making any progress in this area. Previously, the leading approach to deal with the problem of selecting among these
models (hypotheses) the best representation of reality used NHST. This body of work was started by Kishino and Hasegawa (1989), and
continued by Shimodaira (1998), Shimodaira and Hasegawa (1999) and Shimodaira (2002). S&T now goes one step further and provides a
novel methodology of shifting the phylogenetics question away from: “is a newly estimated tree topology significantly similar to the
unknown, true species topology?” and instead ask: “from this set of models, which tree topology and group of models are significantly

This is a provisional file, not the final typeset article
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H,:pueRversus H, :ueR%), the tests are not standard NP tests. Truth does not lie in either

hypothesis, but instead is being projected onto the manifold R\ R°. Further, the pseudo data being used to generate the distribution of the
test statistic does not come from Ho, but is generated by a non-parametric bootstrap. Thus, the difference between the inference in S&T and
TLPD&J may be little more than the statistics they choose to present.

5.2 Scheiner & Holt (S&H)

This paper takes the readers out of the weeds and forces them to look simultaneously at the trees and the forest. Deeply informed by both
the history and the philosophy of science, the manuscript points out that evidential statistics formally only deals with the relationships
among models and data; S&H then ask how evidential statistics can inform either the generation or the support for general and constitutive
theories. Clearly it can because Peirce’s abduction (Peirce, 1974) can be thought of as a conceptual adequacy measure for models,
hypotheses, or theories, while modern abduction, i.e. inference to the best explanation (Haig, 2009)) can be thought of as conceptual
evidence for the same.

In an analogy to biological evolutionary theory, S&H discuss how model selection, an evidential process, can act as a selective force to
winnow the models included in constitutive theories. S&H further suggest that pattern matching as well as Whewell’s consilience and
coherence (Forster and Wolfe, 1999) might possibly be utilized in formal procedures for quantifying the evidence supporting one theory
over another.

Despite the excellence of this article, S&H do sin against science in suggesting that sometimes statistics is not necessary>. They claim for
instance that if something never occurs then no statistics is necessary. To which a statistician would query, “never occurs in how many
trials?” The evidential impact of something never occurring is very different in experiments of 1 trial, 4 trials, or 8 trials (see JKECS&T).
Because they are writing as theoreticians, S&H’s sin is only venal. For theoreticians, statistics and even data, are always optional. The job
of theoretical science is to construct alternative internally consistent possible worlds. The job of empirical science is to determine which of
those possible worlds best describes the real world—and for that, statistics is always needed.

5

2 In prepublication conversations on this point, we told the authors that they could say whatever they wanted in their paper, but that the final word would belong to the
editors.
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5.3 Jerde, Kraskura, Eliason, Csik, Stier, and Taper (JKECS&T)

KECS&T describe the motivation for, and the logic of, scientific inference using evidential statistics and demonstrate the utility of the
evidential approach by tackling a long-standing controversial question in ecological physiology: How does standard metabolic rate (SMR)
scale (intra-specifically) with individual body mass, and is this scaling similar among species? For fish, theoretical scaling rates of 0.67,
0.75, and 1.00 have been proposed. Empirical estimates of scaling coefficients vary tremendously among studies and generally all have
large uncertainties leaving the theoretical question unprobed. JKECS&T curate a large data set composed of a total of 1456 observations in
55 separate trials on 12 species, all using current state of the art techniques for measuring SMR. The use of linear mixed effect models
allowed JKECS&T to combine all of these trials for inference.

Four suites of four models using random and fixed effects carefully explore the impacts of species, trial (within species), and temperature on
the scaling of SMR with body mass. Model families were evaluated using the Schwarz information criterion (SIC, also known as the

BIC). The SIC is a consistent criterion and the comparison of SIC values is an evidential procedure. Within and between model suites,
evidence for specific values of the scaling coefficient were compared using profile ASIC curves. A ASIC value comparing two models
indicates strong evidence for the model with lower SIC.

Two model suites with a free parameter estimate of the metabolic scaling, separated themselves only by a ASIC of 1.5, were strongly
differentiated from all others. Both had fixed effects for temperature and random effects (intercepts) for species. The best model had the
log(weight) slope vary randomly across species (with modest variation), while the second-best model had a common slope over all species.
In the best model the ML estimate for the mean scaling coefficient is 0.89 with a strong evidence profile ASIC interval spanning 0.82-0.99.

The evidence strongly indicates that none of the a priori theoretical scaling coefficients describe the scaling behavior in real fish.

5.4 Dennis, Ponciano, Taper, and Lele (DPT&L)

Mathematics, and in particular probability, have long been intertwined with biology. The theoretician J. E. Cohen adroitly summarized the
transcendence of the synergy between these fields with his essay “Mathematics is biology’s next microscope, only better; biology is
mathematics’ next physics, only better” (Cohen, 2004). Key to the success of this interaction between these fields is the recognition that
fundamental hypotheses in biology can be translated using the languages of mathematics, probability, and statistics into propositions than
can be clearly probed. The increase in possibilities with such synergism is so dramatic that in some cases, it’s as if a new portal to a field of
scientific inquiry becomes available. Yet, becoming enamored with model construction and the phrasing of novel explanations of biological
phenomena can sometimes obscure the analyst’s vision and the realization that by its very human nature, mathematical models are limited
constructs of biological processes. Mathematical models are indeed misspecifications of natural processes. Understanding the effects of
model misspecification in our scientific inquiry should be paramount. This is the focus of DPT&L. These authors assess analytically and
numerically the performance of Neyman-Person Hypothesis testing (NPHT), Fisher significance testing (NHST), information criteria and
evidential statistics under model misspecification.

This is a provisional file, not the final typeset article
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As mentioned above, evidential statistics seeks to quantify the strength of the evidence in the data for a reference model relative to another
model. This goal is achieved through an evidence function, which is simply a statistic for comparing two models. Our evidence function of
choice was Schwarz Information Criterion, or SIC (Schwarz 1978). The salient property of this and all evidence functions is that their
associated probabilities of making a wrong model choice approach 0 as sample size increases. These probabilities, analogous to Type I and
IT errors in the Neyman-Pearson Hypothesis Testing (NPHT) framework are in fact pre-data error rates. Royall (2000) showed that these
probabilities measure the chances of obtaining “weak misleading evidence” as well as strong misleading evidence. DPT&L shows that in a
context where both models are in fact mathematical misspecifications of reality, making the wrong model choice refers to deeming as best a
model that is not the closest to the true generating process model. By the same token, “misleading evidence” simply corresponds to
obtaining observations that either weakly or strongly support a model other than the one that is the closest to the data-generating process.

Unlike the classic NPHT and Bayesian approaches, the Evidential Statistics paradigm provides sound guidelines to evaluate inferential
errors when none of the proposed statistical models are a perfect representation of the natural, data-generating process. The NPHT
framework depends critically on either the Null or the Alternative hypotheses being a perfect representation of the data generating
mechanism and then fixes the Type I error probability irrespectively of sample size and thus problematically assesses the evidence against
the null hypothesis and remains silent with respect to the evidence for the null hypothesis. The asymmetry of the NPHT error structure leads
to difficulties in interpretation of hypotheses tests. The decision to pick an alternative model over a null hypothesis in and of itself is not
controversial as it has some intuitively desirable statistical properties: for example, the probability to reject the null hypothesis given that the
alternative is true converges to 0 as sample size increases. However, the probability of erroneously choosing the alternative when the null is
true remains stuck at the chosen level alpha regardless of how large a sample size is collected. Matters get more complicated when it is
considered that the original Neyman-Pearson theorem assumes that the data was generated under one of the two models but provides no
guidance whatsoever in the event of model misspecification, a scenario commonly encountered in science. The fact that in scientific practice
model comparison rarely stops at two models further muddying the interpretation of experimental results using the NPHT. To be fair,
overconfidence in model selection procedures also results when the model misspecification is ignored in Bayesian Statistics (Yang and Zhu
2018).

The evidential approach proposes fixing cutoff values for the evidence statistic, not the error probabilities. Under this concept of evidence,
the value of a statistic like the likelihood ratio is evidence, not an error rate that is pre-set. Then, the evidential error probabilities both
converge to 0 as sample size grows large. Finally, under this evidential statistics approach, the conclusion structure of say, a comparison
between two models Hi and H» has a trichotomy of outcomes: i) strong evidence for Hi, /i) weak or inconclusive evidence and iii) strong
evidence for Ho.

Some, not all, information criteria commonly used for model selection are evidence functions. While the AIC only penalizes the likelihood
function using the number of parameters, the SIC is also scaled by the sample size. As a result, as sample size increases, the error in deeming
a model as “best” using the SIC statistics becomes vanishingly small. DPT&L show that this desirable property, called “Information
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consistency” is lacking in the AIC. Inconsistent criteria, such as the AIC, tend to overfit at all sample sizes. Hence, the AIC is not an
evidence function because it is not information consistent.

Although all paradigms of statistical science (NPHT, Bayesian statistics, Evidential Statistics) have flaws (reviewed in L, and Ly), the
Evidential Statistics paradigm possesses more desirable characteristics for the quantification of uncertainty and ultimately, for the design of
inferential statements about the models’ proximity to the true, generating process.

5.5 Brittan and Bandyopadhyay (B&B)

Written by a pair of philosophers of science, B&B provides a good entry into the research topic. Despite maintaining a high level of
intellectual rigor, B&B avoids getting bogged down in technical statistical detail. The authors review the logical structures for scientific
evidence: Hypothetico-deductive testing, Popperian falsification and corroboration, Fisherian significance, Neyman-Pearson hypothesis
testing, the severe testing of Mayo, Bayesian confirmation, and statistical evidence.

The authors are equal opportunity balloon poppers pointing out the limitation of all methodological approaches. B&B focus on the strengths,
weaknesses, and complementarity of statistical evidence and Bayesian confirmation. Contra the prevailing scientific mythos B&B
demonstrate that Bayesian inference is “irreducibly personal”. Bayesian methods do a good job of quantifying personal beliefs, and thus of
informing personal decisions. Echoing L., B&B contend that non-informative priors are not objective and suffer from a variety of other
problems. In contrast, statistical evidence does objectively quantify the relative support in data for specified pairs of models even though the
models put forth for comparison may be generated subjectively.

Science is plagued by a suite of cognitive biases. Being aware of them can mitigate their impact. The authors note that each methodology
works best to answer fairly narrow but different questions. Greater methodological self-consciousness on the part of scientists to match their
choice of statistical approaches to match their scientific questions would promote scientific progress.

B&B close on the same hopeful note and metaphor as do S&H. Despite the undeniable subjectivity of individual scientists, Science itself
may achieve a “Darwinian Objectivity” when the mutational force of subjective scientific creativity is filtered by objectiveevidential model
selection.

5.6 Ponciano and Taper (P&T)

Information criteria have had a profound impact on modern science because they allow researchers to overcome the inadequacies of NPHT
and tackle the multi-model selection process. Although model selection via information criteria gives the analyst an estimate of which
probabilistic approximating models are closest to the generating process, information criterion comparison does not solve the problem of
knowing how good the best model is. Indeed, the absolute distance to the generating process is not estimated through this process.

This is a provisional file, not the final typeset article
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This caveat is all the more important when it is considered that in science, models are commonly misspecified. In this work, the authors
resolve this shortcoming by designing a methodology to estimate a geometric representation of all the models under consideration along with
the generating process. Such representation is a projection of all the models at hand into a two or three-dimensional space. As well, the
location of the generating process in this representation is fully estimated. To estimate this model projection, the authors examined five key
insights from Hirotsugu Akaike’s original work. These insights reveal the deep yet easy to grasp geometrical nature of Akaike’s formulation
of the AIC. P&T extend Akaike’s geometrical interpretation and propose visualizing all models at hand into a reduced space. This reduced
space representation applies ordination techniques to the models themselves so that the analyst may see and estimate the divergence between
each model and every other model including the generating process itself.

P&T’s solution starts from the observation that while standard information criterion analysis considers only the divergences of each model
from the generating process, the divergences amongst all approximating models, typically ignored, are indeed estimable. As a test bed for
their ideas, the authors consider two ecological scenarios, one of them involving an individual-based model simulation framework that
generates data to which different abundance models can be fitted and the second one involving structural equation models.

The authors also compare their approach to model averaging and show that model projection is not as sensitive as model averaging to the
composition of the set of candidate models being investigated. Model averaging artificially favors redundance of model specification
because the more models are developed in any given region of model space, the more heavily this particular region gets weighted.
Furthermore, examining the resulting model space configuration can lead to an in-depth analysis of what are the model attributes that change
from one model to the next that make it so that a model will get closer and closer to the generating process. This examination is the first step
to explore models outside the bounds of the available model set, whereas by using model averaging, by definition, the analyst cannot do so.

Uncertainties around the estimation of model space estimation are yet not fully worked, but TLPD&J offers a first, non-parametric bootstrap
approach to begin examining such question. Model projection methodology should be the starting point to do a science-based examination of
critical model attributes that allow a model to get closer to the generating process (see also T&G). Finally, although P&T use the KL
divergence as the fundamental distance measure, the model projections methodology could be extended or adapted to any other metric.

5.7 Ferguson, Taper, Zenil-Ferguson, Jasieniuk and Maxwell (FTZJ&M)

There are a vast number of information criteria. Academic arguments about which is best are intense and often vitriolic. FTZJ&M indicates
that these arguments may be a tempest in teapot.

Seeking to improve model identification techniques for complex models with inter-dependent parameters, the authors modify Bozdogan’s
Information Complexity Criteria, ICC, to make them consistent and invariant to more kinds of transformations. To validate their suggested
new criteria, FTZJ&M perform a vast array of performance comparisons. Twenty-five information criteria are investigated: Two classical
efficient criteria (AIC and AICc), two classical consistent criteria (BIC and BIC*), three forms of Bozdogan’s ICC, and 18 new
modifications of the ICC. All of these criteria were compared for their ability in attaining three different model selection goals: Selecting
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models with minimum prediction error, identifying the form of the generating model, and estimating the Kullback-Leibler distance to the
generating process. All of this is done under 3 different classes of generating and approximating models, 3 different sample sizes, 3 different
levels of process error, and 3 different levels of collinearity.

FTZJ&M recommend one of their combined forms (BIC+2CvE(Y)) as achieving all measures of quality well under a broad range of
modeling frameworks and having the theoretical advantage of being both scale invariant and consistent. However, it is important to note that
No IC was best for any goal over all conditions and that All IC performed generally well for all goals.

Two important lessons should be taken from FTZJ&M: First, much more attention needs to be paid to the uncertainty of model
identification. And second, for these goals to be achieved sample sizes need to be larger in all model classes than is generally the case in
ecology.

5.8 Claeskens, Cunen and Hjort (CC&H)

Perhaps the most used statistical tools by ecologists are abundance count models. Simply counting the number of individuals of every
species observed in a particular community is the point of entry to deeper studies aiming at understanding the generation and maintenance of
organisms’ diversity. Profound questions examining the processes driving ecological stability, resilience, resistance, invasion, and
persistence all begin with being able to accurately ascertain organisms’ abundances. In our (joint) decades of teaching and mentoring, time
and again count models keep coming back as some of the main instruments of statistical inference sustaining masters’ theses and PhD
dissertations in biology, wildlife ecology and conservation. Ecologists are typically not only interested in estimating one or the other model
parameters leading to particular predictions, but often see parameter estimation as the by-product of what they are typically after, which is
understanding which hypothesized model components better represent the underlying natural processes generating the count data at hand.

CC&H propose and further elaborate on a methodology that may revolutionize the reaches of an ecology-driven statistical analyses and in
particular, multi-model selection for models of count data. The main idea of the Focused Information Criterion (FIC) approach is to provide
a model selection framework where the comparison and the ranking is formally defined according to the scientific quest at hand.
Recognizing that different scientific teams might ask different focused questions of the same data and list of candidate models, CC&H
design a methodology to focus the model selection process using different functions of the parameters of interest. When mainstream model
selection tools are used in ecology and in a given scenario a model is chosen as the “best” model, practitioners are often left wondering why,
in a specific scientific sense, such model is indeed the best model. FIC offers a theoretically sound methodology to obtain better, more
precise estimates of a quantity of interest. For count models, such quantity is often the probability of a rare event occurring. As arbitrary or
stale as it may sound at first, understanding and estimating accurately rare events in ecology has always been at the center of key
explanations of diversity. Rarity, or “rare counts”, have been for a long time (e.g. Patil and Taillie, 1982) hypothesized to be a critical
component of explanations of how hyper-diverse communities can be maintained. Such was also the conclusion of one of the most recent
and cited explanations of the maintenance of diversity in tropical forests published by Levi et al in (2019). As it turns out, the Focused
Information Criterion of CC&H), which seeks to minimize the bias and the variance of a quantity of interest, works particularly well for

10
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estimating the probability of rare events. In line with the “rarity” comments above, CC&H show as examples a situation where the focus of
the inference is estimation of the probability of observing counts of a species above an arbitrary number. Importantly, the authors show
how other information criteria like the BIC, although they may address the problem of determining which model is the closest to the true
data generating mechanism, may not point towards the models that do the best job at estimating for instance, the tail of a distribution of
counts. By allowing for a flexible specification of different “foci” of interest, CC&H provide a welcome addition to the toolbox of the
evidentialist. This tool is not only conceptual but is crystallized in a practical, easy to use library for R users, the “fic” library.

5.9 Markatou and Sofiktou (M&S)

Most of the papers summarized so far share a key point: a reliance on the Kullback-Leibler divergence as the main instrument to develop
and exemplify the theory and practice of Evidential Statistics. A natural reaction of any statistician to such heavy reliance on a single metric
should be to ponder what would happen if different metrics or distances are used. Can the desiderata of evidential statistics be kept under
different measures of divergence between the generating process and any approximating model, or amongst models themselves? Would the
theoretical and asymptotic warrants of evidential statistics hold under different distance measures? How can statisticians visualize the
strength of evidence under different measures? How does a measure of “strong evidence” using the KL divergence translates to other scales
of divergence? These and other questions are approached using philosophical and rigorous statistical techniques in the contribution by
M&S. Importantly, M&S’s contribution builds upon the pioneering concepts of model adequacy by Lindsay (2004) and evidence functions
by Lele (2004). Notably, the authors propose an explanatory analysis tool called a “standardized distance ratio plot” that can be used to
visualize the strength of evidence provided for or against hypotheses of interest using different divergence measures. Hence, this paper
represents itself growth in the field and marks a clear path for future research. Indeed, of all the contributions in this special issue, this one is
perhaps the one topic that is most ripe for further research and study. An open direction that seems promising is shining light on the behavior
of different statistical divergence measures under model misspecification. Whenever we give seminars in statistics departments about
evidential statistics, the question of usage of other divergence measures invariably comes up. We therefore encourage both, a close reading
of this paper and thinking about building extensions to these results using M&S’s work as the foundation.

5.10 Stuart and Blume (S&B)

New statistical approaches often face resistance from empirical scientists. It can help acceptance if a new technique seems familiar. Stuart
and Blume (S&B) cleverly disguise an evidential procedure with the face of a p-value, something that virtually every working scientist is
familiar with. It does look like a p-value in that the statistic can take on values of 0, 1, and everything in between. S&B even strengthen the
familiarity by calling it a SGPV or second-generation p-value.

Of course, a SGPV is not a p-value, it is not even a probability. The SGPV is better than a p-value. The question of interest is whether an
unknown, but estimated, parameter is in an interval null or is outside of the interval null. A p-value or a null hypothesis significance test
(NHST) can indicate that the parameter is likely outside the null, but neither can give you support that it is inside the null. Conversely, an
equivalence test can give you support for the parameter being inside the interval but not for being outside the interval.

11
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Evidence like, the procedure divides the range of possible value for the SGPV into 3 regions: The point SGPV=0, which indicates strong
evidence the parameter is in the interval null. The point SGPV=1, which indicates strong evidence the parameter is not in the null. And, the
region of all values in between, which indicate that the data are consistent with both hypotheses and which way the evidence is tipping.

S&B also demonstrate another important evidential property. The SGPV is consistent; the probability of misleading evidence goes to 0 as
sample size increases.

The SGPV is very flexible and can be applied retroactively to any scientific literature in which a statistical interval is published. S&B claim
that SGPV is applicable to any type of interval confidence, support, or credible. The authors spend the bulk of the paper demonstrating good
statistical properties for the SGPV under a wide range of circumstances.

5.11 Lele a (La)

It is undeniably true that State-Space Models (SMMs) or more generally, hierarchical statistical models, nowadays occupy a central role in
ecology and evolution. SMMs are used to study the population dynamics of animals with complex life histories, to estimate abundances
under detection limitations and heterogeneity (among individuals, across space and in time).. Entire statistical ecology books for graduate
students and researchers alike with titles around “hierarchical models in ecology” now fill the electronic and physical bookshelves of modern
ecologists and academicians. As well, social media with short instructionals, blogposts and even tweets by the authors of these books are
consumed voraciously by graduate students needing to solve complex problems in the face of non-standard datasets. Software authors in
turn, face the challenge of putting out for consumption accessible programs that can weather usage by anybody interested in applying a
given hierarchical model. Over recent years, this high demand for accessible solutions to complex problems has facilitated the establishment
of uncritical use of modern statistical machinery.

L. approaches the consequences of such uncritical use head-on by clearly illustrating with real-life examples the predicaments brought
about by using non-informative Bayesian analysis. Indeed, non-informative Bayesian analysis tends to be nowadays the default setting
under which complex statistical models in ecology are fitted. In the name of pragmatism, it is often argued that in modern, extensive big
data sets the sample size is so large that the likelihood information “swamps” any prior effect and that effectively, the data will “speak for
itself”.

L. carefully delineates the flaws in such reasoning and vividly details how and why wildlife management decisions can vastly suffer from
such uncritical use of Bayesian techniques. In particular, he shows that because of the lack of parameterization invariance of non-
informative Bayesian Analysis, all subjective Bayesian inferences can be disguised as “objective”, non-informative Bayesian inferences.
Furthermore, cryptic biases can be introduced in the resulting analyses because the induced priors on functions of parameters are not non-
informative.
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Three other serious flaws are then discussed besides these two. However, even if the author had presented only these two problems,
practitioners, ecologists and wildlife managers should take note, because if the results of an uncritical non-informative Bayesian analysis is
subject to unstated and unqualified biases, it may be easily challenged in the legislature and in the Court of Law. For completeness,
professor Lele emphasizes that hierarchical models can be and are analyzed using the likelihood and frequentist methods. That is, any
Bayesian analysis can be transformed to a likelihood analysis by data cloning.

5.12 Lele b (Lb)

Uncertainty is a fundamental part of any inference, but the depth of its complexity is often not adequately appreciated. This paper, Ly, gives
a surprisingly readable review of many of the issues involved with statistical uncertainty. Ly begins with a short list, culled from the
literature, of desirable features for uncertainty quantification procedures: 1) transformation invariance, 2) uncertainty measure reflect data
informativeness, 3) ascertainability, and 4) diagnostic potential.

The first, transformation invariance, implies that the probability of an event occurring or not occurring is a reasonable measure of
uncertainty. This of course requires understanding what probability is and the paper next discusses the two major definitions of probability
used by statisticians and scientists alike: aleatory or frequency-based probability and epistemic or belief-based probability.

For adherents of frequentist statistics, data (i.e., data sets) are random realizations from a stochastic generating process. Consequently,
estimates of parameters inherit stochasticity from the generating process through the stochasticity of data sets. The distribution of parameter
estimates over an infinite number of random data sets is called the true sampling distribution of the parameter. One can estimate a
parameters sampling distribution by bootstrap or analytic approximation. The estimated sampling distribution contains a great deal of
information about the uncertainty of the procedure. Much of this uncertainty is captured by confidence intervals. While arguing for the
utility of confidence intervals, Ly points out they are often misinterpreted.

Ly points out that the target of a confidence interval is to cover the true parameter, not to cover the parameter estimated in another
experiment. Another common way that confidence intervals are misinterpreted is by failing to distinguish between unconditional/pre-data
and conditional/post-data intervals. Both kinds of intervals are commonly used in the scientific literature. In separate sections Ly, returns to
the questions of interval construction and interpretation from Bayesian and evidentialist perspectives.

As pointed out by B&B “any adequate (‘reliable’) hypothesis must be both explanatory and predictive.” It is only through the verification of
predictions that the ascertainment of models or hypotheses is possible. Ly takes this very seriously reviewing the representation of prediction
uncertainty in all three inferential paradigms. Further, a new flexible approach to the calculation of an evidential predictive density is
suggested and its advantages, both demonstrated and potential, are discussed.

The paper concludes by rehearsing the key features, strengths, and weaknesses of the characterization of uncertainty in the three paradigms
in the light of the four desiderata. None is perfect, but overall, the evidentialist most closely conforms. All three paradigms require scientists
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to specify their models and whether inference should conditional or unconditional. Bayesian inference further requires the specification of
priors, while evidence requires the specification of an evidence function. The last thing any reader wants to hear is that the quality of their
scientific inference depends critically on the active choices they make—regardless of their statistical paradigm. Nevertheless, this is
precisely the last thing that Ly says.

5.13 Toquenaga and Gagné (T&G)

Genetic sequencing is becoming an increasingly important tool in ecological and evolutionary studies. This trend has been accelerated by
the new techniques of “next-generation sequencing”, NGS. These sequencing procedures work by digesting a genetic sequence into many
small fragments (called reads), sequencing the fragments, and then inferring the original sequence computationally. This is like the spy
novel trope of pasting a shredded letter back together.

With the scientific opportunities, come many statistical challenges. There are many programs that make these calculations. Unfortunately,
they don’t agree—with each other and because many of the programs involve stochastic searches, even between multiple runs of the same
program. T&G, use evidential principles to develop methods to choose among the many putative sequences offered by an array of
sequencing software, to assess how good the proposed sequences are, and even to improve them.

The thinking in T&G is as follows: If multiple algorithms produce multiple sequences, each must be a model of the true sequence. If an
appropriate function for measuring the divergence between these sequence models can be found, then the model projections in model space
methods of P&T can be used to understand the relationships among the proposed models and even to a true sequence. The Levenshtein edit
distance, as a measure of the minimum number of changes needed to equate two sequences from finite alphabets, offers itself as an
appropriate divergence.

T&G test this proposition by taking a known genetic sequence and randomly breaking it into a number of fragments (with potential overlap).
The number and distribution of fragment sizes are set to mimic typical digestion results. In their test case, T&G are able to construct, using
non-metric dimensional scaling, a two-dimensional map of the sequence estimates produced by the various sequencing programs compared
by the authors. Their map correctly identifies the best-proposed sequence.

In this test case, one of the programs is able to correctly reconstruct the true sequence. However, such a felicitous occurrence may not be
general. Usefully, T&G propose an approach that can suggest sequences likely to improve on the set of mistaken sequences. They do this by
proposing new sequence models which are consensus sequences of existing models and seeing where they fit into the map.

T&G confirm their method with a parametric bootstrap based on a specified true sequence. Implicit in this is the potential to use similar
bootstrapping to assess the uncertainty in sequence construction.

5.14 Taper, Lele, Ponciano, Dennis, and Jerde (TLPD&J).
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TLPD&J, develops themes from two other papers in this research topic. DPT&L show that in the presence of model misspecification
Royall’s universal bound on the strength of misleading evidence does not hold. L, reminds us that statical uncertainty comes in two forms:
global/unconditional and local/conditional.

To Royall’s regions of weak and strong evidence (Royall, 2000) the authors intersperse a third category, that of prognostic evidence. This is
evidence not so weak as to be dismissed nor so strong as to be considered overwhelming. Thus, while evidence is itself continuous, useful
descriptive categories for considering evidence are constructed.

TLPD&J show that even in the presence of model misspecification the uncertainty in model identification can be quantified in the form of
nonparametric bootstrap confidence intervals on evidence. This decouples evidence and its uncertainty and allows scientists to consider both.
The authors consider evidence (either prognostic or strong) for one model over another to be “secure” if the lower 5% confidence limit on
the evidence is above the preset prognostic boundary, k.

To demonstrate the utility of this approach, TLPD&J make a detailed reanalysis of model selection in Grace and Keeley’s (2006) classic
structural equation modeling of post-fire diversity recovery in California shrublands. The use of evidence confidence intervals develops a
much more nuanced understanding of which model components are likely to be robust and which are equivocal.

Technically, TLPD&J use an improved version of the EIC (see Kitagawa and Konishi, 2010). The improvements include: 1) bootstrapping
of the ASIC rather than individual likelihoods to incorporate the effects of misspecification geometry. And 2) Identification of components
of EIC that correspond to global and local inference.

The paper finishes with an extended discussion of the interpretation of global and local inference in science.
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Building evidence functions * * * * * *
Quantifying the uncertainty of evidence * * *
Logic of statistical scientific inference * * * * * *
Application * * * * * * ¢

Model space geometry * * * * *

Comparative statistical inference * * * * |

Multiple comparisons and combining data | * * * *
Model set misspecification * * * * *
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