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Contribution to the field

Statistics is arguably the most powerful of all scientific instruments. For the last century, statistics has been dominated by two
alternative approaches: Error statistics and Bayesian statistics. Unfortunately, both approaches suffer from technical and
philosophical problems. These problems create biases in scientific inference and also lead these approaches to misrepresent the
uncertainty in scientific inference leading to the replication crisis in science. We believe that the evidential approach can provide a
correction to statistics. Evidential statistics is a cluster of statistical methods and approaches being developed to meet a set of
desiderata or meta-criteria that were selected so as to impose desirable inferential properties on those methods.
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1 Why this research topic 13 

We have undertaken this research topic for several reasons:  First to promote and disseminate the ideas and techniques of evidential statistics 14 
to ecologists and evolutionary biologists so that their research might benefit increased clarity that evidential thinking engenders. And, second 15 
to encourage statisticians to think how their own work relates to this emerging approach to the fundamental problems of statistics. 16 

2 How to read this volume 17 

Selecting an optimal order to read the papers of this research topic requires decisions on the part of the reader.  The papers are not 18 
ordered in any developmental fashion, but simply by the order that they were first published.  Another difficulty is that there are two target 19 
audiences for this research topic: First, quantitative scientists, primarily ecologists and evolutionary biologists, who might wish to apply 20 
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evidential thinking to their own research; and second, statisticians who might be interested in furthering the technical development of 21 
evidential statistics.  22 

Table 1 lays out the primary themes considered in each paper and identifies authorship abbreviations. Those readers who would like 23 
to begin with statistical principles, then move to applications, and then conclude with more philosophical considerations might read the topic 24 
in the order of DPT&L, P&T, Lb, TLPD&J, S&T, M&S, FTZJ&M, CC&H, T&G, S&B, JKECS&T, La, B&B, S&H.  For readers who might 25 
prefer to begin with philosophy, and move to application, and then finish with technical details, a reasonable order might be: B&B, S&H, 26 
JKECS&T, T&G, La, S&B, FTZJ&M, CC&H, DPT&L, P&T, Lb, TLPD&J, M&S, S&T. 27 

<Table 1 near here> 28 

3 What is evidential statistics 29 

Statistics is arguably the most powerful of all scientific instruments.  For the last century, statistics has been dominated by two alternative 30 
approaches: Error statistics1 and Bayesian statistics.  Unfortunately, both approaches suffer from technical and philosophical problems (see 31 
Taper and Ponciano, 2016 for discussion). These problems make the instrument of statistics like the Hubble telescope before its optics were 32 
corrected in 1993: A fantastic tool not living up to its full potential.  33 

We believe that the evidential approach can provide a similar technical correction to statistics. Evidential statistics is a cluster of statistical 34 
methods and approaches being developed to meet a set of desiderata or meta-criteria that were selected so as to impose desirable inferential 35 
properties on those methods (see JKECS&T for a list of desiderata). 36 

The central question for evidence is simple: Which of two models of reality is better supported by the data?    More technically, evidence is a 37 
data-based estimate of the difference of the divergences of each of the distributions implicit in two models to the data distribution resulting 38 
from an unknown true generating process (see Lele, 2004; and TLPD&J).  Several salient features of the evidentialist perspective are 39 
immediately obvious: First, evidence is comparative, second, neither model is given a favored status, and third, that a “true” model is not 40 
assumed to be in the model set.  41 

These guiding principles allows evidential statistics to draw on and refine elements from error statistics, likelihoodism, Bayesian statistics, 42 
information criteria, and robust methods, evidential statistics to create an approach that smoothly incorporates model identification, model 43 

 
1 By error statistics we mean that subcategory of frequentist statistics that uses error probabilities as the primary inferential quantity including Fisherian significance, null 
hypothesis significance testing, Neyman-Pearson hypothesis testing, and severe testing.  The term classical statistics is sometimes applied to this grouping, but this can 
be considered a misnomer as Bayesian statistics predates these methods considerably. 
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uncertainty, model comparison, parameter estimation, parameter uncertainty, pre-data control of error,  post-data assessment of uncertainty, 44 
and post-data strength of evidence into a single coherent framework. 45 

4 Some implications of evidential statistics for science 46 

The implications of evidential statistics for science are manifold.  For brevity, we focus here on the impact an evidential approach could 47 
have on the replication crisis (Pashler and Wagenmakers, 2012). The replication crisis presents a profound challenge to both statistics and 48 
science.   As more replication of scientific studies is attempted, it is being found that studies tend not to replicate at their nominal rates.  This 49 
is undermining both trust in statistics by scientists and trust in science by the general population. 50 

Virtually all models are to some degree misspecified (see TLPD&J for a technical definition of “misspecified”). Misspecification in itself is 51 
not a bad thing.  A true model would be enormously complex and would be neither comprehensible nor estimable.  What is dangerous is 52 
inference that doesn’t acknowledge misspecification.  With Neyman-Person Hypothesis testing (NPHT), error rates become distorted when 53 
both models are misspecified. Error rates can be less than, equal to, or greater than their nominal rates (DPT&L) making nominal rate 54 
replication extremely unlikely.  Furthermore, under some reasonable model space geometries, a NPHT will select the wrong model with 55 
probabilities that go to 1 as sample size increases (DPT&L). In contrast, evidential model selection reliability seems in simulation to be 56 
estimated unbiasedly (Taper et al. 2019) and all evidential error rates go to 0 as sample size increases (DPT&L).   57 

None of Fisherian significance (FS), null hypothesis significance tests (NHST), or NPHT can produce evidence for the null model 58 
(DPT&L).  This is problematic because often it is the null which of scientific interest. Statisticians teach that “absence of evidence is not 59 
evidence of absence”, but the need of scientists to say something about the null model forces this warning to be often ignored.  In evidential 60 
statistics reference and alternative models are always correctly treated symmetrically (DPT&L, TLPD&J, JKECS&T) for inference, 61 
although this does not imply that decision thresholds need to be symmetric. 62 

When scientists, reviewers, and journals that do recognize that FS, NHST, and NPHT do not produce evidence for the null, a common 63 
response is publication bias, the tendency not to publish studies with attained P-values less than 0.05 (Franco et al. 2014).  This “file drawer 64 
problem” creates several biases in the literature.  First, of course, is the lack of studies showing evidence for the null.  More insidiously, 65 
because all tests are stochastic, a number of studies are published falsely showing significant evidence for the alternative (Type I errors).  66 
These are not balanced in the literature by the many studies in the file drawer. 67 

The immense pressure on scientists to publish leads many, intentionally or unintentionally, into questionable research practices to avoid the 68 
file drawer problem.  One of these is “cherry picking”, the retroactive selection of data and/or statistics so as to achieve significance 69 
(Ioannides, 2019).  Another is HARKing, Hypothesizing After Results are Known (Kerr, 1998).  Both have drastic effects on the replication 70 
crisis.   71 

In review



  Evidential Statistics and Science 

 
4 

This is a provisional file, not the final typeset article 

Evidential analysis gives scientists statistically correct language (TLPD&J) to speak about strong evidence for the null versus the alternative, 72 
strong evidence for the alternative versus the null, and evidence that doesn’t clearly distinguish between the two models.  All of which are of 73 
scientific interest.  Even results that can’t distinguish between models tell us where more data is needed. The results of any well-designed 74 
scientific study now have meaning and could potentially be publishable—regardless of significance. 75 

 Undertaken in an evidential statistics context, HARKing is a legitimate and even beneficial practice (Taper and Gogan, 2002). The evidence 76 
in HARKing has always been clear, although estimation of the uncertainty remained a problem (Taper and Lele, 2004).  Bootstrapping of 77 
evidential comparisons now improves the understanding of the uncertainty of even HARKed results (Taper & Lele 2011, Taper et al. 2019, 78 
TLPD&J). 79 

5 Comments on the articles: 80 

5.1 Shimodaira and Terada (S&T) 81 

At the heart of ecology is a search to better understand and characterize the relationship between species as well as that of a group of species 82 
and their environmental variables. On the other hand, a central topic in evolutionary studies is inferring the ancestral relationships of a set of 83 
extant species.  In both cases, graph theory has become the theoretical foundation upon which the biological edifices in these two fields are 84 
constructed.  In ecology, species are thought as nodes in a diagram and the relationships between species are represented as edges uniting 85 
any two nodes.  In evolution, a phylogenetic binary tree is a diagram representing the evolutionary relationships among a set of extant 86 
species, which are shown as the tips (leaves) of the tree.  Each interior node in the tree connects with three other nodes: two descendants and 87 
one ancestor.   88 

The binary phylogenetic trees are called bifurcating trees because there are two branches leading out from each interior node. Proceeding 89 
from the present-day species of interest backwards in time under this binary framework eventually leads to a common ancestor , the root of 90 
the tree. In that context, one particular “tree topology” is one specific construction of the possible set of relationships among the species of 91 
interest and represents a single hypothesis about the ancestral relationships between these species, all the way back to their most recent 92 
common ancestor.  How many such hypotheses can one posit with 𝑛𝑛 species?  With two species the answer is one, with three species the 93 
answer is three, with four it’s fifteen, with five it’s one hundred and five and in general, with 𝑛𝑛 species it’s (2𝑛𝑛 − 3)!/(2𝑛𝑛−2(𝑛𝑛 − 2)!).  For 94 
example, for six species, the number considered by S&T, one could posit 945 such trees.   95 

In such setting, it quickly becomes obvious that good treatments of the statistical problems of multi-model selection and multiple hypotheses 96 
testing are key to making any progress in this area.  Previously, the leading approach to deal with the problem of selecting among these 97 
models (hypotheses) the best representation of reality used NHST. This body of work was started by Kishino and Hasegawa (1989), and 98 
continued by Shimodaira (1998), Shimodaira and Hasegawa (1999) and Shimodaira (2002).  S&T now goes one step further and provides a 99 
novel methodology of shifting the phylogenetics question away from: “is a newly estimated tree topology significantly similar to the 100 
unknown, true species topology?” and instead ask: “from this set of models, which tree topology and group of models are significantly 101 
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0 :H Rµ∈ versus 1 : cH Rµ∈ ), the tests are not standard NP tests. Truth does not lie in either 108 
hypothesis, but instead is being projected onto the manifold cR R∪ . Further, the pseudo data being used to generate the distribution of the 109 
test statistic does not come from H0, but is generated by a non-parametric bootstrap.  Thus, the difference between the inference in S&T and 110 
TLPD&J may be little more than the statistics they choose to present. 111 

5.2 Scheiner & Holt (S&H) 112 

This paper takes the readers out of the weeds and forces them to look simultaneously at the trees and the forest.  Deeply informed by both 113 
the history and the philosophy of science, the manuscript points out that evidential statistics formally only deals with the relationships 114 
among models and data; S&H then ask how evidential statistics can inform either the generation or the support for general and constitutive 115 
theories. Clearly it can because Peirce’s abduction (Peirce, 1974) can be thought of as a conceptual adequacy measure for models, 116 
hypotheses, or theories, while modern abduction, i.e. inference to the best explanation (Haig, 2009)) can be thought of as conceptual 117 
evidence for the same. 118 

In an analogy to biological evolutionary theory, S&H discuss how model selection, an evidential process, can act as a selective force to 119 
winnow the models included in constitutive theories.  S&H further suggest that pattern matching as well as Whewell’s consilience and 120 
coherence (Forster and Wolfe, 1999) might possibly be utilized in formal procedures for quantifying the evidence supporting one theory 121 
over another.  122 

Despite the excellence of this article, S&H do sin against science in suggesting that sometimes statistics is not necessary2. They claim for 123 
instance that if something never occurs then no statistics is necessary. To which a statistician would query, “never occurs in how many 124 
trials?”  The evidential impact of something never occurring is very different in experiments of 1 trial, 4 trials, or 8 trials (see JKECS&T). 125 
Because they are writing as theoreticians, S&H’s sin is only venal.  For theoreticians, statistics and even data, are always optional.  The job 126 
of theoretical science is to construct alternative internally consistent possible worlds.  The job of empirical science is to determine which of 127 
those possible worlds best describes the real world—and for that, statistics is always needed.    128 

 
2 In prepublication conversations on this point, we told the authors that they could say whatever they wanted in their paper, but that the final word would belong to the 
editors. 
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5.3 Jerde, Kraskura, Eliason, Csik, Stier, and Taper (JKECS&T) 129 

KECS&T describe the motivation for, and the logic of, scientific inference using evidential statistics and demonstrate the utility of the 130 
evidential approach by tackling a long-standing controversial question in ecological physiology: How does standard metabolic rate (SMR) 131 
scale (intra-specifically) with individual body mass, and is this scaling similar among species?  For fish, theoretical scaling rates of 0.67, 132 
0.75, and 1.00 have been proposed.   Empirical estimates of scaling coefficients vary tremendously among studies and generally all have 133 
large uncertainties leaving the theoretical question unprobed. JKECS&T curate a large data set composed of a total of 1456 observations in 134 
55 separate trials on 12 species, all using current state of the art techniques for measuring SMR. The use of linear mixed effect models 135 
allowed JKECS&T to combine all of these trials for inference. 136 

Four suites of four models using random and fixed effects carefully explore the impacts of species, trial (within species), and temperature on 137 
the scaling of SMR with body mass.  Model families were evaluated using the Schwarz information criterion (SIC, also known as the 138 
BIC).  The SIC is a consistent criterion and the comparison of SIC values is an evidential procedure.  Within and between model suites, 139 
evidence for specific values of the scaling coefficient were compared using profile ΔSIC curves.  A ΔSIC value comparing two models 140 
indicates strong evidence for the model with lower SIC. 141 

Two model suites with a free parameter estimate of the metabolic scaling, separated themselves only by a ΔSIC of 1.5, were strongly 142 
differentiated from all others. Both had fixed effects for temperature and random effects (intercepts) for species.   The best model had the 143 
log(weight) slope vary randomly across species (with modest variation), while the second-best model had a common slope over all species.  144 
In the best model the ML estimate for the mean scaling coefficient is 0.89 with a strong evidence profile ΔSIC interval spanning 0.82-0.99. 145 

The evidence strongly indicates that none of the a priori theoretical scaling coefficients describe the scaling behavior in real fish.   146 

5.4 Dennis, Ponciano, Taper, and Lele (DPT&L)  147 

Mathematics, and in particular probability, have long been intertwined with biology.  The theoretician J. E. Cohen adroitly summarized the 148 
transcendence of the synergy between these fields with his essay “Mathematics is biology’s next microscope, only better; biology is 149 
mathematics’ next physics, only better” (Cohen, 2004). Key to the success of this interaction between these fields is the recognition that 150 
fundamental hypotheses in biology can be translated using the languages of mathematics, probability, and statistics into propositions than 151 
can be clearly probed.  The increase in possibilities with such synergism is so dramatic that in some cases, it’s as if a new portal to a field of 152 
scientific inquiry becomes available.  Yet, becoming enamored with model construction and the phrasing of novel explanations of biological 153 
phenomena can sometimes obscure the analyst’s vision and the realization that by its very human nature, mathematical models are limited 154 
constructs of biological processes. Mathematical models are indeed misspecifications of natural processes.  Understanding the effects of 155 
model misspecification in our scientific inquiry should be paramount.  This is the focus of DPT&L. These authors assess analytically and 156 
numerically the performance of Neyman-Person Hypothesis testing (NPHT), Fisher significance testing (NHST), information criteria and 157 
evidential statistics under model misspecification.   158 
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As mentioned above, evidential statistics seeks to quantify the strength of the evidence in the data for a reference model relative to another 159 
model. This goal is achieved through an evidence function, which is simply a statistic for comparing two models.  Our evidence function of 160 
choice was Schwarz Information Criterion, or SIC (Schwarz 1978).  The salient property of this and all evidence functions is that their 161 
associated probabilities of making a wrong model choice approach 0 as sample size increases.  These probabilities, analogous to Type I and 162 
II errors in the Neyman-Pearson Hypothesis Testing (NPHT) framework are in fact pre-data error rates.  Royall (2000) showed that these 163 
probabilities measure the chances of obtaining “weak misleading evidence” as well as strong misleading evidence. DPT&L shows that in a 164 
context where both models are in fact mathematical misspecifications of reality, making the wrong model choice refers to deeming as best a 165 
model that is not the closest to the true generating process model.  By the same token, “misleading evidence” simply corresponds to 166 
obtaining observations that either weakly or strongly support a model other than the one that is the closest to the data-generating process.    167 

Unlike the classic NPHT and Bayesian approaches, the Evidential Statistics paradigm provides sound guidelines to evaluate inferential 168 
errors when none of the proposed statistical models are a perfect representation of the natural, data-generating process.  The NPHT 169 
framework depends critically on either the Null or the Alternative hypotheses being a perfect representation of the data generating 170 
mechanism and then fixes the Type I error probability irrespectively of sample size and thus problematically assesses the evidence against 171 
the null hypothesis and remains silent with respect to the evidence for the null hypothesis.  The asymmetry of the NPHT error structure leads 172 
to difficulties in interpretation of hypotheses tests. The decision to pick an alternative model over a null hypothesis in and of itself is not 173 
controversial as it has some intuitively desirable statistical properties: for example, the probability to reject the null hypothesis given that the 174 
alternative is true converges to 0 as sample size increases. However, the probability of erroneously choosing the alternative when the null is 175 
true remains stuck at the chosen level alpha regardless of how large a sample size is collected.  Matters get more complicated when it is 176 
considered that the original Neyman-Pearson theorem assumes that the data was generated under one of the two models but provides no 177 
guidance whatsoever in the event of model misspecification, a scenario commonly encountered in science. The fact that in scientific practice 178 
model comparison rarely stops at two models further muddying the interpretation of experimental results using the NPHT.  To be fair, 179 
overconfidence in model selection procedures also results when the model misspecification is ignored in Bayesian Statistics (Yang and Zhu 180 
2018). 181 

The evidential approach proposes fixing cutoff values for the evidence statistic, not the error probabilities.  Under this concept of evidence, 182 
the value of a statistic like the likelihood ratio is evidence, not an error rate that is pre-set.  Then, the evidential error probabilities both 183 
converge to 0 as sample size grows large.  Finally, under this evidential statistics approach, the conclusion structure of say, a comparison 184 
between two models H1 and H2 has a trichotomy of outcomes: i) strong evidence for H1, ii) weak or inconclusive evidence and iii) strong 185 
evidence for H2. 186 

Some, not all, information criteria commonly used for model selection are evidence functions. While the AIC only penalizes the likelihood 187 
function using the number of parameters, the SIC is also scaled by the sample size. As a result, as sample size increases, the error in deeming 188 
a model as “best” using the SIC statistics becomes vanishingly small. DPT&L show that this desirable property, called “Information 189 
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consistency” is lacking in the AIC. Inconsistent criteria, such as the AIC, tend to overfit at all sample sizes.   Hence, the AIC is not an 190 
evidence function because it is not information consistent. 191 

Although all paradigms of statistical science (NPHT, Bayesian statistics, Evidential Statistics) have flaws (reviewed in La and Lb), the 192 
Evidential Statistics paradigm possesses more desirable characteristics for the quantification of uncertainty and ultimately, for the design of 193 
inferential statements about the models’ proximity to the true, generating process. 194 

5.5 Brittan and Bandyopadhyay (B&B)  195 

Written by a pair of philosophers of science, B&B provides a good entry into the research topic.  Despite maintaining a high level of 196 
intellectual rigor, B&B avoids getting bogged down in technical statistical detail. The authors review the logical structures for scientific 197 
evidence: Hypothetico-deductive testing, Popperian falsification and corroboration, Fisherian significance, Neyman-Pearson hypothesis 198 
testing, the severe testing of Mayo, Bayesian confirmation, and statistical evidence. 199 

The authors are equal opportunity balloon poppers pointing out the limitation of all methodological approaches. B&B focus on the strengths, 200 
weaknesses, and complementarity of statistical evidence and Bayesian confirmation. Contra the prevailing scientific mythos B&B 201 
demonstrate that Bayesian inference is “irreducibly personal”. Bayesian methods do a good job of quantifying personal beliefs, and thus of 202 
informing personal decisions.  Echoing La, B&B contend that non-informative priors are not objective and suffer from a variety of other 203 
problems.  In contrast, statistical evidence does objectively quantify the relative support in data for specified pairs of models even though the 204 
models put forth for comparison may be generated subjectively. 205 

Science is plagued by a suite of cognitive biases.  Being aware of them can mitigate their impact.  The authors note that each methodology 206 
works best to answer fairly narrow but different questions. Greater methodological self-consciousness on the part of scientists to match their 207 
choice of statistical approaches to match their scientific questions would promote scientific progress. 208 

B&B close on the same hopeful note and metaphor as do S&H. Despite the undeniable subjectivity of individual scientists, Science itself 209 
may achieve a “Darwinian Objectivity” when the mutational force of subjective scientific creativity is filtered by objectiveevidential model 210 
selection.    211 

5.6 Ponciano and Taper (P&T) 212 

Information criteria have had a profound impact on modern science because they allow researchers to overcome the inadequacies of NPHT 213 
and tackle the multi-model selection process. Although model selection via information criteria gives the analyst an estimate of which 214 
probabilistic approximating models are closest to the generating process, information criterion comparison does not solve the problem of 215 
knowing how good the best model is.  Indeed, the absolute distance to the generating process is not estimated through this process.   216 
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This caveat is all the more important when it is considered that in science, models are commonly misspecified. In this work, the authors 217 
resolve this shortcoming by designing a methodology to estimate a geometric representation of all the models under consideration along with 218 
the generating process.  Such representation is a projection of all the models at hand into a two or three-dimensional space. As well, the 219 
location of the generating process in this representation is fully estimated.  To estimate this model projection, the authors examined five key 220 
insights from Hirotsugu Akaike’s original work.  These insights reveal the deep yet easy to grasp geometrical nature of Akaike’s formulation 221 
of the AIC.  P&T extend Akaike’s geometrical interpretation and propose visualizing all models at hand into a reduced space.  This reduced 222 
space representation applies ordination techniques to the models themselves so that the analyst may see and estimate the divergence between 223 
each model and every other model including the generating process itself.   224 

P&T’s solution starts from the observation that while standard information criterion analysis considers only the divergences of each model 225 
from the generating process, the divergences amongst all approximating models, typically ignored,  are indeed estimable.  As a test bed for 226 
their ideas, the authors consider two ecological scenarios, one of them involving an individual-based model simulation framework that 227 
generates data to which different abundance models can be fitted and the second one involving structural equation models.   228 

The authors also compare their approach to model averaging and show that model projection is not as sensitive as model averaging to the 229 
composition of the set of candidate models being investigated. Model averaging artificially favors redundance of model specification 230 
because the more models are developed in any given region of model space, the more heavily this particular region gets weighted.  231 
Furthermore, examining the resulting model space configuration can lead to an in-depth analysis of what are the model attributes that change 232 
from one model to the next that make it so that a model will get closer and closer to the generating process.  This examination is the first step 233 
to explore models outside the bounds of the available model set, whereas by using model averaging, by definition, the analyst cannot do so. 234 

Uncertainties around the estimation of model space estimation are yet not fully worked, but TLPD&J offers a first, non-parametric bootstrap 235 
approach to begin examining such question. Model projection methodology should be the starting point to do a science-based examination of 236 
critical model attributes that allow a model to get closer to the generating process (see also T&G).  Finally, although P&T use the KL 237 
divergence as the fundamental distance measure, the model projections methodology could be extended or adapted to any other metric. 238 

5.7 Ferguson, Taper, Zenil-Ferguson, Jasieniuk and Maxwell (FTZJ&M) 239 

There are a vast number of information criteria. Academic arguments about which is best are intense and often vitriolic.  FTZJ&M indicates 240 
that these arguments may be a tempest in teapot.  241 

Seeking to improve model identification techniques for complex models with inter-dependent parameters, the authors modify Bozdogan’s 242 
Information Complexity Criteria, ICC, to make them consistent and invariant to more kinds of transformations. To validate their suggested 243 
new criteria, FTZJ&M perform a vast array of performance comparisons.  Twenty-five information criteria are investigated: Two classical 244 
efficient criteria (AIC and AICc), two classical consistent criteria (BIC and BIC*), three forms of Bozdogan’s ICC, and 18 new 245 
modifications of the ICC.  All of these criteria were compared for their ability in attaining three different model selection goals:  Selecting 246 

In review



  Evidential Statistics and Science 

 
10 

This is a provisional file, not the final typeset article 

models with minimum prediction error, identifying the form of the generating model, and estimating the Kullback-Leibler distance to the 247 
generating process. All of this is done under 3 different classes of generating and approximating models, 3 different sample sizes, 3 different 248 
levels of process error, and 3 different levels of collinearity. 249 

FTZJ&M recommend one of their combined forms (BIC+2CvE(Ψ)) as achieving all measures of quality well under a broad range of 250 
modeling frameworks and having the theoretical advantage of being both scale invariant and consistent. However, it is important to note that 251 
No IC was best for any goal over all conditions and that All IC performed generally well for all goals. 252 

Two important lessons should be taken from FTZJ&M: First, much more attention needs to be paid to the uncertainty of model 253 
identification. And second, for these goals to be achieved sample sizes need to be larger in all model classes than is generally the case in 254 
ecology. 255 

5.8 Claeskens, Cunen and Hjort (CC&H) 256 

Perhaps the most used statistical tools by ecologists are abundance count models.  Simply counting the number of individuals of every 257 
species observed in a particular community is the point of entry to deeper studies aiming at understanding the generation and maintenance of 258 
organisms’ diversity.  Profound questions examining the processes driving ecological stability, resilience, resistance, invasion, and 259 
persistence all begin with being able to accurately ascertain organisms’ abundances.  In our (joint) decades of teaching and mentoring, time 260 
and again count models keep coming back as some of the main instruments of statistical inference sustaining masters’ theses and PhD 261 
dissertations in biology, wildlife ecology and conservation.  Ecologists are typically not only interested in estimating one or the other model 262 
parameters leading to particular predictions, but often see parameter estimation as the by-product of what they are typically after, which is 263 
understanding which hypothesized model components better represent the underlying natural processes generating the count data at hand.          264 

CC&H propose and further elaborate on a methodology that may revolutionize the reaches of an ecology-driven statistical analyses and in 265 
particular, multi-model selection for models of count data.   The main idea of the Focused Information Criterion (FIC) approach is to provide 266 
a model selection framework where the comparison and the ranking is formally defined according to the scientific quest at hand.  267 
Recognizing that different scientific teams might ask different focused questions of the same data and list of candidate models, CC&H 268 
design a methodology to focus the model selection process using different functions of the parameters of interest.  When mainstream model 269 
selection tools are used in ecology and in a given scenario a model is chosen as the “best” model, practitioners are often left wondering why, 270 
in a specific scientific sense, such model is indeed the best model.    FIC offers a theoretically sound methodology to obtain better, more 271 
precise estimates of a quantity of interest.  For count models, such quantity is often the probability of a rare event occurring. As arbitrary or 272 
stale as it may sound at first, understanding and estimating accurately rare events in ecology has always been at the center of key 273 
explanations of diversity.  Rarity, or “rare counts”, have been for a long time (e.g. Patil and Taillie, 1982) hypothesized to be a critical 274 
component of explanations of how hyper-diverse communities can be maintained.  Such was also the conclusion of one of the most recent 275 
and cited explanations of the maintenance of diversity in tropical forests published by Levi et al in (2019). As it turns out, the Focused 276 
Information Criterion of CC&H), which seeks to minimize the bias and the variance of a quantity of interest, works particularly well for 277 
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estimating the probability of rare events.  In line with the “rarity” comments above, CC&H show as examples a situation where the focus of 278 
the inference is estimation of the probability of observing counts of a species above an arbitrary number.   Importantly, the authors show 279 
how other information criteria like the BIC, although they may address the problem of determining which model is the closest to the true 280 
data generating mechanism, may not point towards the models that do the best job at estimating for instance, the tail of a distribution of 281 
counts.  By allowing for a flexible specification of different “foci” of interest, CC&H provide a welcome addition to the toolbox of the 282 
evidentialist.  This tool is not only conceptual but is crystallized in a practical, easy to use library for R users, the “fic” library.  283 

5.9 Markatou and Sofiktou (M&S)  284 

Most of the papers summarized so far share a key point:  a reliance on the Kullback-Leibler divergence as the main instrument to develop 285 
and exemplify the theory and practice of Evidential Statistics.  A natural reaction of any statistician to such heavy reliance on a single metric 286 
should be to ponder what would happen if different metrics or distances are used.  Can the desiderata of evidential statistics be kept under 287 
different measures of divergence between the generating process and any approximating model, or amongst models themselves?  Would the 288 
theoretical and asymptotic warrants of evidential statistics hold under different distance measures?  How can statisticians visualize the 289 
strength of evidence under different measures?  How does a measure of “strong evidence” using the KL divergence translates to other scales 290 
of divergence?  These and other questions are approached using philosophical and rigorous statistical techniques in the contribution by 291 
M&S. Importantly, M&S’s contribution builds upon the pioneering concepts of model adequacy by Lindsay (2004) and evidence functions 292 
by Lele (2004). Notably, the authors propose an explanatory analysis tool called a “standardized distance ratio plot” that can be used to 293 
visualize the strength of evidence provided for or against hypotheses of interest using different divergence measures. Hence, this paper 294 
represents itself growth in the field and marks a clear path for future research. Indeed, of all the contributions in this special issue, this one is 295 
perhaps the one topic that is most ripe for further research and study. An open direction that seems promising is shining light on the behavior 296 
of different statistical divergence measures under model misspecification.   Whenever we give seminars in statistics departments about 297 
evidential statistics, the question of usage of other divergence measures invariably comes up.  We therefore encourage both, a close reading 298 
of this paper and thinking about building extensions to these results using M&S’s work as the foundation. 299 

5.10 Stuart and Blume (S&B) 300 

New statistical approaches often face resistance from empirical scientists.  It can help acceptance if a new technique seems familiar. Stuart 301 
and Blume (S&B) cleverly disguise an evidential procedure with the face of a p-value, something that virtually every working scientist is 302 
familiar with.  It does look like a p-value in that the statistic can take on values of 0, 1, and everything in between.  S&B even strengthen the 303 
familiarity by calling it a SGPV or second-generation p-value.   304 

Of course, a SGPV is not a p-value, it is not even a probability.  The SGPV is better than a p-value.  The question of interest is whether an 305 
unknown, but estimated, parameter is in an interval null or is outside of the interval null.  A p-value or a null hypothesis significance test 306 
(NHST) can indicate that the parameter is likely outside the null, but neither can give you support that it is inside the null.  Conversely, an 307 
equivalence test can give you support for the parameter being inside the interval but not for being outside the interval. 308 
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Evidence like, the procedure divides the range of possible value for the SGPV into 3 regions: The point SGPV=0, which indicates strong 309 
evidence the parameter is in the interval null. The point SGPV=1, which indicates strong evidence the parameter is not in the null. And, the 310 
region of all values in between, which indicate that the data are consistent with both hypotheses and which way the evidence is tipping. 311 

 S&B also demonstrate another important evidential property.  The SGPV is consistent; the probability of misleading evidence goes to 0 as 312 
sample size increases. 313 

The SGPV is very flexible and can be applied retroactively to any scientific literature in which a statistical interval is published.  S&B claim 314 
that SGPV is applicable to any type of interval confidence, support, or credible.  The authors spend the bulk of the paper demonstrating good 315 
statistical properties for the SGPV under a wide range of circumstances. 316 

5.11 Lele a (La) 317 

It is undeniably true that State-Space Models (SMMs) or more generally, hierarchical statistical models, nowadays occupy a central role in 318 
ecology and evolution.  SMMs are used to study the population dynamics of animals with complex life histories, to estimate abundances 319 
under detection limitations and heterogeneity (among individuals, across space and in time).. Entire statistical ecology books for graduate 320 
students and researchers alike with titles around “hierarchical models in ecology” now fill the electronic and physical bookshelves of modern 321 
ecologists and academicians.  As well, social media with short instructionals, blogposts and even tweets by the authors of these books are 322 
consumed voraciously by graduate students needing to solve complex problems in the face of non-standard datasets.  Software authors in 323 
turn, face the challenge of putting out for consumption accessible programs that can weather usage by anybody interested in applying a 324 
given hierarchical model.  Over recent years, this high demand for accessible solutions to complex problems has facilitated the establishment 325 
of uncritical use of modern statistical machinery.    326 

 La approaches the consequences of such uncritical use head-on by clearly illustrating with real-life examples the predicaments brought 327 
about by using non-informative Bayesian analysis.  Indeed, non-informative Bayesian analysis tends to be nowadays the default setting 328 
under which complex statistical models in ecology are fitted.  In the name of pragmatism, it is often argued that in modern, extensive big 329 
data sets the sample size is so large that the likelihood information “swamps” any prior effect and that effectively, the data will “speak for 330 
itself”.   331 

La carefully delineates the flaws in such reasoning and vividly details how and why wildlife management decisions can vastly suffer from 332 
such uncritical use of Bayesian techniques.  In particular, he shows that because of the lack of parameterization invariance of non-333 
informative Bayesian Analysis, all subjective Bayesian inferences can be disguised as “objective”, non-informative Bayesian inferences.  334 
Furthermore, cryptic biases can be introduced in the resulting analyses because the induced priors on functions of parameters are not non-335 
informative.   336 
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Three other serious flaws are then discussed besides these two.  However, even if the author had presented only these two problems, 337 
practitioners, ecologists and wildlife managers should take note, because if the results of an uncritical non-informative Bayesian analysis is 338 
subject to unstated and unqualified biases, it may be easily challenged in the legislature and in the Court of Law.  For completeness, 339 
professor Lele emphasizes that hierarchical models can be and are analyzed using the likelihood and frequentist methods.  That is, any 340 
Bayesian analysis can be transformed to a likelihood analysis by data cloning. 341 

5.12 Lele b (Lb) 342 

 Uncertainty is a fundamental part of any inference, but the depth of its complexity is often not adequately appreciated.  This paper, Lb, gives 343 
a surprisingly readable review of many of the issues involved with statistical uncertainty.  Lb begins with a short list, culled from the 344 
literature, of desirable features for uncertainty quantification procedures: 1) transformation invariance, 2) uncertainty measure reflect data 345 
informativeness, 3) ascertainability, and 4) diagnostic potential.   346 

The first, transformation invariance, implies that the probability of an event occurring or not occurring is a reasonable measure of 347 
uncertainty. This of course requires understanding what probability is and the paper next discusses the two major definitions of probability 348 
used by statisticians and scientists alike: aleatory or frequency-based probability and epistemic or belief-based probability.  349 

For adherents of frequentist statistics, data (i.e., data sets) are random realizations from a stochastic generating process.  Consequently, 350 
estimates of parameters inherit stochasticity from the generating process through the stochasticity of data sets.  The distribution of parameter 351 
estimates over an infinite number of random data sets is called the true sampling distribution of the parameter. One can estimate a 352 
parameters sampling distribution by bootstrap or analytic approximation.  The estimated sampling distribution contains a great deal of 353 
information about the uncertainty of the procedure.  Much of this uncertainty is captured by confidence intervals.  While arguing for the 354 
utility of confidence intervals, Lb points out they are often misinterpreted.  355 

Lb points out that the target of a confidence interval is to cover the true parameter, not to cover the parameter estimated in another 356 
experiment.  Another common way that confidence intervals are misinterpreted is by failing to distinguish between unconditional/pre-data 357 
and conditional/post-data intervals.  Both kinds of intervals are commonly used in the scientific literature. In separate sections Lb returns to 358 
the questions of interval construction and interpretation from Bayesian and evidentialist perspectives. 359 

As pointed out by B&B “any adequate (‘reliable’) hypothesis must be both explanatory and predictive.”  It is only through the verification of 360 
predictions that the ascertainment of models or hypotheses is possible.  Lb takes this very seriously reviewing the representation of prediction 361 
uncertainty in all three inferential paradigms.  Further, a new flexible approach to the calculation of an evidential predictive density is 362 
suggested and its advantages, both demonstrated and potential, are discussed.     363 

The paper concludes by rehearsing the key features, strengths, and weaknesses of the characterization of uncertainty in the three paradigms 364 
in the light of the four desiderata.  None is perfect, but overall, the evidentialist most closely conforms. All three paradigms require scientists 365 
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to specify their models and whether inference should conditional or unconditional.  Bayesian inference further requires the specification of 366 
priors, while evidence requires the specification of an evidence function. The last thing any reader wants to hear is that the quality of their 367 
scientific inference depends critically on the active choices they make—regardless of their statistical paradigm.  Nevertheless, this is 368 
precisely the last thing that Lb says.      369 

5.13 Toquenaga and Gagné (T&G) 370 

Genetic sequencing is becoming an increasingly important tool in ecological and evolutionary studies.  This trend has been accelerated by 371 
the new techniques of “next-generation sequencing”, NGS.  These sequencing procedures work by digesting a genetic sequence into many 372 
small fragments (called reads), sequencing the fragments, and then inferring the original sequence computationally.  This is like the spy 373 
novel trope of pasting a shredded letter back together.   374 

With the scientific opportunities, come many statistical challenges.  There are many programs that make these calculations.  Unfortunately, 375 
they don’t agree—with each other and because many of the programs involve stochastic searches, even between multiple runs of the same 376 
program.  T&G, use evidential principles to develop methods to choose among the many putative sequences offered by an array of 377 
sequencing software, to assess how good the proposed sequences are, and even to improve them. 378 

The thinking in T&G is as follows: If multiple algorithms produce multiple sequences, each must be a model of the true sequence.  If an 379 
appropriate function for measuring the divergence between these sequence models can be found, then the model projections in model space 380 
methods of P&T can be used to understand the relationships among the proposed models and even to a true sequence.   The Levenshtein edit 381 
distance, as a measure of the minimum number of changes needed to equate two sequences from finite alphabets, offers itself as an 382 
appropriate divergence.   383 

T&G test this proposition by taking a known genetic sequence and randomly breaking it into a number of fragments (with potential overlap).  384 
The number and distribution of fragment sizes are set to mimic typical digestion results.  In their test case, T&G are able to construct, using 385 
non-metric dimensional scaling, a two-dimensional map of the sequence estimates produced by the various sequencing programs compared 386 
by the authors.  Their map correctly identifies the best-proposed sequence.   387 

In this test case, one of the programs is able to correctly reconstruct the true sequence.  However, such a felicitous occurrence may not be 388 
general.  Usefully, T&G propose an approach that can suggest sequences likely to improve on the set of mistaken sequences. They do this by 389 
proposing new sequence models which are consensus sequences of existing models and seeing where they fit into the map.   390 

T&G confirm their method with a parametric bootstrap based on a specified true sequence.  Implicit in this is the potential to use similar 391 
bootstrapping to assess the uncertainty in sequence construction.   392 

5.14 Taper, Lele, Ponciano, Dennis, and Jerde (TLPD&J). 393 
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TLPD&J, develops themes from two other papers in this research topic.  DPT&L show that in the presence of model misspecification 394 
Royall’s universal bound on the strength of misleading evidence does not hold.  Lb reminds us that statical uncertainty comes in two forms: 395 
global/unconditional and local/conditional. 396 

To Royall’s regions of weak and strong evidence (Royall, 2000) the authors intersperse a third category, that of prognostic evidence.  This is 397 
evidence not so weak as to be dismissed nor so strong as to be considered overwhelming. Thus, while evidence is itself continuous, useful 398 
descriptive categories for considering evidence are constructed. 399 

TLPD&J show that even in the presence of model misspecification the uncertainty in model identification can be quantified in the form of 400 
nonparametric bootstrap confidence intervals on evidence. This decouples evidence and its uncertainty and allows scientists to consider both.  401 
The authors consider evidence (either prognostic or strong) for one model over another to be “secure” if the lower 5% confidence limit on 402 
the evidence is above the preset prognostic boundary, kp. 403 

To demonstrate the utility of this approach, TLPD&J make a detailed reanalysis of model selection in Grace and Keeley’s (2006) classic 404 
structural equation modeling of post-fire diversity recovery in California shrublands.  The use of evidence confidence intervals develops a 405 
much more nuanced understanding of which model components are likely to be robust and which are equivocal. 406 

Technically, TLPD&J use an improved version of the EIC (see Kitagawa and Konishi, 2010).  The improvements include: 1) bootstrapping 407 
of the ΔSIC rather than individual likelihoods to incorporate the effects of misspecification geometry. And 2) Identification of components 408 
of EIC that correspond to global and local inference. 409 

The paper finishes with an extended discussion of the interpretation of global and local inference in science. 410 
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Table 1: Thematic concerns present in each article. Article authorship by publication order is: 1) Shimodaira and Terada (S&T), 2) Scheiner 525 
and Holt (S&H), 3) Jerde, Kraskura, Eliason, Csik, Stier, and Taper (JKECS&T), 4) Dennis, Ponciano, Taper, and Lele (DPT&L), 5) Brittan 526 
and Bandyopadhyay (B&B), 6) Ponciano and Taper (P&T), 7) Ferguson, Taper, Zenil-Ferguson, Jasieniuk and Maxwell (FTZJ&M, 8) 527 
Claeskens et al., 9) Markatou and Sofikitou (M&S), 10) Stewart and Blume (S&B), 11) Lele a (La), 12) Lele b (Lb), 13) Toquenaga and 528 
Gagné (T&G), 14) Taper, Lele, Ponciano, Dennis and Jerde (TLPD&J). 529 
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