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Abstract

Machine teaching is an algorithmic framework for teaching
a target hypothesis via a sequence of examples or demon-
strations. We investigate machine teaching for temporal logic
Jformulas—a novel and expressive hypothesis class amenable
to time-related task specifications. In the context of teaching
temporal logic formulas, an exhaustive search even for a my-
opic solution takes exponential time (with respect to the time
span of the task). We propose an efficient approach for teach-
ing parametric linear temporal logic formulas. Concretely,
we derive a necessary condition for the minimal time length
of a demonstration to eliminate a set of hypotheses. Utilizing
this condition, we propose an efficient myopic teaching al-
gorithm by solving a sequence of integer programming prob-
lems. We further show that, under two notions of teaching
complexity, the proposed algorithm has near-optimal perfor-
mance. We evaluate our algorithm extensively under differ-
ent classes of learners (i.e., learners with different prefer-
ences over hypotheses) and interaction protocols (e.g., non-
adaptive and adaptive). Our results demonstrate the effective-
ness of the proposed algorithm in teaching temporal logic for-
mulas; in particular, we show that there are significant gains
of teaching efficacy when the teacher adapts to feedback of
the learner, or adapts to a (non-myopic) oracle.

1 Introduction

Machine teaching, also known as algorithmic teaching, is an
algorithmic framework for teaching a target hypothesis via a
sequence of examples or demonstrations (Zhu 2015). Due to
limited availability of data or high cost of data collection in
real-world learning scenarios, machine teaching provides a
viable solution for optimizing the training data for a learner
to efficiently learn a target hypothesis.

Recently, there has been an increasing interest in de-
signing learning algorithms for inferring fask specifications
from data (e.g., in robotics) (Kong, Jones, and Belta 2017;
Vazquez-Chanlatte et al. 2018). Machine teaching can be
used to optimize the training data for various learning al-
gorithms (Dasgupta et al. 2019), hence it can be potentially
used for task specification inference algorithms. Machine
teaching can be also used in adversarial settings (Ma et al.
2019) where an attacker (machine teaching algorithm) ma-
nipulates specification inference by modifying the training
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data. Unfortunately, finding the optimal teaching sequence
with minimal teaching cost is notoriously hard (Goldman
and Kearns 1995). As task specifications are often time-
related and the demonstration data are trajectories with a
time evolution, an exhaustive search even for the myopic so-
Iution (i.e., one-step optimal demonstration from the greedy
algorithm) has exponential time complexity with the time
span of the task, making it prohibitive to run existing my-
opic teaching algorithms in practice.

In this paper, we investigate machine teaching of tar-
get hypothesis represented in temporal logic (Pnueli 1977),
which has been used to express task specifications in many
applications in robotics and artificial intelligence (Kress-
Gazit, Wongpiromsarn, and Topcu 2011; To et al. 2015).
Specifically, we use a fragment of parametric linear tempo-
ral logic (pLTL) (Chakraborty and Katoen 2014; Alur et al.
2001). We derive a necessary condition for the minimal time
length of a demonstration so that a set of pLTL formulas
can be eliminated by this demonstration. Utilizing this nec-
essary condition, we provide a myopic teaching approach by
solving a sequence of integer programming problems which,
under certain conditions, guarantees a logarithmic factor of
the optimal teaching cost.

We evaluate the proposed algorithm extensively under a
variety of learner types (i.e., learner with different prefer-
ence models) and interactive protocols (i.e., batched and
adaptive). The results show that the proposed algorithm can
efficiently teach a given target hypothesis under various set-
tings, and that there are significant gains of teaching efficacy
when the teacher adapts to the learner’s current hypotheses
(up to 31.15% reduction in teaching cost compared to the
non-adaptive setting) or with oracles (up to 75% reduction
in teaching cost compared to the myopic setting).

Related Work

There has been a surge of interest in machine teach-
ing in several different application domains, including per-
sonalized educational systems (Zhu 2015), citizen sciences
(Chen et al. 2018a; Mac Aodha et al. 2018), adversarial at-
tacks (Ma et al. 2019) and imitation learning (Brown and
Niekum 2019). Most theoretical work in algorithmic ma-
chine teaching assumes the version space model (Goldman
and Kearns 1995; Gao et al. 2017; Chen et al. 2018b; Man-
souri et al. 2019). Recently, some teaching complexity re-



sults have been extended beyond version space learners,
such as Bayesian learners (Zhu 2013) and gradient learn-
ers (Liu et al. 2017) (e.g., learners implementing a gradient-
based optimization algorithm). However, most algorithms
are restricted to simple concept classes. In this work, we
aim to understand the complexity of teaching the class of
pLTL formulas. There has been extensive study in mod-
eling a learner for temporal logic formulas, for example,
see (Hoxha, Dokhanchi, and Fainekos 2017; Kong, Jones,
and Belta 2017; Xu et al. 2019a; Bombara et al. 2016; Xu
et al. 2019b; Neider and Gavran 2018; Yan, Xu, and Julius
2019; Xu and Julius 2018; Vazquez-Chanlatte et al. 2018;
Xu et al. 2019; Shah et al. 2018), while it is much less un-
derstood in the context of machine teaching. In this paper,
we abstract these learner models as preference-based version
space learners, and focus on developing efficient algorithms
for teaching such learners.

2 Parametric Linear Temporal Logic

In this section, we present an overview of parametric lin-
ear temporal logic (pLTL) (Chakraborty and Katoen 2014;
Alur et al. 2001). We start with the syntax and semantics of
pLTL. The domain B = {T, L} (T and L represents True
and False respectively) is the Boolean domain and the time
index set T = {0,1,...} is a discrete set of natural num-
bers. We assume that there is an underlying system . The
state s of the system 7{ belongs to a finite set S of states. A
trajectory pr, = sgsi - - - sp,—1 of length L € Z+( describing
an evolution of the system # is a function from T to .S, and
we denote pr,(t) := s;. Aset AP = {my,7a,..., T} isa
set of atomic predicates. £ : S — 27 is a function assign-
ing a subset of atomic predicates in AP to each state s € S.
The syntax of the (F,G)-fragment bounded pLTL is defined
recursively as'

=T |m|=¢| o1 N2 | G<r¢| F<19,

where 7 is an atomic predicate; — and A stand for negation
and conjunction, respectively; G<, and F<, are temporal
operators representing “parameterized always” and “param-
eterized eventually”, respectively (7 € T is a temporal pa-
rameter). From the above-mentioned operators, we can also
derive other operators such as V (disjunction) and = (im-
plication). In the following content of the paper, we refer to
(F,G)-fragment bounded pLTL as pLTL for brevity.

Next, we introduce the Boolean semantics of a pLTL  for-
mula in the strong and the weak view (Eisner et al. 2003; Ho,
Ouaknine, and Worrell 2014). In the following, (pr,,t) s ¢
(resp. (pr,t) Ew ¢) means the trajectory pr, strongly
(resp. weakly) satisfies ¢ at time ¢, and (pr,,t) s ¢ (resp.
(pr,t) FEw ) means the trajectory py, fails to strongly
(resp. weakly) satisfy ¢ at time ¢.

Definition 1. The Boolean semantics of the pLTLy in the

! Although other temporal operators such as “Until ”(1f) may
also appear in the full syntax of pLTL, they are omitted from the
syntax of (F,G)-fragment bounded pLTL as they can be hard to
interpret and are not often used for the inference of pLTL formulas.
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Figure 1: Three trajectories of different lengths.

strong view is defined recursively as

(pr,t) Esmifft <L —1andmw e L(pr(t)),
(pr,t) Es ~¢ iff (pL,t) FEw o,
(pr,t) s 1 A b2 iff (pr,t) s ¢1 and (pr,t) Fs @2,
(pr,t) Fs F< o iff ' € [t,t + 7], 5.t (pr, 1) s ¢,
(pr.t) s G iff (pr,t') s ¢, Vt € [t t + 7).

Definition 2. The Boolean semantics of the pLTLy in the
weak view is defined recursively as

(pr.t) Ew 7 iff eithert > L — 1,
or (t<L—1landw € L(pL(t))),
(pr,t) Ew —¢ iff (pL.t) s ¢,
(pr,t) BEw ¢1 A 2 iff (pr,t) Fw ¢1 and (pr,t) Fw ¢2,
(pr,t) Fw F<r¢iff 3" € [t,t + 7], 5.t (pr,t') Fw ¢,
(pr,t) Fw G- 9 iff (pr,t') Ew ¢,V € [t,t +7].

Intuitively, if a trajectory of finite length can be extended
to infinite length, then the strong view indicates that the truth
value of the formula on the infinite-length trajectory is al-
ready “determined” on the trajectory of finite length, while
the weak view indicates that it may not be “determined”
yet. As shown in the simple example in Fig. 1, with the set
S = {&, M, &} of states and three trajectories pt, p3, and
03, F<4é is strongly satisfied by all three trajectories, while
F<,# is strongly violated by pl, strongly satisfied by p?,,
and weakly satisfied (and also weakly violated) by p3.

3 Teaching pLTL; Formulas with
Demonstrations of Varying Lengths

We now provide the framework for teaching pLTL; formu-
las with demonstrations of varying lengths.

Teaching Model

Let Z := St x {—1, 1} be the ground set of demonstrations
(labeled trajectories), where ST denotes the Kleene plus of
S, and {—1, 1} is the set of labels. There is a hypothesis set
® = {¢1,..., P} consisting of n € Z( hypothesis pLTL
formulas. The teacher knows a target hypothesis ¢* € ® and
intends to teach ¢* to a learner.

We define the preference function o : ® x & — Ry as
a function that encodes the learner’s transition preferences.
Specifically, given the current hypothesis ¢ and any two hy-
potheses ¢’ and ¢", ¢’ is preferred to ¢ from ¢ if and only



if o(¢'; 9) < a(@"; p). If for any ¢', o(¢'; ¢) does not de-
pend on ¢, then ¢ is a global preference function; otherwise,
o is a local preference function. If o(¢’; ¢) is a constant for
any ¢ and ¢, then ¢ is a uniform preference function.

Definition 3. Given a target hypothesis ¢* and a demon-
stration [pr,, 1], where | = 1 represents positive demonstra-
tion and | = —1 represents negative demonstration, [py,, (]
is strongly inconsistent with a pLTL ¢ formula ¢ € ®, if and
only if the following condition is satisfied:

{(pL,O) Fs 9% (pr,0) FEs ¢, ifl=1;
(pr,0) s =¢", (pr,0) s @, ifl=-1
Starting from the teacher’s first demonstration, the teach-
ing stops as soon as the learner’s current hypothesis reaches
the target hypothesis, and we call it a teaching session.
For a sequence D of demonstrations, we define the version
space induced by D, denoted as ®(D), as the subset of
pLTL formulas in ® that are not strongly inconsistent with
any demonstration in D. We use O to denote the random
variable representing the randomness of the environment
(e.g., learner’s random choice of next hypothesis in the
presence of ties) and 6 to denote the realization of © in each
teaching session.

Definition 4. We define a teaching setting as a 4-tuple
S = (¢*, ", ®,dom(0)), where ¢* is the target hypothesis,
@0 £ ¢* is the learner’s initial hypothesis, ® is the hypothe-
sis set and dom(0) is the domain of the realization 9 for the
randomness of the environment.

Let 7 be a teacher that outputs a sequence of demonstra-
tions based on the target hypothesis, the version space, and
either the learner’s initial hypothesis (non-adaptive teacher)
or the learner’s current hypothesis (adaptive teacher). For
a learner with preference function o, let £, : ® x 2% x
Z x dom(0) — @ be the learner’s mapping that maps
the learner’s current hypothesis, the current version space,
the current demonstration and the randomness of the envi-
ronment to the learner’s next updated hypothesis. Given a
teacher 7, a learner £, and the randomness 6 in the teach-
ing setting S = (¢*, ¢°, ®,dom(#)), we use Ds(T,L,,0)
to denote the sequence of demonstrations provided by the
teacher 7 before the learner’s hypothesis reaches ¢*.

Definition 5. The accumulated-number (AN) teaching cost
and accumulated-length (AL) teaching cost are defined as

AN-Costs(T,Ly,0) :=|Ds(T, L,,0)|,
AL-Costs(T, Ly, 0) :== Z

(P’Zk,lk)GDS(T,ﬁaﬂ)

L.

Intuitively, the AN teaching cost and the AL teaching cost
are the number of demonstrations and the accumulated time
lengths of the demonstrations for the learner’s hypothesis to
reach ¢* in a specific teaching session, respectively.

Definition 6. Given a teacher T and a learner L, in the
teaching setting S = (¢*,¢°, ®,dom(0)), we define the
worst-case AN teaching cost and AL teaching cost as

AN-Cost¥C(T, L) := 961;1)?3((0) AN-Costs(T, L, 0),

AL-Costd“(T, L,) = eercﬁ?r}f(e) AL-Costs(T,Ls.9).
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Definition 7. Given a learner L, in the teaching setting
S = (¢*,¢°, ®,dom(0)), we define the AN teaching com-
plexity and AL teaching complexity respectively as

AN-Complexityg(Ly) = m%nAN—Costg/C(T, L),
AL-Complexity s (L) := mTinAL-Costfgvc(T, Ley).

Intuitively, the AN teaching complexity and the AL teach-
ing complexity are the minimal number of demonstrations
and the minimal accumulated time lengths of the demonstra-
tions needed for the learner’s hypothesis to reach ¢* despite
the randomness of the environment, respectively.

For example, we consider the hypothesis set ® = {F<;s},
where i € {0,...,4},and s € S = {&, b, #}. If ¢* is
F<o&, and the learner has uniform preference, then for any
qb(r, one sequence of demonstrations which can minimize
both the (worst-case) AN and AL teaching costs are firstly
a negative demonstration of &, ¢, #, &, &, and then a pos-
itive demonstration of &, ¢, &. In this teaching setting, the
AN and AL teaching complexities are 2 and 8, respectively.

TLIP: Teaching of pLTL ; Formulas with Integer
Programming

Finding the optimal sequence of demonstrations with mini-
mal AN or AL teaching cost has time complexity in the order
of 2P|, where Dy, is the set of all possible demonstra-
tions with length at most Lyax. As | Dy, | = Zfz“l S| Fmax,
2!PLma| is double exponential with the maximal length of
the demonstrations.

We resort to greedy methods for myopic teaching with
near-optimal performance. To compute the greedy solution,
we first derive a necessary condition through Definition 8
and Theorem 1 for the minimal time length of a demonstra-
tion so that a set of pLTL ; formulas are strongly inconsistent
with (thus can be eliminated by) this demonstration.

Definition 8. We define the minimal time length ((¢,1) of a
PLTL; formula ¢ with respect to a label | recursively as

(=0, C(0.1) = (6,

clonnont) = Con), 1=
woon-(ehe U7
o=

Theorem 1. Given a target hypothesis ¢* and the hypoth-
esis set ®, if a demonstration [py,, 1] is strongly inconsistent

with a subset ® = {p:}, C ®of pLTL; formulas, then
L > max{((gb*, l) max. <(¢17 _l)}
<i<N

)
1<

Algorithm 1 shows the proposed TLIP approach for
teaching pLTL ; formulas to learners with preferences. Here



Algorithm 1: Teaching of pLTL ; Formulas with In-
teger Programming (TLIP)

1 Input: hypothesis set ®, initial hypothesis ¢°
2 Initialize k < 0, ® < 0, ®° «+ @
3 while ¢F # ¢* do

4 if MyopicTeacher = 1 then ¢** = ¢*

5 | else Compute ¢** < Oracle(¢”, ®*, ¢*)

6 if o is global then

7| | e{ped:0(g;) <o(¢M)}

8 else

9 ¢ {p € B 1 0(g5¢) < o (g1 ¢) for

some ¢’ € ®F}

10 (p*, %), & «+ComputeDemonstration(®*, d,
o)

n | RN\ D, DD\ D,k k+1

12 if AdaptiveTeacher = 0 then

13 if ® = {¢*} then ¢* « ¢*

14 else Randomly select ¢F # ¢* from P

15 else Observe the learner’s next hypothesis ¢*

K+k-1
return {(p°, £0), (p*, 64),. .., (p%, ¢5)}

-
2

Algorithm 2: ComputeDemonstration
1 Input : , @, ¢*
2 Compute pp,, and (pp,) for IPyos (®, %)

3 Compute py., and K(ppeg) for IPyeg (@, ¢¥)

4 if 5(ppey) = K(p),) then

5| (00) & (Do 1) @ 4= {P € @ (¢ p) = —1})
6 else

7| (0 0) ¢ (Pl —1). @ = {9 € D2 (e p) = 1}
8 return (p, (), ®

we focus on the myopic solution (MyopicTeacher = 1) un-
der the non-adaptive setting (AdaptiveTeacher = 0) where
the teacher does not observe the learner’s current hypothesis
and provides the sequence of demonstrations based on the
learner’s initial hypothesis. We compute ® as the set of hy-
potheses that are preferred over the target hypothesis in the
current version space if the learner has global preferences
(Line 7) and the union of the sets of hypotheses that are pre-
ferred over the target hypothesis based on each hypothesis in
the current version space if the learner has local preferences
(Line 9). Then we call Algorithm 2 to compute the demon-
strations that achieve the greedy myopic solution (Line 10).

Note that finding the greedy myopic solution via exhaus-
tive search amounts to traversing the space of demonstra-
tions, which is exponential with the maximal length of the
demonstrations. We propose to find the greedy solution via
a novel integer programming (IP) formulation. For a trajec-
tory pr and a pLTL formula ¢, we denote c(¢, pr) = 1

if (pr,0) =s ¢; c(¢,pr) = —1if (pr,0) s —¢; and
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c(g,pr) = 0if (pr,0) s ¢ and (pr,0) s —¢. For
positive demonstrations, we compute the following integer

programming problem IPyos(®, ¢*).
max x(pr,)
PL
subject to: b; € {0,1},V], s.t. ¢; € P, c(o*,pr) =1,
clpj, pr) =1 —2b;,Vj, s.t. ¢; € D,

L>¢(¢",1), L > bi((¢5, 1), Vi, sit. &5 € P,
where r(pr) = (X 6,68 b;) when optimizing for the AN

teaching cost and £ (pr) = (X4 5 bj)/L when optimiz-
ing for the AL teaching cost, the strong satisfaction or strong
violation of a pLTL; formula ¢ by pr can be encoded
as integer linear constraints of py, and the constraints for
L are obtained from Theorem 1. In practice, the problem
IPpos(i), @*) can be efficiently solved by highly-optimized
IP solvers (Gurobi 2019), which, as demonstrated in the case
studies in later sections, is significantly more efficient than
the exhaustive search method.

For negative demonstrations, the integer programming
problem 1P, (®, ¢*) can be similarly formulated with the
constraints ¢(¢*, pr,) —1 and c¢(¢;,pr) = -1+

2b;, V3, s.t. ¢; € ®. We use Ppos and pye, to denote the op-
timal positive and negative demonstrations computed from
IPpos (P, ¢*) and IPyee (P, ¢*), respectively. We select Ppos
or phe, depending on whether k(p5) is no less than £ (pp.,)
or not. Then, we eliminate the hypothesis pLTL ; formulas
that are strongly inconsistent with the selected demonstra-
tion (Line 11). For non-adaptive teaching, we randomly se-
lect a pLTL; formula different from the target hypothesis
(Line 14, as we consider the worst case) and perform an-
other round of computation for the demonstration until the
current hypothesis reaches the target hypothesis.

Teaching with Positive Demonstrations Only

Learning temporal logic formulas from positive demonstra-
tions is a typical problem in temporal logic inference (Xu
et al. 2019a; Vazquez-Chanlatte et al. 2018).

The algorithm for teaching pLTL; formulas with posi-
tive demonstrations only can be modified from Algorithms
1 and 2, by deleting Lines 3-7 of Algorithm 2 and obtaining
(p;1) as (ppos; 1). The following theorem provides a neces-
sary condition for teaching a pLTL; formula with positive
demonstrations to a learner with global preferences.

Theorem 2. Given a hypothesis set ® and a sequence of
positive demonstrations D, if a target hypothesis ¢* € P is
teachable from D, to a learner with global preference func-
tion o, i.e, Vo € ®(D,) \ {¢*}, 0(¢;-) > o(¢*;-), then
max Lp > max i, —1). Furthermore, there
1<k<|D,| picd\{o*}
does not exist a pLTLy formula ¢' with o(¢';-) < o(¢*;-)
s.t. ¢* = ¢ Here, ® := {¢p € ® : 0(¢;-) < 0(0*;-)}, Li

is the time length of the k-th demonstration in D,,.

(2

4 Adaptive Teaching of pLTL ; Formulas

We now explore the theoretical aspects of machine teaching
for pLTL ; formulas under the adaptive setting.



Teaching Complexity

Different from the non-adaptive teaching, an adaptive
teacher observes the learner’s current hypothesis and pro-
vides the next demonstration according to the target hypoth-
esis, the current version space and the learner’s current hy-
pothesis. Algorithm 1 with AdaptiveTeacher = 1 shows the
procedure for adaptive teaching using TLIP.

The following theorem, as adapted from Chen et al.
(2018b), provides near-optimality guarantees under the
adaptive myopic setting.

Theorem 3. We denote the myopic adaptive teacher in TLIP
as T™. Given a target hypothesis ¢* and the hypothesis set
D, then

AN-Cost(T™, L,) < Mlog |®s| 4+ 1)AN-Complexity5(L),
AL-Cost¥“(T™, L) < Mlog |®s| + 1)AL-Complexitys(Ly),

where &g = {p € ®:0(d;0°) < oa(d*;6)} A =11if
o is global, and \ = 2 if o is local and the following two
conditions are satisfied for both o and the sequence D of
demonstrations.

LYY, ¢" € ®,0(¢";¢) < o(¢";0) < o(d*;0)
= 0(¢";¢') < o(d*5¢');

2.9¢' € ®({[pL,11}), el U] € D, st O({[pl, 1]}) = @'

In Condition 2, ®({[pL,1]}) denotes the set of hypotheses in
® which are strongly inconsistent with demonstration [pr,, l].

Theorem 3 shows that, under the adaptive myopic setting,
TLIP can achieve near-optimal performance for global pref-
erences and certain local preferences that satisfy Conditions
1 and 2. This motivates us to design intermediate target hy-
potheses as shown in the case studies.

Teaching with Oracles

For learners with local preferences, we can design interme-
diate target hypotheses so that Condition 1 of Theorem 3
can be satisfied for learning each target hypothesis. In Al-
gorithm 1, we assume that we have access to an oracle,
i.e., Oracle(¢¥, ®*, ¢*), which outputs an intermediate tar-
get hypothesis ¢** at each step.

As an example, we consider the following local prefer-
ence of the learner: the learner prefers formulas with the
same temporal operator as that in ¢° if the learner’s cur-
rent hypothesis ¢¢ does not contain &; the learner prefers
G-formulas to F-formulas if ¢¢ contains &; and with the
same temporal operator, the learner prefers formulas with
& to formulas with &, and prefers formulas with 4 the
least. Then, for (b* = G<2*, (bl = F<3‘, ¢2 = F<5*,

3 = Feg#, we have 0(6% 6') < o(¢%61) < o(6*; 1),
but o(¢*; $?) < o (¢?; ¢?). Therefore, Condition 1 of Theo-
rem 3 does not hold. If the oracle outputs ¢? as an intermedi-
ate target hypothesis before the learner’s hypothesis reaches
¢?, then the teaching problem is decomposed into two sub-
problems, i.e., teaching before ¢2 and after ¢2, and both sub-
problems satisfy Condition 1 of Theorem 3.
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S Case Study: Numerical Example

In this section, we evaluate the proposed approach under dif-
ferent teaching settings. The hypothesis set of pLTL ; formu-
las are listed in Table 1. The set S of states is {0, 1,...,10}.
We randomly select both the initial hypothesis and the target
hypothesis from the hypothesis set. The results are averaged
over 10 teaching sessions, with the standard deviations listed
in the supplementary material.

Teaching pLTL ; Formulas under Global
Preferences

We first compare TLIP with the exhaustive search method
for myopic teaching (ESMT). Table 2 shows the computa-
tion time for TLIP using myopic teaching and ESMT (mini-
mizing the AL teaching costs) for learners with global (uni-
form) preferences, where timeout (TO) is 300 minutes (on a
MacBook with 1.40-GHz Core i5 CPU and 16-GB RAM).
ESMT becomes intractable when the maximal length Lyax
of the demonstrations reaches 10, while TLIP maintains rel-
atively short computation time with increasing Lax.

As ESMT is not scalable, we implement the following 4
methods for comparison for myopic teaching performances.

AN-TLIP: TLIP for minimizing AN teaching cost.

AL-TLIP: TLIP for minimizing AL teaching cost.

AN-RG: randomized greedy algorithm for minimizing AN
teaching cost. At each iteration, we pick the demonstra-
tion with minimal AN teaching cost among a randomly
selected subset of demonstrations (of size 10000).

AL-RG: same with AN-RG except that here we minimize
the AL teaching cost.

Fig. 2 shows that AN-TLIP (resp. AL-TLIP) outperforms
the other three methods when minimizing the AN teach-
ing costs (resp. the AL teaching costs). Specifically, the AN
teaching costs using AN-TLIP are up to 33.33%, 75.9% and
80.39% less than those using AL-TLIP, AN-RG and AL-
RG, respectively. The AL teaching costs using AL-TLIP are
52.63%, 89.7% and 87.87% less than those using AN-TLIP,
AN-RG and AL-RG, respectively. Fig. 2 also shows that the
growth of the AL teaching cost is more significant with the
increasing size of the hypothesis set than that of the AN
teaching costs.

Teaching with Positive Demonstrations Only We test
the machine teaching algorithm with positive demonstra-
tions only. We consider global preferences, where the learner
prefers F-formulas to G-formulas, and with the same tempo-
ral operator the learner prefers formula ¢; to ¢ if and only

Category | Hypothesis pLTL; Formulas
F-formulas | F<i(z <1),...,F<1(z <9),
Feo(2 <1),..., Feo(z <9)
G-formulas | G<1(z <1),..., G<1(z <9),
Geolz <1),..., Geo(z <9)

Table 1: Hypothesis set of pLTL; formulas (¢ = 5,10, 15
correspond to hypothesis sets of sizes 90, 180 and 270).
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Figure 2: AN and AL teaching costs under global (uniform)
preference with increasing sizes of the hypothesis set.
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Figure 3: AN and AL teaching costs with positive demon-
strations only and with both positive and negative demon-
strations with increasing sizes of the hypothesis set.

if ¢; implies ¢5. It can be shown that this preference func-
tion satisfies the condition of Theorem 2.

The corresponding algorithms for AN-TLIP and AL-
TLIP with positive demonstrations only are referred to
as POS-AN-TLIP and POS-AL-TLIP, respectively. Fig. 3
shows that POS-AN-TLIP and POS-AL-TLIP do not incur
much additional teaching cost (up to 20% more) when re-
stricted to only positive demonstrations.

Teaching pLTL ; Formulas under Local
Preferences

Local Preferences For two pLTL; formulas ¢; =
Feiy(z < v1) and ¢ = Feyy(z < vg), where 41,49 €
{1,...,9}, v1,v2 € {1,...,a}, we define the Manhattan
distance between ¢ and @5 as |i1 — is| + |v; — v2|. We con-
sider the following local preference:

(1) The learner prefers formulas with the same temporal op-
erator as that in the learner’s previous hypothesis;

(2) With the same temporal operator the learner prefers for-
mulas that are “closer” to the learner’s previous hypothesis
in terms of the Manhattan distance;

(3) The learner prefers G-formulas to F-formulas if the
learner’s current hypothesis are in the form of Fc;(z < 1)
or F<;(x < 9) (¢ = 1,...,a). This is intuitively consis-
tent with human’s preferences to switch categories when the
values reach certain boundary values.

Lmux =5 Lmux =10 Lmax =15

TLIP 3.67s 5.29s 7.65s
ESMT 4.57s TO TO

Table 2: Computation time for the myopic solutions.
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Figure 4: AN and AL teaching costs for adaptive and non-
adaptive teaching with increasing sizes of the hypothesis set.
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Figure 5: AN and AL teaching costs for adaptive teaching
with oracles and without oracles with increasing sizes of the
hypothesis set.

Adaptive Teaching To test the advantage of adaptive
teaching, we compare it with non-adaptive teaching in the
presence of uncertainties. We consider local preferences
with added uncertainty noises. Specifically, the learner has
equal preference of selecting the formulas in the version
space that have the least Manhattan distance from the current
hypothesis and also any formula that can be perturbed from
these formulas in the version space (here “perturb” means
adding or subtracting the parameters ¢ or v by 1, e.g., as in
Fei(z <w)).

Fig. 4 shows that Ada-AN-TLIP (i.e., adaptive AN-TLIP)
can reduce the AN teaching costs by up to 43.33% com-
pared with NAda-AN-TLIP (i.e., non-adaptive AN-TLIP),
Ada-AN-RG (i.e., adaptive AN-RG) can reduce the AN
teaching costs by up to 57.65% compared with NAda-AN-
RG (i.e., non-adaptive AN-RG), Ada-AL-TLIP (i.e., adap-
tive AL-TLIP) can reduce the AN teaching costs by up to
13.64% compared with NAda-AL-TLIP (i.e., non-adaptive
AL-TLIP), and Ada-AL-RG (i.e., adaptive AL-RG) can re-
duce the AN teaching costs by up to 46.8% compared with
NAda-AL-RG (i.e., non-adaptive AL-RG).

Adaptive Teaching with Oracles To decompose the
teaching problem into subproblems that satisfy Condition 1
of Theorem 3, we design the oracle which outputs an in-
termediate target hypothesis F<i(z < 10). Fig. 5 shows
that Oracle-Ada-AN-TLIP (adaptive AN-TLIP with ora-
cles) can reduce the AN teaching costs by 25% com-
pared with Ada-AN-TLIP and Oracle-Ada-AL-TLIP (adap-
tive AL-TLIP with oracles) can reduce the AL teaching costs
by up to 75% compared with Ada-AL-TLIP.

Theoretically, the oracle can be designed to output any formula
of the form F<;(z < 0) or F<;(z < 10) (i = 1,...,a).



Figure 6: Simulated space in the robotic navigation scenario.

6 Case Study: Robot Navigation

In this case study, we consider a robotic navigation scenario
in a simulated space partitioned into 81 cells as shown in
Fig. 6. Each cell is associated with a color. A robot can be
only at one cell at any time. The robot has five possible ac-
tions at each time step: stay still, go north, go south, go east
or go west. For simplicity, we assume that each action is de-
terministic, i.e., there is zero slip rate. For example, when
the robot takes action to go north at the cell located at (1, 1),
it will land in the cell located at (2, 1). However, if the robot
hit the boundaries, it will remain at the same position.

As shown in the gridworld map, if the robot is at a red
cell, then at the next time step, it can be at a red cell or a
blue cell, but cannot be at a green cell or a yellow cell; and
if the robot is at a green cell, then at the next time step, it can
be at a green cell, a yellow cell or a blue cell, but cannot be
at a red cell. We add such transition constraints to the integer
programming formulation in computing the demonstrations.
The hypothesis set of pLTL ; formulas are listed in Table 3.
The set S of states is {Red, Blue, Green, Yellow}.

Global Preferences We implement four methods for com-
parison for myopic teaching performances for learners with
global (uniform) preferences: AN-TLIP, AL-TLIP, AN-RG,
and AL-RG.

Fig. 7 shows that AN-TLIP and AL-TLIP are the best
for minimizing the AN teaching costs and the AL teach-
ing costs, respectively. The AN teaching costs using AN-
TLIP are the same as the AN teaching costs using AL-TLIP,
which are up to 57.75% less than those using AN-RG and
AL-RG. The AL teaching costs using AL-TLIP are 17.78%,
42.99% and 37.07% less than those using AN-TLIP, AN-RG
and AL-RG, respectively.

Local Preferences We use the mapping o that maps each
color to an integer. Specifically, o(Red) = 1, o(Blue) = 2,
0(Green) = 3, and p(Yellow) = 4. For two pLTL ; formulas
¢1 = F<; Red and ¢ = F<;,Green, we define the Man-
hattan distance between ¢ and ¢g as |i; — 2] + |o(Red) —
o(Green)|. We consider the following local preference:

Example Hypothesis pLTL ; Formulas
F-formulas F<1Red, F<Blue, F<;Green, F<; Yellow,
F<,Red, F<,Blue, F<,Green, F<, Yellow
G-formulas G<1Red, G<1Blue, G<1Green, G<; Yellow,
G <qRed, G<4Blue, G<,Green, G <, Yellow

Table 3: Hypothesis set of pLTL formulas (@ = 5,10,15
correspond to hypothesis sets of sizes 90, 180 and 270).

5067

5]

—~AL-TLIP 100

-> AN-TLIP

—~AL-TLIP
- AN-TLIP|

=

+AN-RG 80

©ALRG | s

<-AN-RG
- AL-RG

%

60

AN teaching cost
=
AL teaching cost

SRS
q

90 180 270

size of hypothesis set

270 90 180

size of hypothesis set

Figure 7: AN and AL teaching costs under global (uniform)
preferences with increasing sizes of the hypothesis set in the
robotic navigation scenario.

7 80
= < Ada-AN-TLIP = ~Ada-AL-TLIP
86 -> NAda-AN-TLIP| 860 -> NAda-AL-TLIP
S S _-®
o0 o ) -7
£5 £ -
) Fo -
Saferre g
zZo| 320
<- <

0
90 180 270 90 180 270

size of hypothesis set size of hypothesis set

Figure 8: AN and AL teaching costs for adaptive and non-
adaptive teaching with increasing sizes of the hypothesis set
in the robotic navigation scenario.

(1) The learner prefers formulas with the same temporal op-
erator as that in the learner’s previous hypothesis;

(2) With the same temporal operator the learner prefers for-
mulas that are “closer” to the learner’s previous hypothesis
in terms of the Manhattan distance.

To test the advantage of adaptive teaching, we compare it
with non-adaptive teaching in the presence of uncertainties.
We consider local preferences with uncertainty noises added
in the same way as in the previous case study.

Fig. 8 shows that Ada-AN-TLIP (i.e., adaptive AN-TLIP)
can reduce the AN teaching costs by 28% compared with
NAda-AN-TLIP (i.e., non-adaptive AN-TLIP), and Ada-
AL-TLIP (i.e., adaptive AL-TLIP) can reduce the AN teach-
ing costs by 30.75% compared with NAda-AL-TLIP (i.e.,
non-adaptive AL-TLIP).

7 Conclusion

We presented the first attempt for teaching parametric lin-
ear temporal logic formulas to a learner with preferences.
We also explored how to more efficiently teach the learner
utilizing adaptivity and oracles. The results show the effec-
tiveness of the proposed approach. We believe this is an im-
portant step towards practical algorithms for teaching more
complex concept classes in the real-world scenarios. For fu-
ture work, we will explore teaching methods for more gen-
eral forms of temporal logic formulas, with more specific
learning algorithms for inferring temporal logic formulas.
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