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Abstract

We present a midpoint policy iteration algorithm to solve linear quadratic optimal control problems
in both model-based and model-free settings. The algorithm is a variation of Newton’s method, and
we show that in the model-based setting it achieves cubic convergence, which is superior to stan-
dard policy iteration and policy gradient algorithms that achieve quadratic and linear convergence,
respectively. We also demonstrate that the algorithm can be approximately implemented without
knowledge of the dynamics model by using least-squares estimates of the state-action value func-
tion from trajectory data, from which policy improvements can be obtained. With sufficient trajec-
tory data, the policy iterates converge cubically to approximately optimal policies, and this occurs
with the same available sample budget as the approximate standard policy iteration. Numerical
experiments demonstrate effectiveness of the proposed algorithms.

Keywords: Optimal control, linear quadratic regulator (LQR), optimization, Newton method, mid-
point Newton method, data-driven, model-free.

1. Introduction

With the recent confluence of reinforcement learning and data-driven optimal control, there is
renewed interest in fully understanding convergence, sample complexity, and robustness in both
“model-based” and “model-free” algorithms. Linear quadratic problems in continuous spaces pro-
vide benchmarks where strong theoretical statements can be made. In “model-based” methods,
trajectory data is used to estimate a model of the system dynamics, then an approximately optimal
control policy is computed based on the estimated model, invoking certainty-equivalence or using
robust control approaches to explicitly account for model uncertainty. The analysis in recent works
by Mania et al. (2019); Oymak and Ozay (2019); Coppens and Patrinos (2020); Dean et al. (2018,
2019); Gravell and Summers (2020); Coppens et al. (2020) have focused on providing finite-sample
performance/suboptimality guarantees. “Model-free” methods do not explicitly learn a model of the
dynamics, but instead optimize the control policy directly or learn a value function from which poli-
cies are constructed. For example, policy gradient has received attention recently for standard LQR
(Fazel et al. (2018); Bu et al. (2020)), multiplicative-noise LQR (Gravell et al. (2019)), Markov jump
LQR (Jansch-Porto et al. (2020)), and LQ games related to H ., robust control (Zhang et al. (2019);
Bu et al. (2019)). Approximate policy iteration has also been studied by Bradtke et al. (1994);
Krauth et al. (2019); Luo et al. (2020); Gravell et al. (2021); Al-Tamimi et al. (2007); Fazel et al.
(2018); Bu et al. (2020) (note that this method is sometimes called quasi-Newton or Q-learning).
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It has been long-known, but perhaps underappreciated, that application of Newton’s method
to find the root of the functional Bellman equation in stochastic optimal control is equivalent to
the dynamic programming algorithm of policy iteration (Puterman and Brumelle (1979); Madani
(2002)). In linear-quadratic problems, the Bellman equation becomes a matrix algebraic Riccati
equation, and application of the Newton method to the Riccati equation yields the well-known
Kleinman-Hewer algorithm.! The Newton method has many variations devised to improve the
convergence rate and information efficiency, including higher-order methods e.g. Halley (Cuyt and
Rall (1985)), and multi-point methods (Traub (1964)), which compute derivatives at multiple points
and of which the midpoint method is the simplest member. Some of these have been applied to
solving Riccati equations by Anderson (1978); Guo and Laub (2000); Damm and Hinrichsen (2001);
Freiling and Hochhaus (2004); Herndndez-Verén and Romero (2018), but without consideration of
the situation when the dynamics are not perfectly known. Our main contributions are:

1. We present a midpoint policy iteration algorithm to solve linear quadratic optimal control
problems when the dynamics are both known (Algorithm 1) and unknown (Algorithm 4).

2. We demonstrate that the method converges, and does so at a faster cubic rate than standard
policy iteration or policy gradient, which converge at quadratic and linear rates, respectively.

3. We show that approximate midpoint policy iteration converges faster in the model-free setting
even with the same available sample budget as the approximate standard policy iteration.

4. We present numerical experiments that illustrate and demonstrate the effectiveness of the
algorithms and provide an open-source implementation to facilitate their wider use.

An extended version of this paper (Gravell et al. (2020)) is available at
https://arxiv.org/abs/2011.14212.

2. Preliminaries

Notation: Let R™*"" denote the space of real-valued n x m matrices, S™ the space of symmetric
real-valued n x n matrices, p(M) the spectral radius of square matrix M, ||M|| the spectral norm
of matrix M, svec(M) the vector formed by stacking columns of the upper triangular part of matrix
M with off-diagonal entries multiplied by v/2, smat (v) the matrix formed by the inverse operation
of svec(+) such that smat(svec(M)) = M, M > (>) 0 that matrix M is positive (semi)definite,
and M > (>) N that matrix M — N > (=) 0.

The infinite-horizon average-cost time-invariant linear quadratic regulator (LQR) problem is

T T
minimize  lim lEmth [xt] [Q” Q“} [xt] (1)

mell T—oo T =0 Ut Qum Quu Ut

subjectto  xy11 = Az + Buy + wy,

where x; € R" is the system state, u; € R™ is the control input, and w; is i.i.d. process noise with
zero mean and covariance matrix W. The state-to-state system matrix A € R™*" and input-to-state
system matrix B € R™*™ may or may not be known; we present algorithms for both settings. The
optimization is over the space I of (measurable) history dependent feedback policies 7 = {m:}{2,,
with us = 7 (20.¢, uo.¢—1). The penalty weight matrix Q € S™*" has blocks Q .z, Quus Quey = Qi
which quadratically penalize deviations of the state, input, and product of state and input from the

1. Kleinman (1968) introduced this for continuous-time systems, and Hewer (1971) studied it for discrete-time systems.
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origin, respectively. We assume the pair (A, B) is stabilizable, the pair (A4, Q;lgf) is detectable, and
the penalty matrices satisfy the definiteness condition ) > 0, in order to ensure feasibility of the
problem (see Anderson and Moore (2007)). Dynamic programming can be used to show that the
optimal policy that solves (1) is linear state-feedback u; = Kx;, where the gain matrix K = IC(P)
is expressed through the linear-fractional operator /C

K(P) := — (Quu + BTPB) ™" (Qus + BTPA),

and P is the optimal value matrix found by solving the algebraic Riccati equation (ARE) expressed
with the quadratic-fractional Riccati operator R

R(P) = —P + Quo + ATPA — (Quu + ATPB) (Quu + BTPB) ™! (Qua + BTPA) =0, (2)
The optimal gain and value matrix operators can be expressed more compactly as
K(P) = ~Hpt (PYHue(P),  R(P) = —P + Haa(P) — Hou(P)Hyt (P)Huw(P)
where H is the state-action value matrix operator

Haw(P) Hau(P)

HP) =191 (P Hon(P)

=Q+[A B]'"P[A B].

The discrete-time Lyapunov equation with matrix F' and symmetric matrix S'is X = FTXF + S,
whose solution we denote by X = DLYAP(F,S), which is unique if F' is Schur stable. The first
total derivative of the Riccati operator evaluated at point P € S™ is denoted as R'(P) € S" x S™.
With a slight abuse of notation, the first directional derivative of the Riccati operator evaluated at
point P in direction X is denoted as R'(P, X) € S™. Considering two symmetric matrices P, X
and the related gains K = K(P), L = K(X), then R’(P, X) can be rewritten in the compact form

R/(P,X)=—-X + (A+ BK) X(A + BK), 3)

and we have the identity

R(P) -~ R/(X, P) = LI(] 0 [zﬂ +(A+ BK)TP(A+ BK) — (A+ BL)TP(A+ BL). (4)

3. Exact midpoint policy iteration

First we consider finding a solution to the generic vector equation f(x) = 0 where f : R” — R",
whose total derivative at a point x is f’(x) € R™*™. The midpoint Newton method, due originally
to Traub (1964), begins with an initial guess xo then proceeds with iterations

_ 1 _
ang =z — f'(zp) " f(2p), ap = 5(9% +a01), Tri1 =z — (@) f(a),

until convergence. Each iteration in this technique uses derivative information at two points, 3 and
xé\/[ . This method has been shown to achieve cubic convergence in a neighborhood of the root by
Nedzhibov (2002); Homeier (2004); Babajee and Dauhoo (2006).
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We now consider application of the midpoint Newton method to the Riccati equation (2):

Py =P —R(P) ' (R(P)), P =2 (P +P), Pup1 =P —R (P R(P),

N |

The updates can be rearranged into the Newton equations
R'(Pr, P) = R (Pry Bi) = R(P),  RI(BY, Peyr) = RI(BY, P) — R(Py).
Applying (3) to the left- and (4) to the right-hand side, these become the Lyapunov equations
Pl =pryap(FN, SN, Py.1 = DLYAP(FM M),

where 'V, SN M SM are defined in the full midpoint policy iteration in Algorithm 1.

Algorithm 1 Exact midpoint policy iteration (MPI)

Input: System matrices A, B, penalty matrix (), initial value matrix Py > 0, tolerance €
1: Initialize: P_; = ool and k = 0
2: while ||Pk — Pk:—lH > e do
3:  Compute K}, = KC(Py).

Compute F'N = A+ BKjy,and SV = [I K]|Q[I K]|'.

Solve PY | = pLYap(FN,5)

Compute M, = 3(P, + PY) and Ly, = KC(My,).

Compute FM = A + BL;, and

SM =11 KIQ[I K"+ (A+ BKy) Py(A+ BKy) — (A+ BLy)TP.(A+ BLy).
8:  Solve P, = DLYAP(FM M),
9 k<« k+1

Ol.ltpllt: Pk, Kk = ]C(Pk)

N R

Proposition 1 Consider Exact Midpoint Policy Iteration in Algorithm 1. For any feasible problem
instance, there exists a neighborhood around the optimal gain K* from which any initial gain K
yields cubic convergence, i.e. | K11 — K*|| < O (||[Kj, — K*||*) where || - || is any matrix norm.

Proof The claim follows by generic cubic convergence results for midpoint policy iteration (Home-
ier (2004)) and invertibility and smoothness of R within a neighborhood of K*; a complete proof
is given in the extended paper (Gravell et al. (2020)). |

4. Approximate midpoint policy iteration

In the model-free setting we do not have access to the dynamics matrices (A, B), so we cannot
execute the updates in Algorithm 1. However, the gain K = K(P) can be computed solely from the
state-action value matrix H = H(P) as K = —H_,! H,,. Thus, if we can obtain accurate estimates
of H, we can use the estimate of H to compute K and we need not perform any other updates
that depend explicitly on (A, B). We begin by summarizing an existing method in the literature for
estimating state-action value functions from observed state-and-input trajectories.
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4.1. State-action value estimation

First, we connect the matrix H with the (relative) state-action value (Q) function, which determines
the (relative) cost of starting in state x = xg, taking action u = wug, then following the policy
u; = Kx; thereafter:

Tr(PW) + Qg (2, u) = m ' [Q“ Q“‘] m +E [(Ax + Bu+w)TP(Az + Bu + )

Quz Quu
= [xT uT] H [xT uT}T
where H = #(P), P =DLYAP (A+ BK,[I KT|Q[I KT|'). 5)

From this expression it is clear that a state-input trajectory, or “rollout,” D = {x, ut}fzo must
satisfy this cost relationship, which can be used to estimate . In particular, least-squares temporal
difference learning for Q-functions (LSTDQ) was originally introduced by Lagoudakis and Parr
(2003) and analyzed by Abbasi-Yadkori et al. (2019); Krauth et al. (2019), and is known to be a
consistent and unbiased estimator of H. Following the development of Krauth et al. (2019), the
LSTDQ estimator is summarized in Algorithm 2.

Algorithm 2 LSTDQ: Least-squares temporal difference learning for ()-functions

Input: Rollout D = {z,u; }_, gain matrix K, penalty matrix Q.
x x
1: Compute augmented rollout {z;, vy, ct}fzo where z; = [u] , Vg = [ Kevalx] , et = 2] Qzt.

2: Use feature map ¢(z) = svec (zz7) and compute the parameter estimate

0= (Zle ¢(Zt)(¢(zt) - ¢(Ut+1)T)T Zf:l ¢(Zt)ct-

Output: H = smat(O).

We collect rollouts to feed into Algorithm 2 via Algorithm 3, i.e. by initializing the state with
zo drawn from the given initial state distribution &}, then generating control inputs according to
up = KP® g, 4+ 0" where KP s a stabilizing gain matrix, and u$™'°" is an exploration noise

drawn from a distribution U, assumed Gaussian in this work, to ensure persistence of excitation.

Algorithm 3 ROLLOUT: Rollout collection

Input: Gain KP'®, rollout length ¢, initial state distribution Xp, exploration distributions {24, }¢_,.
1: Initialize state xg ~ X
2: fort=0,1,2,...,/do
3:  Sample exploratory control input uj"Pl‘“ ~ Uy and disturbance wy ~ W
4:  Generate control input u; = KP®x, + u;™*P lore
5:  Record state z; and input
6 Update state according to x;11 = Axy + Buy + wy
Output: D = {z4,u}f_g.

Note that LSTDQ is an off-policy method, and thus the gain KP% used to generate the data in
Algorithm 3 and the gain K whose state-action value matrix is estimated in Algorithm 2 need
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not be identical. We will use this fact in the next section to give an off-policy, offline (OFF) and
on-policy, online (ON) version of our algorithm. Likewise, the penalty matrix () used in Algorithm
2 need not be the same as the one in the original problem statement, which is critical to developing
the model-free midpoint update in the next section.

4.2. Derivation of approximate midpoint policy iteration

We have shown that estimates of the state-action value matrix H can be obtained by LSTDQ using
either off-policy or on-policy data. In the following development, (OFF) denotes a variant where a
single off-policy rollout D is collected offline before running the system, and (ON) denotes a variant
where new on-policy rollouts are collected at each iteration. Also, an overhat symbol “"” denotes
an estimated quantity while the absence of one denotes an exact quantity.

In approximate policy iteration, we can simply form the estimate H, using LSTDQ (see Krauth
et al. (2019)). For approximate midpoint policy iteration, the form of H, is more complicated and
requires multiple steps. To derive approximate midpoint policy iteration, we will re-order some of
the steps in the loop of Algorithm 1. Specifically, move the gain calculation in step 3 to the end after
step 9. We will also replace explicit computation of the value function matrices with estimation of
state-action value matrices, i.e. subsume the pairs of steps 4, 5 and 8,9 into single steps, and work
with H instead of P. Thus, at the begmmng of each iteration we have in hand an estimated state-
action value matrix H}, and gain matrix Ky, satisfying K,=—-H_ wa, kH

First we translate steps 4, 5, 6, and 7 to a model-free version. Workmg backwards starting with
step 7, in order to estimate Ly, it suffices to estimate H (M},) since Ly, = —H (M},) i H(M},)uz. To
find H (M), notice H (X)) is linear in X, so H(M;) = (H(Py) + H(PX.,)) /2. Therefore we can
estimate H (Mj;) by estimating H (P ) and (P, ;) separately and taking their midpoint. Since the
estimate Hj, of H(P) is known from the prior iteration, what remains is to find an estimate H qu\ﬁrl of
’H(P,iVH) by collecting DV = ROLLOUT(Kk, l, Xy, {L{t o) (ON) or using DV = D (OFF), and
estimating Hk+1 = LSTDQ(DY, K, @). Then we form the estimated gain Ly=-HM —1gM

uu,k uz,k
M _
where [IM = Q(Hk + Hk+1)'
Now we translate steps 8, 9, and 2 to a model-free version. Working backwards, starting with
step 2, in order to estimate K1, it suffices to find an estimate Hyq1 of matrix H(Pj,1) since

Kpy1 = —H(Pei1)yiH(Pyi1)us. From steps 8 and 9, we want to estimate
Hyy1 = H(Pry1) = Q + [A B] Priq [A B] ) (6)
where  Pyq = DLYAP (FM SM) (7
FM — A4 BL,,

v 717 T I 717 T I
s :[Kk] (Q+[A B]'R[A B})[Kk]_[%] A B]'P.[A B] M
Comparing the two arguments to DLYAP (-, -) in (5) and (7), we desire both
A+BK=A+BL,, [I KTQY[I KT7|'=s". (8)

Clearly it suffices to take K = L, in (8). Notice that, critically, all quantities in SM on the right-
hand side of (8) have been estimated already, i.e. Ky, Ly, Hi have been calculated already and

Q+[A B]"P[A B]=H,, [A B]'P.[A B]=H,-Q.
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Substituting & = L, in (8) and comparing coefficients, it suffices to estimate Q" by
(1 K[ A1 K] 0] _
0

0 (Hy, — Q). 9)

QM =
At this point, establish the rollout D either by collecting DM = ROLLOUT(Ly, £, Xo, {Us }i_)
(ON) or using DM = D (OFF). Then the matrix ﬁkOH = LSTDQ(DM, Ly, QM) estimates HI?H =
QM +[A B]"Pyy1 [A B].However, weneed Hyp1 = Q+[A B|"Pyq [A B], whichis
easily found by offsetting HY, | as Hy1 = HY, | +(Q—Q™), and thus Hy, 1 = H? | +(Q—QM)
estimates Hp 1. One further consideration to address is the initial estimate H 0 since we do not have
a prior iterate to use, we simply collect D = ROLLOUT(KO, L, Xy, {Z/{t}fzo) and estimate Hy =
LSTDQ(D, Ko, Q) i.e. the first iteration will be a standard approximate policy iteration/Newton
step. Importantly, the initial gain K must stabilize the system so that the value functions are finite-
valued. Also, although a convergence criterion such as Hﬁ w— Hyp 1 || > € could be used, it is more
straightforward to use a fixed number of iterations /V so that the influence of stochastic errors in H;
does not lead to premature termination of the program. Likewise, a schedule of increasing rollout
lengths ¢ could be used for the (ON) variant to achieve increasing accuracy, but finding a meaningful
schedule which properly matches the fast convergence rate of the algorithm requires more extensive
analysis. The full set of updates are compiled in Algorithm 4.

Algorithm 4 Approximate midpoint policy iteration (AMPI)

Input: Penalty (), gain K 0, number of iterations IV, rollout length ¢, distributions A{, {L{t}fzo.
1: Initialize: ﬁ_l =oolptmand k =0
2: Collect D = ROLLOUT(Ky, £, Xo, {Us}_,)
3. Estimate value matrix Hy = LSTDQ(D, Ko, Q).
4. while k£ < N do
Set DN = D (OFF), or collect D = ROLLOUT (K, £, Xo, {Us }¢_,) (ON)
Estimate value matrix ﬁ,ﬁ_l = LSTDQ(DY, Ky, Q).
Form the midpoint value estimate H¥ = %(ﬁ v+ H N
Compute the midpoint gain Ly = —ﬁu%,k_lﬁ%,k.
Set DM = D (OFF), or collect DM = ROLLOUT(Lg, £, Xo, {Us }¢_,) (ON)
10:  Estimate fI,?H = LSTDQ(DM, Ly, QM) where QM computed from (9)

11:  Compute the estimated value matrix Hy,, = H l?+1 +(Q — QM).

R R A

12:  Compute the gain Kk+1 = —ngk+1Hum,k+l‘
132 k< k+1
Ol.ltpllt: Hk, Kk

Proposition 2 Consider Approximate Midpoint Policy Iteration in Algorithm 4. As the rollout
length £ grows to infinity, the state-action value matrix estimate H, converges to the exact value.
Thus, in the infinite data limit, for any feasible problem instance, there exists a neighborhood around
the optimal gain K* from which any initial gain Ky converges cubically to K*.

Proof The claim follows by Proposition 1 and the fact that LSTDQ is a consistent estimator
Lagoudakis and Parr (2003); Krauth et al. (2019), i.e. as £ — oo the estimates H used in Algorithm
4 approach the true values H indirectly used in Algorithm 1. |
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5. Numerical experiments

In this section we compare the empirical performance of proposed midpoint policy iteration (MPI)
with standard policy iteration (PI), as well as their approximate versions (AMPI) and (API). In
all experiments, regardless of whether the exact or approximate algorithm is used, we evaluated
the value matrix P associated to the policy gains K at each iteration k on the true system, i.e.
the solution to P, = DLYAP (A+ BKy, [I KJ]Q[I K]]T). We then normalized the devi-
ation || P, — P*||, where P* solves the Riccati equation (2), by the quantity ||P*||. This gives a
meaningful metric to compare different suboptimal gains. We also elected to use the off-policy
version (OFF) of AMPI and API in order to achieve a more direct and fair comparison between
the midpoint and standard methods; each is given access to precisely the same sample data and
initial policy, so differences in convergence are entirely due to the algorithms. Nevertheless, similar
results were observed in the on-policy online setting (ON) and for higher dimensional state- and
input-spaces; please see the extended paper for these results Gravell et al. (2020). Python code
which implements the proposed algorithms and reproduces the experimental results is available at
https://github.com/TSummersLab/midpoint-policy—-iteration.

5.1. Representative example

Here we consider one of the simplest tasks in the control discipline: regulating an inertial mass
using a force input. Forward-Euler discretization of the continuous-time dynamics with sampling
time At yields the discrete-time dynamics

Tyr1 = Axy + Buy +w;  where A= [(1) Alt] , B

Il
| — |
=P o
| I

with mass pu > 0, state x; € R?2 where the
first state is the position and the second state

is the velocity, force input u; € R, and w; ~ 10 ¢ Exact Pl
N(0,W) with W = At - W, where W, = 0. 10-1 =@- Exact MPI
| Approx. Pl

We used = 1, At = 0.01, W, = 0.0115, .- Approx. MPI

-3
() = Is. The initial gain was chosen by per- & 10
turbing the optimal gain K * in a random direc- © 10-°
. e . (] /Y I O I
tion such that the initial relative error [P, — 3 | L
P*||/||P*|| = 10; in particular the initial gain § .
10~

was Ko = [—0.044 —2.084]. For the approx-
imate algorithms, we used the hyperparameters 10-1t
¢ =300, Xy = N(0, 1), Uy = N(0, I5).

The results of applying midpoint policy it-
eration and the standard policy iteration, exact
and approximate (OFF), are plotted in Figure 1.
Clearly MPI and AMPI converge more quickly
to the (approximate) optimal policy than Pl and  Figure 1: Relative error || P, — P*|| /|| P*|| vs iter-
API, with MPI converging to machine precision ation count k£ using PI and MPI on the
in 7 iterations vs 9 iterations for PI, and AMPI inertial mass control problem.
converging to noise precision in 6 iterations vs
8 iterations for APIL.

10—13

1 2 3 4 5 6 7 8 9 10 11 12
Iteration
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5.2. Randomized examples

Next we apply the approximate PI (OFF) algorithms on 1000 problem instances in a Monte Carlo-
style approach, where problem data was generated randomly with n = 4, m = 2, entries of A drawn
from A (0,1) and A scaled so p(A) ~ Unif([0, 2]), entries of B drawn from Unif([0, 1]), and Q =
UAUT > 0 with A diagonal with entries drawn from Unif([0, 1]) and U orthogonal by taking the
QR-factorization of a square matrix with entries drawn from A/ (0, 1). We used a small process noise
covariance of W = 10761 to avoid unstable iterates due to excessive data-based approximation
error of H, over all problem instances. All initial gains /Ky were chosen by perturbing the optimal
gain K* in a random direction such that the initial relative error || P, — P*||/||P*|| = 10. For the
approximate algorithms, we used the hyperparameters ¢ = 100, Xy = N (0, I2), Uy = N(0, I3).

In Figure 2 we plot the relative value error | P, — P*||/||P*|| over iterations. Each scatter point
represents a unique Monte Carlo sample, i.e. a unique problem instance, initial gain, and rollout.
Each scatter plot shows the empirical distribution of errors at the iteration count k labeled in the
subplot titles above each plot. The x-axis is the spectral radius of A which characterizes open-loop
stability. In Figure 2 (b), scatter points lying below 1.0 on the y-axis indicate that the midpoint
method achieves lower error than the standard method on the same problem instance. From Figure
2 (a), it is clear that AMPI achieves extremely fast convergence to a good approximation of the
optimal gain, with the relative error being less than 10~ on almost all problem instances after just
4 iterations. From Figure 2 (b), we see that AMPI achieves significantly lower error than API on
iteration counts 2, 3,4, 5 for almost all problem instances; recall that Algorithm 4 takes a standard
PI step on the first iteration, explaining the identical performance on k = 1.

6. Conclusions and future work

Empirically, we found that regardless of the stabilizing initial policy chosen, convergence to the
optimum always occurred when using the exact midpoint method. Likewise, we also found that
approximate midpoint and standard PI converge to the same approximately optimal policy, and
hence value matrix P, after enough iterations when evaluated on the same fixed off-policy rollout
data D. We conjecture that such robust, finite-data convergence properties can be proven rigorously,
which we leave to future work.

This algorithm is perhaps most useful in the regime of practical problems in the online setting
where it is relatively expensive to collect data and relatively cheap to perform the computations
required to execute the updates. In such scenarios, the goal is to converge in as few iterations as
possible, and MPI shows a clear advantage. Both the exact and approximate midpoint PI incur
a computation cost double that of their standard PI counterparts. Theoretically, the faster cubic
convergence rate of MPI over the quadratic convergence rate of PI should dominate this order
constant (2x) cost with sufficiently many iterations. However, unfortunately, due to finite machine
precision, the total number of useful iterations that increase the precision of the optimal policy is
limited, and the per-iteration cost largely counteracts the faster over-iteration convergence of MPL
This phenomenon becomes even more apparent in the model-free case where the “noise floor” is
even higher. However, this disadvantage may be reduced by employing iterative Lyapunov equation
solvers in Algorithm 1 or iterative (recursive) least-squares solvers in Algorithm 4 and warm-starting
the midpoint equation with the Newton solution. Furthermore, the benefit of the faster convergence
of the midpoint PI may become more important in extensions to nonlinear systems, where the order
constants in Propositions 1 and 2 are smaller.
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The current methodology is certainty-equivalent in the sense that we treat the estimated value
functions as correct. Future work will explore ways to estimate and account for uncertainty in the
value function estimate explicitly to minimize regret risk in the initial transient stage of learning
when the amount of information is low and uncertainty is high.

k=0

Error

102

100

Error ratio

1072

108

10°

Error ratio

1078

p(A) p(A)
(b) Ratio of relative errors using AMPI/API

Figure 2: (a) Relative value error || Py, — P*|| /|| P*|| using AMPI and (b) ratio of relative error using
AMPI divided by that using API.
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