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Abstract

Among other things, it is shown that for every pair of pos-

itive integers r, d, satisfying 1 < r < d ≤ 2r, and every finite

simple graph H, there is a connected graph G with diameter

d, radius r, and center H.

1 Introduction

All graphs referred to will be finite and simple. The vertex and edge
sets of a graph G will be denoted V (G) and E(G), respectively. If G
is connected and u, v ∈ V (G), distG(u, v) is the length of a shortest
walk in G from one of u, v to the other; a geodesic under the shortest-
walk metric. As every shortest walk is a path, distG(u, v) may also
be formulated as the length of a shortest path in G with end-vertices
u and v.

If G is connected and v ∈ V (G), the eccentricity of v in G, denoted
εG(v), is:

εG(v) = max
u∈V (G)

{distG(u, v)}.

The radius of a connected graph G is:

rad(G) = min
u∈V (G)

{εG(u)},

and its diameter is:

diam(G) = max
u∈V (G)

{εG(u)}.

Equivalently,
diam(G) = max

u,v∈V (G)
{distG(u, v)}.

It is easy to see that rad(G) ≤ diam(G) ≤ 2rad(G). It is a
standard exercise in a first course in graph theory to show that for any
positive integers satisfying r ≤ d ≤ 2r, there is a connected graph G

such that rad(G) = r and diam(G) = d. (A more challenging, but still
elementary, exercise would be to determine, for pairs r, d constrained
as above, the values of n such that there exists a connected graph G

with rad(G) = r, diam(G) = d, and |V (G)| = n.)
A vertex v ∈ V (G) is a central vertex in G if and only if εG(v) =

rad(G). The center of G, denoted C(G), is the subgraph of G induced
by the set of centers of G. (Therefore, that set is V (C(G)).)
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The question broached in [1] is: which graphs can be installed as
the center of another graph? That is, given a graph H , can you find
a connected graph G such that C(G) ∼= H?

As reported in [1], this question in full generality was killed at
its birth as a question meriting research by a brilliant observation of
Stephen T. Hedetniemi, encapsulated in Figure 1.

Figure 1: A connected graph G with an arbitrary graph H as its
center. Each vertex of H is adjacent to both u and v, in G.

The authors of [1] resurrect the problem by asking: for a distin-
guished family F of connected graphs, which graphs H can be the
center of a graph G ∈ F? And, for such H and F , how small can
|V (G)| − |V (H)| be, if G ∈ F? These questions have borne fruit, but
we are going in a different direction.

The graph G in Figure 1 has diameter 4 and radius 2. The set of
central vertices of G is precisely V (H), regardless of what H is. If the
paths leading away from H from u and v are each lengthened to have
length t > 1, the result is a graph with center H , radius t + 1, and
diameter 2t + 2.

Our aim here is to answer the question: for which positive integers
d, r, satisfying r ≤ d ≤ 2r, and graphs H , does there exist a connected
graph G such that rad(G) = r, diam(G) = d, and C(G) ≃ H? The
extension of the observation of Hedetniemi just above shows that there
is such a G for every H , r > 1, and d = 2r. Our main result, in 3,
is that there is such a G for every H , r > 1, and r < d ≤ 2r. In the
next section we deal with extremes, and alternative solutions to that
in Section 3, in some cases.

2 Extremes and alternative solutions

2.1 r = d

If rad(G) = diam(G), then G is its own center. Therefore, H = C(G)
and rad(G) = diam(G) if and only H ≃ G and rad(H) = diam(H).
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2.2 r = 1, d = 2

If rad(G) = 1, then each central vertex of G is adjacent to every
other vertex of G. Therefore, if H ∼= C(G) then H must be a complete
graph, and each vertex ofH must be adjacent to each vertex of V (G)\
V (H). Furthermore, since all central vertices of G are in V (H), it
must be that every v ∈ V (G) \ V (H) has a non-neighbor in G in
V (G) \ V (H).

Let “∨” stand for the join of two graphs: X ∨ Y is formed by
taking disjoint copies of X and Y and then adding in every edge xy,
x ∈ V (X), y ∈ V (Y ). By the paragraph above, when r = 1, d = 2,
the only H for which a solution G can exist are H = Kt, t > 0, and
the only possible solutions are Kt ∨ Y in which Y is a graph with
|V (Y )| > 1 and for each y ∈ V (Y ), the degree deg(y) of y ∈ V (Y )
satisfies degY (y) < |V (Y )| − 1.

Every such G = Kt ∨ Y satisfies rad(G) = 1, diam(G) = 2,
and C(G) = Kt, so we have completely characterized the values of
H(H = Kt) for which our problem with r = 1, d = 2 has a solution,
and all possible solutions (G = Kt ∨ Y , as above).

2.3 A standard method

Proposition 2.1. Suppose that X is a connected graph with
|V (X)| > 1, rad(X) > 1, and V (C(X)) = {h}; i.e., there is a single
central vertex in X. For an arbitrary graph H, if G is formed by
replacing h by H, with every vertex of H adjacent in G to every vertex
in X to which h is adjacent, then rad(G) = rad(X), diam(G) =
diam(X), and C(G) ∼= H.

The proof is straightforward. Note that the assumption that rad(X) =
εX(h) ≥ 2 plays a role in the proof that H ∼= C(G).

For instance, the graph in Figure 1 is obtained from X = P5, the
path on 5 vertices, by the device of Proposition 2.1. The generalization
to the solution of our problem for all H when d = 2r ≥ 4 uses the
device of Prop. 2.1 with X = P2r+1.

In Figure 2 we have a graph X with a single central vertex h

such that rad(X) = r, diam(G) = 2r − 1, for arbitrary r ≥ 2. By
Proposition 2.1, this shows that every graph H can be the center of
a graph G of radius r and diameter 2r − 1, for every r ≥ 2.
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Figure 2: A graph X with radius r ≥ 2, diameter 2r− 1, and a single
central vertex h; and a graph G with rad(G) = r, diam(G) = 2r− 1,
and C(G) ≃ H . The paths hanging off the vertices of C6 are all Pr−1,
paths of length r − 2. In the case r = 2, they are not there, and
|V (X)| = 7.

For those who enjoy variety, we can vary X to the graph Y shown
in Figure 3, which gives another solution to our problem when d = 2r
and H arbitrary.

Figure 3: A graph with a single central vertex, radius r ≥ 2, and
diameter 2r.

If you have been paying attention, you might exclaim: why do
we need this? Hedetniemi’s construction already gives us solutions
of our problem in the case d = 2r ≥ 4. Yes, but Figure 3 gives a
different solution, and different solutions of our problem contribute to
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the solution of a problem that towers over ours: given positive integers
r and d satisfying 1 < r < d ≤ 2r, and a graph H , find all possible
graphs G satisfying rad(G) = r, diam(G) = d, and C(G) ∼= H .
In view of Proposition 2.1, in pursuit of this larger problem, it is
appropriate to pose the following: given d and r as above, find all
graphs X such that rad(X) = r, diam(X) = d, and C(X) = K1.

Moreover, the alternative solutions to the d = 2r case provide
a related problem: what properties characterize those graphs with
d = 2r and center K1? The majority of graphs constructed with
center K1 in fact had d = 2r, and the solution to this problem will
considerably narrow down the larger problem.

In Figure 4, we have, for r ≥ 2, a graph of radius r and diameter
r+1, and a graph of radius r and diameter r+⌈ r

3
⌉, both with a single

central vertex.

Figure 4: A graph G with radius r and diameter r + 1, and a graph
H with radius r and diameter r + ⌈ r

3
⌉. The ”top” and the ”bottom”

of the drawing of H are Pr+1’s.

2.4 A non-standard strategy in special cases

The strategy referred to, applicable only when H is connected is:
attach pairwise vertex-disjoint paths to the vertices of H . This trick
appears to be of use only in a special class of cases.

Proposition 2.2. Suppose that H is connected with rad(H) = diam(H) =
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z. Suppose that G is formed by attaching vertex-disjoint paths Pt

to the vertices of H, with each vertex of H being an end of its at-
tached path (when t = 1, nothing is attached, and G = H). Then
rad(G) = z + t− 1, diam(G) = 2(t− 1) + z, and C(G) ∼= H.

The proof is straightforward.

Corollary 2.3. If H is as in Proposition 2.2, then for all integers
r ≥ z and d = 2r−z there is a graph G, obtained as in Prop. 2.2 with
t = r − z + 1 such that rad(G) = r, diam(G) = d, and C(G) = H.

3 The main result

Lemma 3.1. Let X be the graph depicted in Figure 5. Suppose that
n ≥ 0 and r ≥ max{2, n+ 1}. Then h is the unique central vertex of
X, rad(X) = r, and diam(X) = r + n+ 1.

Proof. Clearly εX(h) = max{r, n+1} = r. Checking shows that every
other vertex of X has eccentricity > r in X . For instance,

εX(v1,1) = max{dist(v1,1, wn), dist(v1,1, vr+1,2)} = max{n+2, r+1} = r+1.

Finally, it is easy to see that the vertices vi,j, i ∈ {r, r+1}, j ∈ {1, 2},
have the greatest eccentricity; for instance, εX(vr,1) = dist(vr,1, yn) =
r + n+ 1 = diam(X).

Theorem 3.2. For all integers r ≥ 2 and d satisfying r < d ≤ 2r and
every graph H there is a graph G such that rad(G) = r, diam(G) = d,
and C(G) ∼= H. Furthermore, G is obtainable from some graph by the
method of Proposition 2.1.
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Figure 5: A graph X with a single central vertex h, radius r and
diameter r + n + 1, provided r ≥ n+ 1.
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