
International Journal of Mathematics and
Computer Science, 17(2022), no. 2, 891–908

b b

M
CS

Frobenius templates in certain 2× 2 matrix rings

Timothy Eller1, Jakub Kraus2, Yuki Takahashi3, Zhichun (Joy) Zhang4

1Department of Mathematical Sciences
Georgia Southern University
Statesboro, GA 30460, USA

2College of Engineering
University of Michigan

Ann Arbor, MI 48109, USA

3Department of Mathematics and Statistics
Grinnell College

Grinnell, IA 50112, USA

4Department of Mathematics and Statistics
Swarthmore College

Swarthmore, PA 19081, USA

email: te02816@georgiasouthern.edu, jakraus@umich.edu,
takahash@grinnell.edu, zzhang3@swarthmore.edu

(Received December 7, 2021, Accepted January 1, 2022)

Abstract
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be written as a linear combination of a given set of positive, coprime inte-
gers using nonnegative integer coefficients. Prior work has generalized the
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1 Introduction
Let N be the set of nonnegative integers, Z the set of integers, Z+ := N \ {0},
and, for α1, . . . , αn ∈ N, MN(α1, . . . , αn) := {∑n

i=1 λiαi : λ1, . . . , λn ∈ N}. A
list in a set S is a finite sequence of elements from S. If n ∈ Z+ and (α1, . . . , αn)
is a list in N, we will say α1, . . . , αn are coprime to mean gcd(α1, . . . , αn) = 1.
If we assume gcd(α1, . . . , αn) 6= 1 when α1 = · · · = αn = 0, then a list in N is
coprime if and only if the list contains positive integers and the positive integers
in the list are coprime. For an additive group G, if S ⊆ G and g ∈ G, then let
g + S := {g + s : s ∈ S}.

Here is a 19th century theorem, due to Sylvester and Frobenius and others,
restated to suit our purpose:

Theorem 1.1. If α1, . . . , αn ∈ N are coprime, then for some w ∈ N, w + N ⊆
MN(α1, . . . , αn).

Note that because 0 ∈ N, if w + N ⊆ MN(α1, . . . , αn) then
w ∈ MN(α1, . . . , αn). Note also that because N is closed under addition, if w +
N ⊆ MN(α1, . . . , αn) and b ∈ N, then w+ b+N ⊆ w+N ⊆ MN(α1, . . . , αn).
Thus, if we define, for α1, . . . , αn ∈ Z+, Frob (α1, . . . , αn) := {w ∈ N : w+N ⊆
MN(α1, . . . , αn)}, we have that either Frob (α1, . . . , αn) = ∅ or
Frob (α1, . . . , αn) = χ(α1, . . . , αn)+N, where χ(α1, . . . , αn) is the least element
of Frob (α1, . . . , αn).

The classical Frobenius problem [2], sometimes called the “coin problem,” is
to evaluate χ(α1, . . . , αn) at coprime lists (α1, . . . , αn) in N. Frobenius used to
discuss this problem in his lectures [8], so this area of number theory happens to
be named after him. For n = 2, there is a formula: if α, β ∈ N and gcd(α, β) = 1,
then χ(α, β) = (α− 1)(β − 1). For n > 2 there are no known general formulas,
although there are formulas for special cases and there are algorithms; see [7].
The classical Frobenius problem inspired the results in [3], which in turn inspired
Nicole Looper [5] to generalize the classical Frobenius problem by introducing
the notion of a Frobenius template (defined below), allowing one to pose similar
problems in rings other than Z.

All of our rings will contain a multiplicative identity, 1, and most will be com-
mutative. An additive monoid in a ring R is a subset of R that is closed under
addition and contains the identity 0; monoids, unlike groups, do not have to con-
tain inverses. A Frobenius template in a ring R is a triple (A,C, U) such that:

1. A is a nonempty subset of R,
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2. C and U are additive monoids in R, and

3. for all lists (α1, . . . , αn) in A,
MN(α1, . . . , αn) = {∑n

i=1 λiαi : λ1, . . . , λn ∈ C} is a subset of U .

For any valid template, the properties above guarantee thatMN(α1, . . . , αn) will
also be an additive monoid in R. The Frobenius set of a list α1, . . . , αn ∈ A
is Frob (α1, . . . , αn) := {w ∈ R : w + U ⊆ MN(α1, . . . , αn)}. Notice that w ∈
Frob (α1, . . . , αn) implies that w ∈ MN(α1, . . . , αn) since 0 ∈ U , so
Frob (α1, . . . , αn) ⊆ MN(α1, . . . , αn) ⊆ U . Notice also that the assumption
that U is closed under addition guarantees that if w ∈ Frob (α1, . . . , αn), then
w + U ⊆ Frob (α1, . . . , αn).

For a given template (A,C, U), the corresponding Frobenius problem is the
following pair of tasks:

1. Determine the lists α1, . . . , αn ∈ A for which Frob (α1, . . . , αn) 6= ∅.

2. For lists α1, . . . , αn such that Frob (α1, . . . , αn) 6= ∅, describe the set
Frob (α1, . . . , αn).

Note that in all the Frobenius templates that have been studied so far, it has always
been the case that Frob (α1, . . . , αn), when nonempty, is a finite union of sets of
the form w + U for some w ∈ R.

The classical Frobenius problem revolves around the template (N,N,N) in
the ring Z. As discussed earlier, if n = 2 and α1, α2 ∈ N, then Frob (α1, α2) is
nonempty if (and only if) α1, α2 are coprime, and Frob (α1, α2) = χ(α1, α2)+N =
(α1 − 1)(α2 − 1) +N in such cases. So the classical Frobenius problem has been
completely solved when n = 2.

Our definition above of a Frobenius template is slightly less general than
Looper’s definition in [5]. The difference is that in Looper’s templates, U =
U(α1, . . . , αn) is allowed to vary with the list α1, . . . , αn. This is absolutely nec-
essary in order to get interesting and nontrivial results when the ring involved is
a subring of C, the complex numbers, that is not contained in R, the real num-
bers. The ring of Gaussian integers, Z[i] = {a + bi : a, b ∈ Z}, is such a ring, a
particularly famous member of the family of rings {Z[√mi] : m ∈ Z+}.

To see why we must let the element U of a Frobenius template in such a
ring depend on the list α1, . . . , αn ∈ A, here is an example in Z[

√
3i]. Suppose

C = {a + b
√
3i : a, b ∈ N} =

{

reiθ ∈ Z[
√
3i] : 0 ≤ r and 0 ≤ θ ≤ π

2

}

and
A = C \ {0}. Then consider α = 2ei

π

3 = 1 +
√
3i ∈ A and β = 1 ∈ A.

What should U be for this list? We set U(α, β) = {reiθ ∈ Z[
√
3i] : 0 ≤
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r and 0 ≤ θ ≤ 5π
6
}, an angular sector in Z[

√
3i]. We so choose U(α, β) be-

cause MN(α, β) =
{

λ1(2e
iπ
3 ) + λ2 : λ1, λ2 ∈ C

}

⊆ U(α, β), and no angu-
lar sector in Z[

√
3i] properly contained in U(α, β) contains MN(α, β). Fur-

ther, if Û is an additive monoid in Z[
√
3i] which properly contains U(α, β),

then no translate w + Û , w ∈ C, is contained in MN(α, β). Thus U(α, β)
is the only possible additive monoid in Z[

√
3i] containing MN(α, β) such that

Frob (α, β) = {w : w + U(α, β) ⊆ MN(α, β)} might possibly be nonempty.
We leave to the reader the verification of the claims in the previous paragraph.

We hope that the main point is clear: letting U vary with the list α1, . . . , αn ∈
A ⊆ Z[

√
mi] in the formulation of Frobenius problems in Z[

√
mi] is necessitated

by the nature of multiplication in the complex numbers. For an appreciation of
Frobenius problems in such settings, see [3] and [4].

We do not take on similar difficulties here. In the next section we give some
more or less obvious results in various Frobenius templates, then review previous
results concerning templates in the rings Z[

√
m] with m ∈ Z+ \ {n2 : n ∈ Z+}.

In the third section, we classify Frobenius sets in a pleasing modification of the
classical Frobenius template. In the fourth section, we solve Frobenius problems
in rings of 2 × 2 (upper) triangular matrices with constant diagonal and entries
from a ring Q, where different choices of Q produce different templates. In the
last section, we further generalize the idea of a Frobenius template and explore an
example of this generalization.

2 Some fundamentals and known results
Throughout this section, R will be a ring with multiplicative identity 1. A list
(α1, . . . , αn) in R spans unity in R if and only if 1 = λ1α1 + ...+ λnαn for some
λ1, . . . , λn ∈ R.

Proposition 2.1. Let (A,C, U) be a Frobenius template in R such that 1 ∈ U .
If (α1, . . . , αn) is a list in A such that Frob (α1, . . . , αn) 6= ∅, then (α1, . . . , αn)
spans unity in R.

Proof. Let w ∈ Frob (α1, . . . , αn), i.e. w ∈ R and w + U ⊆ MN(α1, . . . , αn).
Since 0 ∈ U and 1 ∈ U , it follows that w,w + 1 ∈ MN(α1, . . . , αn). Therefore,
for some λ1, . . . , λ, γ1, . . . , γn ∈ C, w =

∑n

i=1 λiαi and w + 1 =
∑n

i=1 γiαi, so
1 =

∑n

i=1(γi − λi)αi.

As a warm-up, here are some valid Frobenius templates (A,C, U) with, in
most cases, trivial solutions to the corresponding Frobenius problems. In each
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example, (α1, . . . , αn) denotes a list in A. Check that A is nonempty, C and U are
additive monoids in R, and U always containsMN(α1, . . . , αn).

1. In the template (R, {0} , {0}), we haveMN(α1, . . . , αn) = {0} and
Frob (α1, . . . , αn) = {0}. This result extends to any template (A,C, U)
with C = U = {0}.

2. Similar to example 1, templates of the form ({0} , C, {0}) always have
MN(0) = {0} and Frob (0) = {0}.

3. In the template (R,R,R), Proposition 2.1 shows that (α1, . . . , αn) spans
unity in R if Frob (α1, . . . , αn) 6= ∅. Conversely, if (α1, . . . , αn) spans
unity, then Frob (α1, . . . , αn) = R.

4. Suppose that I is an ideal of R and the template is ({1}, I, I). Clearly
MN(1) = I = U , so U ⊆ Frob (1). Recall that Frob (α1, . . . , αn) is a
subset ofMN(α1, . . . , αn); thus Frob (1) = I .

5. Again, let I be an ideal ofR, and now consider the template (I, R, I). When
I = R, this is example 3. In contrast, let I be a proper ideal. Then no list
(α1, . . . , αn) from I spans unity in R— but this is precisely because 1 /∈ I ,
so no facile conclusion based on Proposition 2.1 presents itself. Frobenius
problems for this class of templates could be interesting. For instance, if
the template is (2Z,Z, 2Z) in Z, where 2Z is the ideal of even integers, it
is straightforward to prove that Frob (α1, . . . , αn) 6= ∅ if and only if the in-
tegers |α1

2
|, . . . , |αn

2
| are coprime. In this case, MN(α1, . . . , αn) = 2Z and

Frob (α1, . . . , αn) = 2Frob′
(

α1

2
, . . . , αn

2

)

, where Frob′ denotes Frobenius
sets with respect to the classical template (N,N,N).

6. If the template is ((0,∞), [0,∞), [0,∞)) in R, then MN(α1, . . . , αn) =
[0,∞) = Frob (α1, . . . , αn) for every list (α1, . . . , αn). On the other hand, if
we restrict the coefficients to the set of rational numbersQwith the template
((0,∞),Q ∩ [0,∞), [0,∞)) in R, then Frob (α1, . . . , αn) is always empty,
asMN(α1, . . . , αn) is countable and any translate of [0,∞) is uncountable.

7. Suppose that R1 and R2 are rings with associated Frobenius templates
(A1, C1, U1) and (A2, C2, U2), respectively. Let A1 × A2 be the Cartesian
product of A1 and A2. The same goes for C1 × C2 and U1 × U2, which
are additive monoids (under componentwise addition) in the product ring
R1 × R2, with componentwise addition and multiplication. It is simple to
see that (A1×A2, C1×C2, U1×U2) is a valid Frobenius template inR1×R2.
Let (β1, . . . , βn) be a list inA1×A2 with each βi = (γi, µi) for i = 1, . . . , n.
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If Frob (β1, . . . , βn) 6= ∅ in (A1 ×A2, C1 × C2, U1 × U2), then
Frob (β1, . . . , βn) = Frob1(γ1, . . . , γn)×Frob2(µ, . . . , µ2), where Frob1 and
Frob2 are Frobenius sets in (A1, C1, U1) and (A2, C2, U2), respectively. For
m ∈ Z+, this result extends to the product rings R1 × · · · × Rm.

Besides the Gaussian integers [3, 4], prior work on generalized Frobenius
problems has concentrated on templates in the real subrings Z[

√
m] := {a +

b
√
m : a, b ∈ Z}, where m ∈ Z+ is not a perfect square. Below, we showcase

some highlights from this work. If m is a positive integer with irrational square
root, then Z[

√
m] is a subring of R. Let N[

√
m] := {a + b

√
m : a, b ∈ N} and

Z[
√
m]+ := Z[

√
m] ∩ [0,∞), which are both additive monoids in Z[

√
m] that

contain 1.

1. In the template (N[
√
m],N[

√
m],N[

√
m]), the result below is proven in [5]:

Theorem 2.2. If α1, . . . , αn ∈ N[
√
m], αi = ai + bi

√
m, ai, bi ∈ N, i =

1, . . . , n, then Frob (α1, . . . , αn) 6= ∅ if and only if (α1, . . . , αn) spans unity
in Z[

√
m] and at least one of a1, . . . , an, b1, . . . , bn is zero.

The result stated in [5], Theorem 3, is slightly weaker than the formulation
above, but needlessly so, since the proof in [5] proves the statement given
here.

2. In the template (Z[
√
m]+,Z[

√
m]+,Z[

√
m]+), the following is nearly proven

in [1]:

Theorem 2.3. If α1, . . . , αn ∈ Z[
√
m]+, then the following are equivalent:

(a) Frob (α1, . . . , αn) 6= ∅;
(b) Frob (α1, . . . , αn) = Z[

√
m]+;

(c) (α1, . . . , αn) spans unity in Z[
√
m].

Since Theorem 2 of [1] proves (c) =⇒ (b), we simply appeal to Propo-
sition 2.1 to prove the statement above, which is somewhat stronger than
Theorem 2 in [1].

Also in [1], with reference to the template (N[
√
m],N[

√
m],N[

√
m]),

Frob (α1, . . . , αn) is determined in a very special class of cases. Recall
that for coprime positive integers c1, . . . , cn, χ (c1, . . . , cn) is the smallest
w ∈ Z+ such that w + N ⊆ {∑n

i=1 λici : λ1, . . . , λn ∈ N}.
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Theorem 2.4. For a1, . . . , ar, b1, . . . , bs ∈ N,
(a1, . . . , ar, b1

√
m, . . . , bs

√
m) is a list in N[

√
m]. We have

Frob
(

a1, . . . , ar, b1
√
m, . . . , bs

√
m
)

6= ∅
⇐⇒ a1, . . . , ar, b1m, . . . , bsm are coprime,

and, in such cases,

Frob
(

a1, . . . , ar, b1
√
m, . . . , bs

√
m
)

= χ(a1, . . . , ar, b1m, . . . , bsm) + χ(a1, . . . , ar, b1, . . . , bs)
√
m+ N[

√
m].

Note that the case s = 0 is allowed in this result. Also, if the integers
a1, . . . , ar, b1m, . . . , bsm are coprime, then so are a1, . . . , ar, b1, . . . , bs, so
the second part of Theorem 2.4 uses well-defined expressions.

3. With χ(a1, . . . , an) as above, recall that in the n = 2 case of the classical
template (N,N,N) in Z, χ(a1, a2) = (a1 − 1)(a2 − 1) for coprime a1, a2.
In a tour de force in [6], Kim proves a similar formula for the template
(N[

√
m],N[

√
m],N[

√
m]) in Z[

√
m]:

Theorem 2.5. Suppose α = a + b
√
m, β = c + d

√
m, a, b, c, d ∈ N, a +

b, c+d > 0, abcd = 0 (see Theorem 2.2, above), and suppose that α, β span
unity in Z[

√
m]. Then Frob (α, β) = (α− 1)(β − 1)(1 +

√
m) + N[

√
m].

What’s next? We propose these categories of rings where one might discover
results of interest of the Frobenius type.

1. Subrings of algebraic extensions of Q.
Prior work on the Gaussian integers and the rings Z[

√
m] has put us into the

foothills of a mountain range in this area. Besides the extensions of Q of
finite degree, what about the ring of algebraic integers? Or, a better choice
to start with, the ring of real algebraic integers?

2. Polynomial rings.
Somebody we know is working on this, but we haven’t heard from him for
two or three years.

3. Rings of square matrices.
Did we say our rings have to be commutative? No, we did not. Keep in
mind that in noncommutative rings, the precise definition of
MN(α1, . . . , αn) becomes important, since for α1, . . . , αn fromA and λ1, . . . , λn

from C, the linear combinations
∑n

i=1 λiαi and
∑n

i=1 αiλi are not necessar-
ily equal.
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3 Modifying the classical template
The classical template (N,N,N) uses nonnegative integer coefficients. What hap-
pens when we modify the set of available coefficients? Consider the template
(N, (n + N) ∪ {0} ,N) for some n ∈ Z+. When n = 1, this is the classical
template.

Remember that when a1, . . . , ak ∈ N are coprime, χ (a1, . . . , ak) is the unique
integer such that Frob (a1 . . . , ak) = χ (a1, . . . , ak) + N with respect to the clas-
sical template. In the results that follow, χ (a1, . . . , ak) retains this meaning,
whereas Frob andMN reference the modified template (N, (n+ N) ∪ {0} ,N).

Proposition 3.1. If a1, . . . , ak ∈ N are coprime, then

(a1 + · · ·+ ak)n+ χ (a1, . . . , ak) + N ⊆ Frob (a1, . . . , ak) .

Proof. Suppose ω ∈ N and ω ≥ (a1 + · · ·+ ak)n+ χ (a1, . . . , ak). We will show
ω ∈ Frob (a1, . . . , ak), i.e.

ω + N ⊆ MN(a1, . . . , ak) =

{

k
∑

i=1

λiai : λ1, . . . , λk ∈ (n + N) ∪ {0}
}

.

Suppose f ∈ N, f ≥ ω. It suffices to show that f ∈ MN(a1, . . . , ak). Since f ≥
ω, we have that f − (a1 + · · ·+ ak)n ≥ χ (a1, . . . , ak), so there exist coefficients
γ1, . . . , γk ∈ N such that f = (a1 + · · · + ak)n +

∑k

i=1 γiai =
∑k

i=1(γi + n)ai.
Taking λi = γi + n ≥ n for i = 1, . . . , k yields the desired result.

While reading the next proof, remember that χ (a, b) = (a − 1)(b − 1) for
coprime a, b ∈ N, so χ (a, b)− 1 = ab− a− b.

Proposition 3.2. Let a, b ∈ N and n ∈ Z+. If a, b are coprime and n − 1 is not
divisible by a or b, then Frob (a, b) = (a+ b)n + χ (a, b) + N.

Proof. By the preceding proposition, it suffices to show that Frob (a, b) ⊆ (a +
b)n + χ (a, b) + N. So let t ∈ N \ ((a+ b)n + χ (a, b) + N), and suppose that
t ∈ Frob (a, b). We will find a contradiction, which will complete the proof.

Since t ∈ Frob (a, b), we have t+N ⊆ MN(a, b), so an+bn+χ (a, b)−1 ≥ t
is an element ofMN(a, b), so there exist λ1, λ2 ∈ (n+ N) ∪ {0} such that

χ (a, b)− 1 = λ1a+ λ2b− an− bn = (λ1 − n)a + (λ2 − n)b.
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Now, if both λ1 and λ2 are ≥ n, then χ (a, b)− 1 equals a linear combination of a
and b with nonnegative integer coefficients, which is impossible. We also cannot
have λ1 = 0 = λ2 since χ (a, b) + an + bn > 1. So consider the case that λ1 = 0
and λ2 ≥ n. In that case, (λ2 − n)b = χ (a, b)− 1 + an = ab− b+ a(n− 1), so
(λ2−n−a+1)b = a(n−1), so b divides a(n−1). But a and b are coprime, so this
implies that b divides n−1, which we have assumed to be false. Similarly λ1 ≥ n
and λ2 = 0 would imply that (λ1 − n)a = χ (a, b)− 1 + bn = ab− a+ b(n− 1),
yielding the contradiction that a dividesn−1. Thus, all cases yield a contradiction,
so our supposition that t ∈ Frob (a, b) must be false.

4 2× 2 triangular matrices with constant diagonal
For a ring Q with multiplicative identity 1, let R be the set Q2 = Q × Q un-
der coordinatewise addition, with multiplication in R defined by (a, b) · (c, d) =
(ac, ad+ bc). R is a ring with multiplicative identity (1, 0), isomorphic to the ring

of upper triangular 2×2matrices overQwith constant diagonal: (a, b) ∼
[

a b
0 a

]

.

If Q is commutative, then R is commutative.
We will concentrate on the cases when Q is a subring of the real field R con-

taining 1, and the Frobenius template is

(A(Q), C(Q), U(Q))

=
(

(Q ∩ (0,∞))× (Q ∩ [0,∞)) , (Q ∩ [0,∞))2 , (Q ∩ [0,∞))2
)

.

Proposition 4.1. Let Q be a subring of R containing 1. For any positive integer
n, let (α1, . . . , αn) be a list in A(Q) \ (Q× {0}). Then Frob (α1, . . . , αn) = ∅.

Proof. Let αi = (ai, bi), i = 1, . . . , n. Elements ofMN(α1, . . . , αn) look like

(t, u) =
n

∑

i=1

(ai, bi) · (ci, di)

=

n
∑

i=1

(aici, aidi + bici)

=

(

n
∑

i=1

aici,

n
∑

i=1

(aidi + bici)

)

,

where ci ≥ 0 and di ≥ 0 for all i = 1, . . . , n.
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Suppose that Frob (α1, . . . , αn) is nonempty, so there is a tuple (t, u) ∈ Q2

such that (t, u) + (Q∩ [0,∞))2 ⊆ MN(α1, . . . , αn). Therefore, for all q ≥ 0, we
have (t, u) + (q, 0) = (t + q, u) ∈ MN(α1, . . . , αn). So for larger and larger q,
t + q =

∑n

i=1 aici(q) and u =
∑n

i=1(aidi(q) + bici(q)) for some nonnegative in-
tegers ci(q) and di(q) (i = 1, . . . , n) that vary with q. Clearly

∑n

i=1 aici(q) =
t + q → ∞ as q → ∞. Because each fixed ai, bi > 0, and each varying
ci(q), di(q) ≥ 0, it follows that max1≤i≤n ci(q) → ∞ as q → ∞, and con-
sequently u =

∑n

i=1(aidi(q) + bici(q)) → ∞ as q → ∞. But u is a given
constant; it does not vary with q. Therefore, our supposition must be false, so
Frob (α1, . . . , αn) = ∅.

Moving on, we now know a sufficient condition for Frob (α1, . . . , αn) = ∅ in
a large swath of templates. The natural question is whether Frob (α1, . . . , αn) is
ever nonempty, and the answer is yes.

Proposition 4.2. Let Q be a subfield of R. For any positive integer n, let
(α1, . . . , αn) be a sequence of 2-tuples αi = (ai, bi) ∈ A(Q) (for i = 1, . . . , n)
satisfying b1 = 0. Then Frob (α1, . . . , αn) = MN(α1, . . . , αn) = U(Q).

Proof. We have

MN(α1, . . . , αn) =

{(

n
∑

i=1

aici,

n
∑

i=1

aidi +

n
∑

i=2

bici

)

: ci, di ∈ Q ∩ [0,∞)

}

.

It will suffice to show that (0, 0) ∈ Frob (α1, . . . , αn). Let f, g ≥ 0, f, g ∈ Q,
so that f, g ∈ (0, 0) + U(Q). Then use the coefficients c1 = f

a1
, d1 = g

a1
, and

cj = dj = 0 for j = 2, . . . , n to show that (f, g) ∈ MN(α1, . . . , αn), so (0, 0) ∈
Frob (α1, . . . , αn).

Proposition 4.1 can be generalized, mutatis mutandis, to Q being any linearly
ordered commutative ring with unity. The same holds for Proposition 4.2, with
the additional stipulation that a1 is a unit. In both cases, the ordering must be
compatible with addition and multiplication.

In other words, settingQ as a subfield ofR yields a boring Frobenius template,
since we can shrink elements of R using coefficients in ci, di ∈ Q ∩ (0, 1). If we
prohibit such shrinking, the template becomes much more interesting. Notice that
this modification is similar to Section 3’s modification of the classical template.

To make the following result fit on the page, we will temporarily adopt the
convention that for a tuple (a, b), the notation (a, b)+ stands for (a, b) + [0,∞)2.
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Proposition 4.3. Let Q = R, and change C(R) to be C = {(0, 0)} ∪ [1,∞)2.
Let α1 = (a1, 0), α2 = (a2, b2) form a list (α1, α2) of tuples in A. If b2 = 0, then
Frob (α1, α2) = (min(a1, a2),min(a1, a2))+. If b2 > 0, then

Frob (α1, α2) =






























(a1, a1)+ a1 ≤ a2 and a1 ≤ b2

(a1, a1)+ ∪
(

a1a2
b2

+ a1, b2

)

+
b2 < a1 ≤ a2

(a1, a2)+ ∪
(

a2,
a1b2
a2

+ a2

)

+
a1 > a2 and a2 ≤ b2

(a1, a2)+ ∪
(

a2,
a1b2
a2

+ a2

)

+
∪
(

(a2)2

b2
+ a1, b2

)

+
b2 < a2 < a1

Simple modifications to the proof of Proposition 4.1 will prove that Proposi-
tion 4.1 holds in this template. Since Frob (α1, α2) ⊆ Frob (α1, . . . , αn), Proposi-
tion 4.3 combines with Proposition 4.1 to prove that if αi = (ai, bi) ∈ (0,∞) ×
[0,∞) for i = 1, . . . , n and n > 1, then Frob (α1, . . . , αn) is nonempty if and only
if some bi = 0.

Proof. Case 0: Suppose b2 = 0, so elements of MN(α1, α2) look like (a1c1 +
a2c2, a1d1 + a2d2) for c1, c2, d1, d2 ∈ [0,∞) \ (0, 1). Notice that f ∈ (0,min(a1,
a2)) or g ∈ (0,min(a1, a2)) implies (f, g) /∈ MN(α1, α2). Therefore, if (t, u) ∈
Frob (α1, α2), then t, u ≥ min(a1, a2). The converse is trivial, so this case is done.

The setMN(α1, α2) is

{(a1c1 + a2c2, a1d1 + a2d2 + b2c2) : c1, c2, d1, d2 ∈ [0,∞) \ (0, 1)} .

The trickiness of the remaining cases is that both coordinates share the coeffi-
cient c2. Similar to the last paragraph, notice that f ∈ (0,min(a1, a2)) or g ∈
(0,min(a1, a2, b2)) implies (f, g) /∈ MN(α1, α2); therefore, (t, u) ∈ Frob (α1, α2)
implies t ≥ min(a1, a2) and u ≥ min(a1, a2, b2).

Case 1: a1 ≤ a2 and a1 ≤ b2. By remarks above, in this case Frob (α1, α2) ⊆
(a1, a1) ∪ [0,∞)2. On the other hand, if f, g ≥ a1, then (f, g) = ( f

a1
, g

a1
)α1 +

(0, 0)α2, so (f, g) ∈ MN(α1, α2). Therefore, (a1, a1) + [0,∞)2 ⊆ Frob (α1, α2),
so Frob (α1, α2) = (a1, a1) + [0,∞)2.

Case 2: 0 < b2 < a1 ≤ a2. Then Frob (α1, α2) ⊆ (a1, b2) + [0,∞)2 and, by
the proof in Case 1,

(a1, a1) + [0,∞)2 = [a1,∞)2 ⊆ Frob (α1, α2) .

Therefore, to determine Frob (α1, α2) in this case, it is sufficient to determine
which (t, u) ∈ [a1,∞)× [b2, a1) are in Frob (α1, α2).
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If (t, u) ∈ Frob (α1, α2) ⊆ MN(α1, α2), then for some c1, c2, d1, d2 ∈ {0} ∪
[1,∞), t = a1c1 + a2c2 and u = a1d1 + a2d2 + c2b2. Then b2 ≤ u < a1 ≤ a2
implies that d1 = d2 = 0 and c2 = u

b2
. Then we have that t = a1c1 + a2

u
b2
. If

t < a1 + a2
u
b2
, then c1 = 0 and t = a2

u
b2
. But this would imply that for any t′

such that t < t′ < a1 + a2
u
b2
, (t′, u) /∈ MN(α1, α2), and this would contradict the

assumption that (t, u) ∈ Frob (α1, α2).
Therefore, if (t, u) ∈ Frob (α1, α2) and b2 ≤ u < a1, then t ≥ a1 + a2

u
b2
.

But (t, u) ∈ Frob (α1, α2) implies that (t, u′) ∈ Frob (α1, α2) for every u′ ≥ u.
Therefore, t ≥ a1 + a2

u′

b2
for every u′ satisfying u ≤ u′ < a1. Therefore, t ≥

a1 +
a1a2
b2

.
Thus

(a1, a1) + [0,∞)2 ⊆ Frob (α1, α2)

⊆
(

(a1, a1) + [0,∞)2
)

∪
([

a1a2
b2

+ a1,∞
)

× [b2, a1)

)

⊆
(

(a1, a1) + [0,∞)2
)

∪
((

a1a2
b2

+ a1, b2

)

+ [0,∞)2
)

,

so the proof in this case will be over if we show that
(

a1a2
b2

+ a1, b2

)

is in Frob (α1, α2).
Suppose that f ≥ a1a2

b2
+ a1 and g ≥ b2. We will see that (f, g) ∈ MN(α1, α2).

We may as well assume that g < a1. Then (f, g) =
(

1
a1

(

f − ga2
b2

)

, 0
)

α1 +
(

g

b2
, 0
)

α2, so (f, g) ∈ MN(α1, α2) because g

b2
≥ 1 and

1
a1

(

f − ga2
b2

)

≥ 1
a1

(

a1a2
b2

+ a1 − a1a2
b2

)

= 1.
Case 3: a2 < a1 and a2 ≤ b2. By arguments on display above, (a1, a1) +

[0,∞)2 ⊆ Frob (α1, α2) ⊆ (a2, a2) + [0,∞)2. But it is also easy to see that
(a1, a2) ∈ Frob (α1, α2) ( =⇒ (a1, a2) + [0,∞)2 ∈ Frob (α1, α2)): if f ≥ a1 and
g ≥ a2, then (f, g) =

(

f

a1
, 0
)

α1 +
(

0, g

a2

)

α2 ∈ MN(α1, α2).
It remains to determine Frob (α1, α2) ∩ ([a2, a1)× [a2,∞)). Suppose that

(t, u) ∈ Frob (α1, α2) and a2 ≤ t < a1. Let c1, c2, d1, d2 ∈ {0} ∪ [1,∞) sat-
isfy t = a1c1 + a2c2, u = a1d1 + a2d2 + c2b2. Then a2 ≤ t < a1 implies that
c1 = 0 and c2 = t

a2
. If u < a2 +

tb2
a2

then d1 = d2 = 0 and u = tb2
a2
. But then

if u < u′ < a2 +
tb2
a2
, (t, u′) /∈ MN(α1, α2), contradicting the assumption that

(t, u) ∈ Frob (α1, α2).
Therefore, u ≥ a2 +

tb2
a2
. But (t, u) ∈ Frob (α1, α2) implies that (t′, u) ∈

Frob (α1, α2) for all t′ such that t < t′ < a1. Therefore, u ≥ a2 +
t′b2
a2

for all such
t′. Therefore, u ≥ a2 +

a1b2
a2

.
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To finish the proof in this case, it will suffice to show that [a2, a1) × [a2 +
a1b2
a2

,∞) ⊆ Frob (α1, α2), and for that it will suffice to show that if a2 ≤ f <

a1 and a2 + a1b2
a2

≤ g then (f, g) ∈ MN(α1, α2). For such (f, g), (f, g) =
(

f

a2
, 1
a2

(

g − fb2
a2

))

α2, so (f, g) ∈ MN(α1, α2) since f

a2
≥ 1 and 1

a2

(

g − fb2
a2

)

≥
1
a2

(

a2 +
a1b2
a2

− a1b2
a2

)

= 1.
Case 4: 0 < b2 < a2 < a1. Clearly Frob (α1, α2) ⊆ (a2, b2)+[0,∞)2. If a1 ≤

f and a2 ≤ g then (f, g) =
(

f

a1
, 0
)

α1 +
(

0, g

a2

)

α2, so (f, g) ∈ MN(α1, α2);
therefore, (a1, a2) + [0,∞)2 ⊆ Frob (α1, α2).

Next, we shall show that

Frob (α1, α2) ∩ ([a2, a1)× [b2,∞)) = [a2, a1)×
[

a2 +
a1b2
a2

,∞
)

,

by an argument that will be familiar to anyone who has read the proofs in cases 2
and 3.

Suppose that (t, u) ∈ Frob (α1, α2) and a2 ≤ t < a1. Then for some c2, d1, d2 ∈
{0} ∪ [1,∞), t = c2a2 and u = a1d1 + a2d2 +

t
a2
b2. If u < a2 + tb2

a2
, then

d1 = d2 = 0 and u = tb2
a2
. But then for all u′ ∈

(

u, tb2
a2

)

, (t, u′) /∈ MN(α1, α2),
which contradicts the assumption that (t, u) ∈ Frob (α1, α2).

Therefore, u ≥ a2 +
tb2
a2
. But then the fact that (t′, u) ∈ Frob (α1, α2) for all

t′ satisfying t < t′ < a1 implies that u ≥ a2 +
t′b2
a2

for all such t′. Therefore
u ≥ a2 +

a1b2
a2

, which shows that

Frob (α1, α2) ∩ ([a2, a1)× [b2,∞)) ⊆ [a2, a1)×
[

a2 +
a1b2
a2

,∞
)

.

On the other hand, if a2 ≤ f < a1 and g ≥ a2 + a1b2
a2

, then (f, g) =
(

f

a2
, 1
a2

(

g − fb2
a2

))

α2. From f

a2
≥ 0 and

1

a2

(

g − fb2
a2

)

≥ 1

a2

(

a2 +
a1b2
a2

− a1b2
a2

)

= 1,

we conclude that (f, g) ∈ MN(α1, α2). Thus

Frob (α1, α2) ∩ ([a2, a1)× [b2,∞)) = [a2, a1)×
[

a2 +
a1b2
a2

,∞
)

.

To finish Case 4, we will determine Frob (α1, α2) ∩ ([a1,∞)× [b2, a2)). Sup-
pose that (t, u) ∈ Frob (α1, α2), with t ≥ a1 and b2 ≤ u < a2. Then for some
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c1, c2 ∈ {0} ∪ [1,∞), t = a1c1 + a2c2 and u = b2c2. Then t = a1c1 +
a2u
b2
. If

t < a1 +
ua2
b2
, then c1 = 0 and t = ua2

b2
.

Then for all t′ such that t < t′ < a1 +
ua2
b2
, (t′, u) /∈ MN(α1, α2), which

contradicts the assumption that (t, u) ∈ Frob (α1, α2). Therefore, t ≥ a1 +
ua2
b2
.

But then (t, u) ∈ Frob (α1, α2) implies that (t, u′) ∈ Frob (α1, α2) for all u′ sat-
isfying u < u′ < a2. Therefore, t ≥ a1 +

u′a2
b2

for each such u′. Therefore,
t ≥ a1 +

a2
2

b2
. Thus Frob (α1, α2) ∩ ([a1,∞)× [b2, a2)) ⊆ [a1 +

a2
2

b2
,∞)× [b2, a2).

On the other hand, suppose that a1 +
a2
2

b2
≤ f and b2 ≤ g < a2. Then (f, g) =

(

1
a1

(

f − ga2
b2

)

, 0
)

α1 +
(

g

b2
, 0
)

α2. Thus, since g

b2
≥ 1 and 1

a1

(

f − ga2
b2

)

≥
1
a1

(

a1 +
a2
2

b2
− a2

2

b2

)

= 1, (f, g) ∈ MN(α1, α2). Thus Frob (α1, α2) ∩ [a1,∞) ×
[b2, a2) = [a1 +

a2
2

b2
,∞)× [b2, a2). This, together with previous results, proves the

claim in Case 4.

We now shift focus to Q = Z. Recall that χ (a1, . . . , an) is well-defined for
coprime positive integers a1, . . . , an, with respect to the classical Frobenius tem-
plate (N,N,N).

Proposition 4.4. For n ≥ 2, let (α1, . . . , αn) be a list of 2-tuples αi = (ai, bi) ∈
Z+ × N (for i = 1, . . . , n) satisfying gcd(a1, . . . , an) = 1 and b1 = 0. Then
(

χ (a1, . . . , an) , χ (a1, . . . , an) + (a1 − 1)
n

∑

i=2

bi

)

+ N2 ⊆ Frob (α1, . . . , αn) .

Proof. Let t = χ (a1, . . . , an) and u = χ (a1, . . . , an) + (a1 − 1)(
∑n

j=2 bj). It’s
sufficient to show that (t, u) ∈ Frob (α1, . . . , αn), i.e.
(t, u) + N2 ⊆ MN(α1, . . . , αn). Pick an arbitrary (f, g) ∈ (t, u) + N2, i.e.
choose integers f ≥ χ (a1, . . . , an) and g ≥ χ (a1, . . . , an)+

∑n

j=2 bj(a1−1). To
complete the proof, we will show that

(f, g) ∈ MN(α1, . . . , αn) =

{(

n
∑

i=1

aici,

n
∑

i=1

aidi +

n
∑

i=2

bici

)

: ci, di ∈ N

}

.

Since f ≥ χ (a1, . . . , an), we can write f =
∑n

i=1 aici for some nonnegative
integers c1, . . . , cn. For each i ∈ {2, . . . , n}, use Euclidean division to write ci =
a1qi+c̃i for some new nonnegative integers qi and c̃i ≤ (a1−1), then set c̃1 = c1+
∑n

i=2 aiqi so that
∑n

i=1 aici = f =
∑n

i=1 aic̃i. Can we find nonnegative d1, . . . , dn
such that g =

∑n

i=1 aidi+
∑n

i=2 bic̃i? Well, g−∑n

i=2 bic̃i ≥ g−∑n

i=2 bi(a1−1) ≥
χ (a1, . . . , an), so yes. Therefore, (f, g) ∈ MN(α1, . . . , αn).
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Corollary 4.5. For n ≥ 2, let (α1, . . . , αn) be a list of 2-tuples αi = (ai, bi) ∈
Z+ × N (for i = 1, . . . , n) satisfying gcd(a1, . . . , an) = 1. Frob (α1, . . . , αn) is
nonempty if and only if at least one bi = 0.

Proof. Combine propositions 4.1 and 4.4.

We have seen results like this before, such as Theorem 2.1 of Section 2 and
the paragraph preceding the proof of Proposition 4.3. Combining this corollary
with the next result completely solves the Frobenius problem in the case n = 2
and Q = Z.

Proposition 4.6. Suppose that a1, a2 ∈ Z+, b ∈ N, a1 and a2 are coprime, and
α1 = (a1, 0), α2 = (a2, b). Then

Frob (α1, α2) = (χ (a1, a2) , χ (a1, a2) + b(a1 − 1)) + N2.

Proof. Let (t, u) ∈ N×N. By Proposition 4.4, t ≥ χ (a1, a2) and u ≥ χ (a1, a2)+
b(a1 − 1) implies that (t, u) ∈ Frob (α1, α2). For the converse, we will prove the
contrapositive. Suppose that t < χ (a1, a2). Then χ (a1, a2) − 1 ≥ t is not in
{a1c1 + a2c2 : c1, c2 ∈ N}, so (χ (a1, a2) − 1, u) is not in {(a1c1 + a2c2, a1d1 +
a2d2 + bc2) : c1, c2, d1, d2 ∈ N} = MN(α1, α2), yet (χ (a1, a2)− 1, u) ∈ (t, u) +
N2. Hence (t, u) /∈ Frob (α1, α2).

Now assume that u < χ (a1, a2) + b(a1 − 1). Set f = a1c1 + a2(a1 − 1)
for some nonnegative c1 large enough such that f ≥ t. Consider any alternative
expression of f as f = a1c̃1 + a2c̃2 using nonnegative coefficients c̃1, c̃2. Recall
that f = a1c1+a2(a1−1), so a1(c1−c̃1) = a2(c̃2−(a1−1)). Then a1|(c̃2−(a1−1))
since a1 and a2 are coprime, so c̃2 ≡ a1 − 1 (mod a1). And c̃2 is nonnegative,
so c̃2 ≥ (a1 − 1), so c̃2 = (a1 − 1) + a1k for some nonnegative integer k. Set
g = χ (a1, a2) + b(a1 − 1)− 1 so that g ≥ u; hence (f, g) ∈ (t, u) +N2. Suppose
that (f, g) ∈ MN(α1, α2); there are nonnegative coefficients d1 and d2 such that
g = a1d1 + a2d2 + bc̃2 = a1d1 + a2d2 + b((a1 − 1) + a1k). Consequently,
g − b(a1 − 1) = a1(d1 + bk) + a2d2 for nonnegative integers (d1 + bk) and d2,
so g − b(a1 − 1) ∈ MN(a1, a2). But this is impossible, because g − b(a1 −
1) = χ (a1, a2) − 1 /∈ MN(a1, a2), so our supposition must be false; (f, g) /∈
MN(α1, α2). Therefore, (t, u) /∈ Frob (α1, α2).

Proposition 4.6 shows that when n = 2, the set inclusion in Proposition 4.4
is an equality. However, for lists of length > 2, there are counterexamples to the
reverse set inclusion of Proposition 4.4, so Proposition 4.6 does not generalize to
longer lists of tuples. The following is a counterexample: Let α1 = (3, 0), α2 =
(5, 2), and α3 = (7, 4). Then it can be shown that (5, 16) ∈ Frob (α1, α2, α3)+N2,
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but (5, 16) /∈ {χ (a1, . . . , an) + (a1 − 1) (
∑n

i=2 bi)}+N2. In fact, it can be shown
that Frob (α1, α2, α3) = (5, 9) + N2. Furthermore, for β1 = (3, 0), β2 = (5, 1),
and β3 = (7, 4) we have

Frob (β1, β2, β3) =
(

(5, 9) + N2
)

∪
(

(8, 7) + N2
)

,

so the Frobenius set might even be a union of two sets, each of the form (a, b) +
N2, neither contained in the other. This situation resembles that of the classical
template, in the sense that the Frobenius problem is completely solved for lists of
length 2, but not for lists of length > 2.

5 A more general template
Here we broaden our horizons and pass from the templates (A,C, U)whereA and
C are thought of as subsets of the same overlying ring, to templates (A′, C ′, U ′)
where A′ is a monoid and C ′ is a set of functions acting on A′. The first kind
of template, i.e. the only kind hitherto discussed in this paper, can be considered
a special case of the second; furthermore, templates of the second kind cannot
in general be interpreted as examples of the first kind. The different entries in
the new kind of template have the same roles as the corresponding entries in the
original kind of template.

For the sake of presentation, we will showcase a certain example of this new
kind of template and leave the precise definitions to the reader. Let A = U =
N × N × N, and let C be the set of upper triangular matrices in M3(N). In the
ring Z3 with coordinate addition and multiplication, A = U = N3 is a monoid.
However, C is not contained in Z3, so this template is different from those consid-
ered previously. Note that C contains an isomorphic copy of N3 via the semiring
embedding given by





x
y
z



 7→





x 0 0
0 y 0
0 0 z



 .

Consider a general pair of tuples (a, b, c)T and (d, e, f)T ∈ A. A general
member of

MN









a
b
c



 ,





d
e
f









has the form




u v w
0 x y
0 0 z









a
b
c



+





u′ v′ w′

0 x′ y′

0 0 z′









d
e
f



 ,
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with all entries coming from N. As expected, Frob
(

(a, b, c)T , (d, e, f)T
)

is de-
fined to be







w ∈ MN









a
b
c



 ,





d
e
f







 : w + N3 ⊆ MN









a
b
c



 ,





d
e
f















.

Hence, by our understanding of the classical Frobenius problem, we see that

Frob









a
b
c



 ,





d
e
f







 =





χ(a, b, c, d, e, f)
χ(b, c, e, f)
χ(c, f)



+ N3,

when nonempty, which is true if and only if gcd(c, f) = 1.
From the case k = 2 it is straightforward to see what Frob (α1, ..., αk) is for

arbitrary k ∈ Z+ and α1, ..., αk ∈ A. It is not difficult to generalize these results to
m× 1 column vectors andm×m matrices form > 3. Therefore these cases are
no longer interesting, except for the connection between them and the classical
Frobenius problem. We can get more challenging problems by restricting the
matrices in C. For instance, we could require the matrices to be symmetric, or
upper triangular with constant diagonal.

These examples point to a generalized Frobenius template (A′, C ′, U ′) in which
A′ (or perhaps A′ ∪ {0}) and U ′ are monoids in a ring R, and C ′ is a monoid in
the ring of endomorphisms of (R,+) such that each ϕ ∈ C maps A into U.
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