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Abstract

For integers n > 1, the n-abundancy index, analogous to the abun-

dancy index on the positive integers, is defined on Zn\{0}. Some basic

results, founded on basic results about divisor sets in Zn, are obtained,

including the result that if n is a prime power, then the n-abundancy

index is one-to-one on Zn \ {0}.

1 Introduction

Throughout, Z will denote the set of integers and Z+ the set of positive
integers. For n ∈ Z+, n > 1, the elements of the ring of integers modulo n
will be denoted Zn. We allow each congruence class mod n to be represented
by any integer in that congruence class. For instance, 13 and 33 represent
the same congruence class in (i.e., element of) Z20; this is the same assertion
as 13 ≡ 33 (mod 20).

Each congruence class mod n has a representative among 0, 1, . . . , n− 1.
In the definitions in the next section, we will use these favored representatives
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of the elements of Zn. We must warn that we will be switching back and
forth between Z and Zn in these definitions—k ∈ {0, 1, . . . , n−1} may be an
element of Zn in one part of the definition and a plain old integer in another
part. But we will take pains to make these matters clear.

As usual, d|n stands for d divides n, which is the same as stating that n is
a multiple of d. When this notation appears, it is understood that d, n ∈ Z+

and that the multiplication involved is the usual multiplication in the ring
Z.

On Z+, the sum-of-divisors function is defined by σ(n) =
∑

d|n d. The

abundancy index of n ∈ Z+ is defined by

I(n) =
σ(n)

n
.

This parameter has been of interest for many decades (see [1] and [5]), not
least because of its connection with the question, descending from antiquity,
of perfect numbers, which are positive integers n such that I(n) = 2.

Positive integers m and n are said to be friends if and only if m 6= n and
I(m) = I(n). Thus, all the perfect numbers are friends with each other. It
is not known whether or not there is an infinite cohort of mutual friends; the
perfect numbers are the only likely candidate, at present.

At the other end of the friendship spectrum, a positive integer n ∈ Z+

is said to be solitary if it has no friends. It is known (see [4]) that 1 and
all prime powers are solitary. The only integers among 1, . . . , 13 other than
1 or prime powers are 6, 10, and 12; 6 is perfect (therefore, with quite a
few friends), and 12 has at least one friend, namely, 234 [2]. At present, the
leading candidate for the smallest solitary n > 1 which is not a prime power
is 10.

In the next section we define, for n ∈ Z+, n > 1, the n-abundancy index
In : (Zn \{0}) → Q = {rational numbers}. In the last section we prove some
basic results about this index, culminating in a proof that if n is a prime
power, then every a ∈ Zn \ {0} is n-solitary.

2 Divisors and the Abundancy Index in Zn

Definition. For a, b ∈ Z such that 0 < a, b < n and n ∈ Z with n ≥ 2, we
say that a is an n-divisor of b, denoted a|nb, if there exists a d ∈ Zn \ {0}
such that da ≡ b (mod n).

We denote the set of n-divisors of b as Db,n = {a ∈ Z : 0 < a < n and
a|nb}.
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The next few lemmas state some well-known number theory facts and
relate them to our notation.

Lemma 2.1. For a, b ∈ Zn \ {0}, a|nb if and only if (n− a)|nb.

This immediately implies the following corollary:

Corollary 2.2. Let a, b ∈ Zn. We have that a ∈ Db,n if and only if n− a ∈
Db,n.

Lemma 2.3. Let a, b ∈ Zn \ {0}. Then gcd(a, n)|b if and only if a|nb.

Proof. Let d = gcd(a, n). To prove this lemma, we utilize Bézout’s Identity:
There exist u, v ∈ Z such that d = ua+ vn.

(⇒) Suppose d|b, with b = cd for some c ∈ Z. Then there exist u, v ∈ Z
such that d = au + nv ⇐⇒ au ≡ d (mod n), so b ≡ c(au) (mod n) ≡
a(cu) (mod n), so a|nb.

(⇐) Suppose a|nb. Then there exists c ∈ Zn such that b ≡ ac (mod n), so
there exists y ∈ Z such that b = ac+ ny. But, d|a and d|n, so d|(ac+ ny) =
b.

Note that this means a ∈ Db,n if and only if gcd(a, n)|b. Furthermore,
D1,n = {a ∈ Z : 0 < a < n and gcd(a, n) = 1}.

It is also useful to note that for a, b, c ∈ Zn \ {0}, if a|nb and b|nc, then
a|nc. This immediately implies that if a ∈ Db,n and b ∈ Dc,n, then a ∈ Dc,n;
i.e., n-divisibility is transitive.

Definition. We define the sum of n-divisors function σn : Zn \ {0} → Z by

σn(m) =
∑

d|nm

d.

It is important to note that this sum is taken in the ring of integers, for
if the sum is taken mod(n), very often it results in 0.

Example. In Z6, σ6(1) = 1 + 5 = 6 and σ6(2) = 1 + 2 + 4 + 5 = 12.

Definition. For m ∈ Zn, we define the n-abundancy index of m as

In(m) =
σn(m)

m
.

Example. In Z6, I6(1) =
6
1
= 6 and I6(2) =

12
2
= 6.
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Definition. If In(a) = In(b) for some a, b ∈ Zn \ {0}, a 6= b, we say that a
and b are n-friends. A number with at least one n-friend is called n-friendly,
while a number with no n-friends is called n-solitary.

Example. The following table shows 6-abundancy indices for all m ∈ Z6 \
{0}:

m 1 2 3 4 5

I6(m) 6 6 3 3 6
5

Because 1 and 2 both have 6 as their 6-abundancy indices, 1 and 2 are
6-friends. Likewise, 3 and 4 are also 6-friends. However, 5 is 6-solitary.

3 New Results

Based on everything stated so far, we can show a simple result involving
p-friends, where p is any prime.

Proposition 3.1. If p is prime, then every m ∈ Zp \ {0} is p-solitary.

Proof. Since Zp is a field, every a ∈ Zp\{0} is p-divisible by every b ∈ Zp\{0}.

Therefore, σa =

p−1
∑

k=1

k =
p(p− 1)

2
for every a ∈ Zp \ {0}. Thus, for every a,

b ∈ Zp \ {0} such that a 6= b, Ip(a) =
p(p−1)

2a
6= p(p−1)

2b
= Ip(b).

Before we state our next result, let us present some notation. Let A ⊆ Zn

and let k ∈ Z, 0 < k < n. Denote

kA := {ka (mod n)|a ∈ A}.

Thus, kA ⊂ {0, 1, . . . , n− 1}.
We will denote

∑

A as the integer sum of elements of a set A ⊂ Z.
Now, in view of our goal to characterize n-friend relations in generality,

we first build toward a result relating 1 and 2 in Z2m, where m is odd.

Proposition 3.2. Consider Z2m, where m is odd. Then the following state-
ments hold:

1) D2,2m = D1,2m ∪ 2D1,2m,
2) D1,2m ∩ 2D1,2m = Ø, and
3) |D1,2m| = |2D1,2m|.
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Proof. 1)
(⊇) Suppose a ∈ D1,2m. Then a|2m1, so 1 ≡ ad (mod 2m) for some

d ∈ Z2m. Thus, 2 ≡ 2ad (mod 2m) ≡ a(2d) (mod 2m), so a|2m2 and thus
a ∈ D2,2m.

Instead suppose a ∈ 2D1,2m. Then a ≡ 2b (mod 2m) for some b ∈ D1,2m;
i.e., bd ≡ 1 (mod 2m) for some d ∈ Z2m. Thus, ad ≡ 2bd (mod 2m) ≡
2 (mod 2m), so a|2m2 and thus a ∈ D2,2m.

(⊆) Now suppose a ∈ D2,2m; that is, a|2m2. By Lemma 2.3, gcd(a, 2m)|2.
This means that gcd(a, 2m) = 1 or gcd(a, 2m) = 2.

If gcd(a, 2m) = 1, then a|2m1, so a ∈ D1,2m.
If gcd(a, 2m) = 2, then 2|a, so a is even with a = 2c for some c ∈ Z+.

Since 1 < a < 2m, we have that 1 ≤ c < m; also, gcd(c,m) = 1.
If c is odd, then gcd(c, 2m) = 1, so a = 2c ∈ 2D1,2m. So, suppose c is

even. Since m is odd, m + c is also odd. Therefore, gcd(m + c, 2m) = 1;
also, 1 ≤ m + c < 2m. Consequently, m + c ∈ D1,2m. Therefore, a = 2c ≡
2(m+ c) (mod 2m) ∈ 2D1,2m.

2) Suppose a ∈ D1,2m. Then a|2m1, so gcd(a, 2m)|1 ⇒ gcd(a, 2m) = 1,
so a must be odd. Now, note that all elements of 2D1,2m are even, since if
b ∈ 2D1,2m then there exists a c ∈ D1,2m such that b ≡ 2c (mod 2m) ⇒
b = 2c + 2mv = 2(c + mv) for some v ∈ Z. Therefore, a /∈ 2D1,2m, so
D1,2m ∩ 2D1,2m = Ø.

3) Consider the map φ : D1,2m → 2D1,2m, φ(a) ≡ 2a (mod 2m). We will
show that φ is a bijection.

(Injection:) Suppose φ(a) ≡ φ(b) (mod 2m) for some a, b ∈ D1,2m. By
the above, both a and b are odd. Then 2a ≡ 2b (mod 2m) implies that
2(a − b) ≡ 0 (mod 2m). Thus, a − b ≡ 0 (mod 2m), in which case a ≡
b (mod 2m) and we are done, or a− b ≡ m (mod 2m), in which case a and
b being odd means that m is even, a contradiction. Thus, φ is injective.

(Surjection:) By definition, if a ∈ 2D1,2m, then a ≡ 2b (mod 2m) for
some b ∈ D1,2m. Thus, φ is surjective.

Therefore, |D1,2m| = |2D1,2m|.

We are now ready to state our first ”new” result.

Theorem 3.3. If m is odd, then 1 and 2 are 2m-friends.

Proof. Note that I2m(1) = σ2m(1) =
∑

D1,2m. We will show that
∑

2D1,2m =
∑

D1,2m; this, in view of Proposition 3.2, will prove the theorem’s claim.
To this end, recall that by Corollary 2.2, a ∈ D1,2m if and only if 2m−a ∈

D1,2m, so D1,2m = {a1, . . . , ak, 2m− a1, . . . , 2m− ak} for some k ∈ Z, where
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we arrange the elements so that 1 ≤ a1, . . . , ak < m. Thus,
∑

D1,2m =
a1 + · · ·+ ak + (2m− a1) + · · ·+ (2m− ak) = k(2m).

Furthermore, since arrangements have been made so that 1 ≤ a1, . . . ,
ak < m, we have that 2 ≤ 2aj < 2m, for all j = 1, . . . , k. Meanwhile,
2(2m − aj) = 4m − 2aj ≡ 2m − 2aj (mod 2m), and 0 < 2m − 2aj < 2m.
Therefore, 2D1,2m = {2a1, . . . , 2ak, 2m − 2a1, . . . , 2m − 2ak}, where each of
the 2k integers listed are distinct because |D1,2m| = |2D1,2m|. Therefore,

∑

2D1,2m =
k

∑

j=1

2aj +
k

∑

j=1

(2m− 2aj) = k(2m) =
∑

D1,2m.

Thus,
∑

D2,2m =
∑

(D1,2m∪2D1,2m) =
∑

D1,2m+
∑

2D1,2m = 2
∑

D1,2m

since D1,2m and 2D1,2m are disjoint. Therefore, 1 and 2 are 2m-friends.

Now that we have established the result that 1 and 2 are 2m-friends for
any odd m, we must build up some more theory before trying to tackle any
other cases. The following lemma is essential for constructing mD1,n for any
m and n.

Lemma 3.4. Suppose a, b, and m > 1 are positive integers and gcd(m, b) =
1. Then at least one of the integers a+kb, 0 ≤ k ≤ m−1, is relatively prime
to m.

Proof. We will show that the congruence classes modulo m of the integers
a, a+ b, . . . , a+ (m− 1)b are distinct.

Suppose 0 ≤ k < q ≤ m − 1 with a + kb ≡ a + qb (mod m). Then
m|(q− k)b =⇒ m|(q− k) since gcd(m, b) = 1. But 1 ≤ q− k ≤ m− 1, so it
is impossible that m|(q − k).

Therefore, the congruence classes of the integers a + kb, 0 ≤ k ≤ m− 1,
are distinct. Since there are m of these congruence classes, it must be that
a + kb ≡ 1 (mod m) for some k ∈ {0, . . . , m − 1}. Thus, gcd(a + kb,m) =
1.

In fact, the conclusion of the previous lemma can be sharpened to the
following: ϕ(m) of the integers a + kb, 0 ≤ k ≤ m − 1, are relatively prime
to m, where ϕ is Euler’s totient function.

Proposition 3.5. Let m ∈ Z, with 0 < m < n. If m|n, then

mD1,n = {d ∈ Z|0 < d < n and gcd(d, n) = m}.
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Proof. (⊆) Suppose d ∈ mD1,n. Then d ≡ mj (mod n) for some j|n1. Thus,
d = mj+nv for some v ∈ Z; but, m|m andm|n, som|d. Thus, gcd(d, n) ≥ m.
However, since j|n1, 1 ≡ jl (mod n) for some l ∈ Z, so m ≡ mjl (mod n) ≡
dl (mod n), so d|nm, which implies that gcd(d, n)|m and thus gcd(d, n) ≤ m.
Therefore, gcd(d, n) = m.

(⊇) Suppose that n, d, and m are positive integers satisfying 0 < d < n
and m = gcd(d, n). Let integers c and t be defined by d = mc and n = mt.
Then gcd(c, t) = 1.

We will show that d ≡ mx (mod n) for some x ∈ {1, . . . , n−1} satisfying
gcd(x, n) = 1.

Using the Unique Factorization Theorem, we can refactor n as n = MT ,
in which M |m, t|T , and gcd(M,T ) = 1; also, every prime divisor of T is a
prime divisor of t. Because gcd(c, t) = 1, it follows that gcd(c, T ) = 1.

We will look for x in the arithmetic progression c + kT , 0 ≤ k ≤ M − 1.
Observe that for all such k, m(c+kT ) = mc+kmT = d+kmT ≡ d (mod n),
because t|T implies that n = mt|kmT . Therefore, it will suffice to show the
existence of k ∈ {0, . . . ,M − 1} such that gcd(c+ kT, n) = 1.

Since gcd(M,T ) = 1, Lemma 3.4 allows us to conclude that gcd(c +
kT,M) = 1 for some k′ ∈ {0, . . . ,M − 1}. But since n = MT , it follows that
gcd(c+ k′T, n) = gcd(c+ k′T, T ). But, any common divisor of T and c+ k′T
must divide c, so gcd(c+ k′T, T ) = gcd(c, T ) = 1.

The following corollary is a generalization of parts (1) and (2) of Propo-
sition 3.2:

Corollary 3.6. Suppose k ∈ Z with 0 < k < n, and let M be the set of all
positive integers m such that m|k and m|n. Then

1)

Dk,n =
⋃

m∈M

mD1,n.

2)

mD1,n ∩m′D1,n = Ø for all m,m′ ∈ M,m 6= m′.

Proof. 1) (⊆) Suppose a ∈ Dk,n. Then by Lemma 2.3, gcd(a, n)|k. Let
ma = gcd(a, n). Then a ∈ maD1,n by Proposition 3.5, where ma|k and ma|n
implies that ma ∈ M .

(⊇) If a ∈ mD1,n for somem ∈ Z withm|k andm|n, then a ≡ mj (mod n)
for some j|n1 and k = mp for some p ∈ Z. Thus, jl ≡ 1 (mod n) for some
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l ∈ Z, so

k = mp

≡ m(jl)p (mod n)

≡ a(lp) (mod n),

so a|nk and thus a ∈ Dk,n.
2) By way of contradiction, suppose there exists an a such that a ∈ m1D1,n

and a ∈ m2D1,n, where m1 6= m2. Then by Proposition 3.5, gcd(a, n) = m1

and gcd(a, n) = m2, so m1 = m2.

Indeed, if we let k = 2 and n = 2m for an odd m ∈ Z, then by Corollary
3.6 we get parts (1) and (2) of Proposition 3.2.

Example. Consider Z12:

D1,12 = {1, 5, 7, 11}

2D1,12 = {2, 10}

3D1,12 = {3, 9}

4D1,12 = {4, 8}

6D1,12 = {6}

Indeed,

D1,12 = {1, 5, 7, 11}

D2,12 = {1, 2, 5, 7, 10, 11} = D1,12 ∪ 2D1,12

D3,12 = {1, 3, 5, 7, 9, 11} = D1,12 ∪ 3D1,12

D4,12 = {1, 2, 4, 5, 7, 8, 10, 11} = D1,12 ∪ 2D1,12 ∪ 4D1,12

D5,12 = {1, 5, 7, 11} = D1,12

D6,12 = {1, 2, 3, 5, 6, 7, 9, 10, 11} = D1,12 ∪ 2D1,12 ∪ 3D1,12 ∪ 6D1,12

D7,12 = {1, 5, 7, 11} = D1,12

D8,12 = {1, 2, 4, 5, 7, 8, 10, 11} = D1,12 ∪ 2D1,12 ∪ 4D1,12

D9,12 = {1, 3, 5, 7, 9, 11} = D1,12 ∪ 3D1,12

D10,12 = {1, 2, 5, 7, 10, 11} = D1,12 ∪ 2D1,12

D11,12 = {1, 5, 7, 11} = D1,12

Proposition 3.7. For any integer n ≥ 2 with prime factorization n =
pk11 · · · pkrr ,

In(1) =
∑

D1,n =
1

2
(p2k1−1

1 (p1 − 1) · · ·p2kr−1
r (pr − 1)).
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Proof. Consider Euler’s totient function ϕ(n), the number of positive integers
k < n such that k is relatively prime to n. Then, by definition, |D1,n| = ϕ(n).

It is well-known that

ϕ(n) = pk1−1
1 (p1 − 1) · · · pkr−1

r (pr − 1).

Next, note that by Corollary 2.2, the values of D1,n come in pairs, each
summing to n. Thus, the average of the values of D1,n is equal to n

2
. There-

fore, to get
∑

D1,n we take the average and multiply it with the cardinality
to get that

In(1) =
∑

D1,n

=
n

2
· |D1,n|

=
n

2
· ϕ(n)

=
pk11 · · ·pkrr

2
· (pk1−1

1 (p1 − 1) · · · pkr−1
r (pr − 1))

=
1

2
p2k1−1
1 (p1 − 1) · · ·p2kr−1

r (pr − 1).

Examples.

I6(1) = 1 + 5 = 6 =
1

2
(2 · 1 · 3 · 2).

I10(1) = 1 + 3 + 7 + 9 = 20 =
1

2
(2 · 1 · 5 · 4).

I12(1) = 1 + 5 + 7 + 11 = 24 =
1

2
(23 · 1 · 3 · 2).

I32(1) =
1

2
(29 · 1) = 256.

Note in the case that the power of each prime in the prime factorization
of n is 1 (i.e., ki = 1 for all 1 ≤ i ≤ r), In(1) =

1
2
(p1(p1 − 1) · · ·pr(pr − 1)) =

n
2
((p1 − 1) · · · (pr − 1)).

Lemma 3.8. If p is prime and j, k ∈ Z with 0 ≤ j < k, then

|pjD1,pk | = pk−(j+1)(p− 1).
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Proof. By Proposition 3.5, d ∈ pjD1,pk for some 0 ≤ j < k if and only if
0 < d < pk and gcd(d, pk) = pj . There are exactly pk−j−1(p− 1) such d < pk

satisfying this requirement, which completes the proof.

Example. Consider Z27:

D1,27 = {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26}

3D1,27 = {3, 6, 12, 15, 21, 24}

9D1,27 = {9, 18}.

Indeed,

|D1,27| = 18 = 32(3− 1)

|3D1,27| = 6 = 31(3− 1)

|9D1,27| = 2 = 30(3− 1).

Corollary 3.9. If p is prime and m, k ∈ Z+ with 0 ≤ m < k, then

∑

Dpm,pk =
1

2
p2k−(m+1)(pm+1 − 1).

Proof. Applying Corollary 3.6 and Lemma 3.8,

∑

Dpm,pk =
∑

(

m
⋃

i=0

piD1,pk

)

=

m
∑

i=0

(

∑

piD1,pk

)

=
m
∑

i=0

pk

2
|piD1,pk|

=
pk

2

m
∑

i=0

pk−(i+1)(p− 1)

=
pk

2
pk−(m+1)

m
∑

i=0

(pm−i)(p− 1)

=
1

2
p2k−(m+1)(pm+1 − 1).

Lemma 3.10. Let a, b, n ∈ Z+ with b < a < n and b|n. If a ∈ bD1,n, then
Da,n = Db,n.
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Proof. Suppose a ≡ bc (mod n) for some c ∈ D1,n, where cd ≡ 1 (mod n)
for some d ∈ Z.

(⊆) Suppose m ∈ Da,n. Then mk ≡ a (mod n) for some k ∈ Z. Thus, b
≡ bcd (mod n) ≡ ad (mod n) ≡ mkd (mod n), so m|nb, and thus m ∈ Db,n.

(⊇) Suppose m ∈ Db,n. Then m|nb, which implies that ml ≡ b (mod n)
for some l ∈ Z, so bc ≡ mlc (mod n) =⇒ a = bc ≡ mlc (mod n), and thus
m|na.

We are now ready to characterize friendliness in rings Zn of cardinality
equal to a prime power.

Theorem 3.11. If p is prime and k ∈ Z+, then every a ∈ Zpk \ {0} is
pk-solitary.

Proof. Let a ∈ pjD1,pk for some 0 ≤ j < k; then by Lemma 3.10, Da,pk =
Dpj ,pk . We will show that a has no pk-friends.

Consider b with 0 < b < pk and b 6= a.
Suppose b ∈ pjD1,pk . In this case, by Lemma 3.10 we have that Db,pk =

Dpj ,pk = Da,pk . Thus,

Ipk(a) =
σpk(a)

a

=

∑

Da,pk

a

=

∑

Db,pk

a

6=

∑

Db,pk

b
= Ipk(b).

This takes care of b ∈ pjD1,pk .
Now, suppose b ∈ piD1,pk , where i 6= j. Then by Lemma 3.10, Db,pk =

Dpi,pk , so by Corollary 3.9,

Ipk(b) =
p2k−(i+1)(pi+1 − 1)

2b
.

Thus, if Ipk(a) = Ipk(b), then

p2k−(j+1)(pj+1 − 1)

2a
=

p2k−(i+1)(pi+1 − 1)

2b
,
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which implies that a(1− p−(i+1)) = b(1 − p−(j+1)). But, a ∈ pjD1,pk and b ∈
piD1,pk , so by Proposition 3.5 we have that gcd(a, pk) = pj and gcd(b, pk) = pi.
Thus, a = a′pj for some integer a′ with 0 < a′ < pk−j and p ∤ a′, and b = b′pi

for some integer b′ with 0 < b′ < pk−i and p ∤ b′.
Therefore,

a(1− p−(i+1)) = b(1 − p−(j+1))

=⇒ apj+1(pi+1 − 1) = bpi+1(pj+1 − 1)

=⇒ a(pi+j+2 − pj+1) = b(pi+j+2 − pi+1)

=⇒ a′(pi+2j+2 − p2j+1) = b′(p2i+j+2 − p2i+1)

=⇒ a′p2j(pi+1 − 1) = b′p2i(pj+1 − 1).

Without loss of generality, assume i < j. Then

a′p2(j−1)(pi+1 − 1) = b′(pj+1 − 1).

Now, p divides the left side but not the right side, a contradiction. Therefore,
Ipk(a) 6= Ipk(b) for all 0 < b < pk with a 6= b, so a is pk-solitary.

The natural question to ask next is does the converse of the statement
hold? That is, do n-friends necessarily exist when n is not a prime power? In
addition, is there any connection between the notion of n-friends and friends
in the regular integers?
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