

## Nicholas Gaubatz<sup>1</sup>, Peter Johnson<sup>2</sup>

<sup>1</sup>Department of Mathematics & Statistics Murray State University Murray, Kentucky 42071, USA

<sup>2</sup>Department of Mathematics & Statistics Auburn University Auburn, Alabama 36849, USA

email: ngaubatz@murraystate.edu, johnspd@auburn.edu

(Received October 3, 2021, Accepted November 3, 2021)

#### Abstract

For integers n > 1, the n-abundancy index, analogous to the abundancy index on the positive integers, is defined on  $\mathbb{Z}_n \setminus \{0\}$ . Some basic results, founded on basic results about divisor sets in  $\mathbb{Z}_n$ , are obtained, including the result that if n is a prime power, then the n-abundancy index is one-to-one on  $\mathbb{Z}_n \setminus \{0\}$ .

## 1 Introduction

Throughout,  $\mathbb{Z}$  will denote the set of integers and  $\mathbb{Z}^+$  the set of positive integers. For  $n \in \mathbb{Z}^+$ , n > 1, the elements of the ring of integers modulo n will be denoted  $\mathbb{Z}_n$ . We allow each congruence class mod n to be represented by any integer in that congruence class. For instance, 13 and 33 represent the same congruence class in (i.e., element of)  $\mathbb{Z}_{20}$ ; this is the same assertion as  $13 \equiv 33 \pmod{20}$ .

Each congruence class mod n has a representative among  $0, 1, \ldots, n-1$ . In the definitions in the next section, we will use these favored representatives

Key words and phrases: Abundancy index, ring of integers modulo n. AMS (MOS) Subject Classifications: 11A07, 11A25. This work was supported by NSF DMS grant no. 1950563. ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net

of the elements of  $\mathbb{Z}_n$ . We must warn that we will be switching back and forth between  $\mathbb{Z}$  and  $\mathbb{Z}_n$  in these definitions— $k \in \{0, 1, \ldots, n-1\}$  may be an element of  $\mathbb{Z}_n$  in one part of the definition and a plain old integer in another part. But we will take pains to make these matters clear.

As usual, d|n stands for d divides n, which is the same as stating that n is a multiple of d. When this notation appears, it is understood that  $d, n \in \mathbb{Z}^+$  and that the multiplication involved is the usual multiplication in the ring  $\mathbb{Z}$ .

On  $\mathbb{Z}^+$ , the sum-of-divisors function is defined by  $\sigma(n) = \sum_{d|n} d$ . The abundancy index of  $n \in \mathbb{Z}^+$  is defined by

$$I(n) = \frac{\sigma(n)}{n}.$$

This parameter has been of interest for many decades (see [1] and [5]), not least because of its connection with the question, descending from antiquity, of *perfect numbers*, which are positive integers n such that I(n) = 2.

Positive integers m and n are said to be *friends* if and only if  $m \neq n$  and I(m) = I(n). Thus, all the perfect numbers are friends with each other. It is not known whether or not there is an infinite cohort of mutual friends; the perfect numbers are the only likely candidate, at present.

At the other end of the friendship spectrum, a positive integer  $n \in \mathbb{Z}^+$  is said to be *solitary* if it has no friends. It is known (see [4]) that 1 and all prime powers are solitary. The only integers among  $1, \ldots, 13$  other than 1 or prime powers are 6, 10, and 12; 6 is perfect (therefore, with quite a few friends), and 12 has at least one friend, namely, 234 [2]. At present, the leading candidate for the smallest solitary n > 1 which is not a prime power is 10.

In the next section we define, for  $n \in \mathbb{Z}^+$ , n > 1, the *n-abundancy index*  $\overline{I_n}: (\mathbb{Z}_n \setminus \{0\}) \to \mathbb{Q} = \{\text{rational numbers}\}$ . In the last section we prove some basic results about this index, culminating in a proof that if n is a prime power, then every  $a \in \mathbb{Z}_n \setminus \{0\}$  is n-solitary.

# 2 Divisors and the Abundancy Index in $\mathbb{Z}_n$

**Definition.** For  $a, b \in \mathbb{Z}$  such that 0 < a, b < n and  $n \in \mathbb{Z}$  with  $n \ge 2$ , we say that a is an n-divisor of b, denoted  $a|_n b$ , if there exists a  $d \in \mathbb{Z}_n \setminus \{0\}$  such that  $da \equiv b \pmod{n}$ .

We denote the set of *n*-divisors of *b* as  $D_{b,n} = \{a \in \mathbb{Z} : 0 < a < n \text{ and } a|_n b\}.$ 

The next few lemmas state some well-known number theory facts and relate them to our notation.

**Lemma 2.1.** For  $a, b \in \mathbb{Z}_n \setminus \{0\}$ ,  $a|_n b$  if and only if  $(n-a)|_n b$ .

This immediately implies the following corollary:

Corollary 2.2. Let  $a, b \in \mathbb{Z}_n$ . We have that  $a \in D_{b,n}$  if and only if  $n - a \in D_{b,n}$ .

**Lemma 2.3.** Let  $a, b \in \mathbb{Z}_n \setminus \{0\}$ . Then gcd(a, n)|b if and only if  $a|_nb$ .

*Proof.* Let d = gcd(a, n). To prove this lemma, we utilize Bézout's Identity: There exist  $u, v \in \mathbb{Z}$  such that d = ua + vn.

- $(\Rightarrow)$  Suppose d|b, with b=cd for some  $c\in\mathbb{Z}$ . Then there exist  $u,v\in\mathbb{Z}$  such that  $d=au+nv\iff au\equiv d\pmod n$ , so  $b\equiv c(au)\pmod n\equiv a(cu)\pmod n$ , so  $a|_nb$ .
- ( $\Leftarrow$ ) Suppose  $a|_n b$ . Then there exists  $c \in \mathbb{Z}_n$  such that  $b \equiv ac \pmod{n}$ , so there exists  $y \in \mathbb{Z}$  such that b = ac + ny. But, d|a and d|n, so d|(ac + ny) = b.

Note that this means  $a \in D_{b,n}$  if and only if gcd(a,n)|b. Furthermore,  $D_{1,n} = \{a \in \mathbb{Z} : 0 < a < n \text{ and } gcd(a,n) = 1\}.$ 

It is also useful to note that for  $a, b, c \in \mathbb{Z}_n \setminus \{0\}$ , if  $a|_n b$  and  $b|_n c$ , then  $a|_n c$ . This immediately implies that if  $a \in D_{b,n}$  and  $b \in D_{c,n}$ , then  $a \in D_{c,n}$ ; i.e., n-divisibility is transitive.

**Definition.** We define the sum of n-divisors function  $\overline{\sigma_n} : \mathbb{Z}_n \setminus \{0\} \to \mathbb{Z}$  by

$$\overline{\sigma_n}(m) = \sum_{d|_n m} d.$$

It is important to note that this sum is taken in the ring of integers, for if the sum is taken mod(n), very often it results in 0.

**Example.** In  $\mathbb{Z}_6$ ,  $\overline{\sigma_6}(1) = 1 + 5 = 6$  and  $\overline{\sigma_6}(2) = 1 + 2 + 4 + 5 = 12$ .

**Definition.** For  $m \in \mathbb{Z}_n$ , we define the *n*-abundancy index of m as

$$\overline{I_n}(m) = \frac{\overline{\sigma_n}(m)}{m}.$$

**Example.** In  $\mathbb{Z}_6$ ,  $\overline{I_6}(1) = \frac{6}{1} = 6$  and  $\overline{I_6}(2) = \frac{12}{2} = 6$ .

**Definition.** If  $\overline{I_n}(a) = \overline{I_n}(b)$  for some  $a, b \in \mathbb{Z}_n \setminus \{0\}, a \neq b$ , we say that a and b are n-friends. A number with at least one n-friend is called n-friendly, while a number with no n-friends is called n-solitary.

**Example.** The following table shows 6-abundancy indices for all  $m \in \mathbb{Z}_6 \setminus \{0\}$ :

Because 1 and 2 both have 6 as their 6-abundancy indices, 1 and 2 are 6-friends. Likewise, 3 and 4 are also 6-friends. However, 5 is 6-solitary.

## 3 New Results

Based on everything stated so far, we can show a simple result involving p-friends, where p is any prime.

**Proposition 3.1.** If p is prime, then every  $m \in \mathbb{Z}_p \setminus \{0\}$  is p-solitary.

*Proof.* Since  $\mathbb{Z}_p$  is a field, every  $a \in \mathbb{Z}_p \setminus \{0\}$  is p-divisible by every  $b \in \mathbb{Z}_p \setminus \{0\}$ .

Therefore, 
$$\overline{\sigma_a} = \sum_{k=1}^{p-1} k = \frac{p(p-1)}{2}$$
 for every  $a \in \mathbb{Z}_p \setminus \{0\}$ . Thus, for every  $a$ ,

$$b \in \mathbb{Z}_p \setminus \{0\}$$
 such that  $a \neq b$ ,  $\overline{I_p}(a) = \frac{p(p-1)}{2a} \neq \frac{p(p-1)}{2b} = \overline{I_p}(b)$ .

Before we state our next result, let us present some notation. Let  $A \subseteq \mathbb{Z}_n$  and let  $k \in \mathbb{Z}$ , 0 < k < n. Denote

$$kA := \{ka \pmod{n} | a \in A\}.$$

Thus,  $kA \subset \{0, 1, ..., n-1\}$ .

We will denote  $\sum A$  as the integer sum of elements of a set  $A \subset \mathbb{Z}$ .

Now, in view of our goal to characterize n-friend relations in generality, we first build toward a result relating 1 and 2 in  $\mathbb{Z}_{2m}$ , where m is odd.

**Proposition 3.2.** Consider  $\mathbb{Z}_{2m}$ , where m is odd. Then the following statements hold:

- 1)  $D_{2,2m} = D_{1,2m} \cup 2D_{1,2m}$ ,
- 2)  $D_{1,2m} \cap 2D_{1,2m} = \emptyset$ , and
- 3)  $|D_{1,2m}| = |2D_{1,2m}|$ .

Proof. 1)

( $\supseteq$ ) Suppose  $a \in D_{1,2m}$ . Then  $a|_{2m}1$ , so  $1 \equiv ad \pmod{2m}$  for some  $d \in \mathbb{Z}_{2m}$ . Thus,  $2 \equiv 2ad \pmod{2m} \equiv a(2d) \pmod{2m}$ , so  $a|_{2m}2$  and thus  $a \in D_{2,2m}$ .

Instead suppose  $a \in 2D_{1,2m}$ . Then  $a \equiv 2b \pmod{2m}$  for some  $b \in D_{1,2m}$ ; i.e.,  $bd \equiv 1 \pmod{2m}$  for some  $d \in \mathbb{Z}_{2m}$ . Thus,  $ad \equiv 2bd \pmod{2m} \equiv 2 \pmod{2m}$ , so  $a|_{2m}2$  and thus  $a \in D_{2,2m}$ .

( $\subseteq$ ) Now suppose  $a \in D_{2,2m}$ ; that is,  $a|_{2m}2$ . By Lemma 2.3,  $gcd(a,2m)|_2$ . This means that gcd(a,2m)=1 or gcd(a,2m)=2.

If gcd(a, 2m) = 1, then  $a|_{2m}1$ , so  $a \in D_{1,2m}$ .

If gcd(a, 2m) = 2, then 2|a, so a is even with a = 2c for some  $c \in \mathbb{Z}^+$ . Since 1 < a < 2m, we have that  $1 \le c < m$ ; also, gcd(c, m) = 1.

If c is odd, then gcd(c, 2m) = 1, so  $a = 2c \in 2D_{1,2m}$ . So, suppose c is even. Since m is odd, m + c is also odd. Therefore, gcd(m + c, 2m) = 1; also,  $1 \le m + c < 2m$ . Consequently,  $m + c \in D_{1,2m}$ . Therefore,  $a = 2c \equiv 2(m + c) \pmod{2m} \in 2D_{1,2m}$ .

- 2) Suppose  $a \in D_{1,2m}$ . Then  $a|_{2m}1$ , so  $gcd(a,2m)|1 \Rightarrow gcd(a,2m) = 1$ , so a must be odd. Now, note that all elements of  $2D_{1,2m}$  are even, since if  $b \in 2D_{1,2m}$  then there exists a  $c \in D_{1,2m}$  such that  $b \equiv 2c \pmod{2m} \Rightarrow b = 2c + 2mv = 2(c + mv)$  for some  $v \in \mathbb{Z}$ . Therefore,  $a \notin 2D_{1,2m}$ , so  $D_{1,2m} \cap 2D_{1,2m} = \emptyset$ .
- 3) Consider the map  $\phi: D_{1,2m} \to 2D_{1,2m}$ ,  $\phi(a) \equiv 2a \pmod{2m}$ . We will show that  $\phi$  is a bijection.

(Injection:) Suppose  $\phi(a) \equiv \phi(b) \pmod{2m}$  for some  $a, b \in D_{1,2m}$ . By the above, both a and b are odd. Then  $2a \equiv 2b \pmod{2m}$  implies that  $2(a-b) \equiv 0 \pmod{2m}$ . Thus,  $a-b \equiv 0 \pmod{2m}$ , in which case  $a \equiv b \pmod{2m}$  and we are done, or  $a-b \equiv m \pmod{2m}$ , in which case a and b being odd means that m is even, a contradiction. Thus,  $\phi$  is injective.

(Surjection:) By definition, if  $a \in 2D_{1,2m}$ , then  $a \equiv 2b \pmod{2m}$  for some  $b \in D_{1,2m}$ . Thus,  $\phi$  is surjective.

Therefore,  $|D_{1,2m}| = |2D_{1,2m}|$ .

We are now ready to state our first "new" result.

**Theorem 3.3.** If m is odd, then 1 and 2 are 2m-friends.

*Proof.* Note that  $\overline{I_{2m}}(1) = \overline{\sigma_{2m}}(1) = \sum D_{1,2m}$ . We will show that  $\sum 2D_{1,2m} = \sum D_{1,2m}$ ; this, in view of Proposition 3.2, will prove the theorem's claim.

To this end, recall that by Corollary 2.2,  $a \in D_{1,2m}$  if and only if  $2m - a \in D_{1,2m}$ , so  $D_{1,2m} = \{a_1, \ldots, a_k, 2m - a_1, \ldots, 2m - a_k\}$  for some  $k \in \mathbb{Z}$ , where

we arrange the elements so that  $1 \leq a_1, \ldots, a_k < m$ . Thus,  $\sum D_{1,2m} = a_1 + \cdots + a_k + (2m - a_1) + \cdots + (2m - a_k) = k(2m)$ .

Furthermore, since arrangements have been made so that  $1 \leq a_1, \ldots, a_k < m$ , we have that  $2 \leq 2a_j < 2m$ , for all  $j = 1, \ldots, k$ . Meanwhile,  $2(2m - a_j) = 4m - 2a_j \equiv 2m - 2a_j \pmod{2m}$ , and  $0 < 2m - 2a_j < 2m$ . Therefore,  $2D_{1,2m} = \{2a_1, \ldots, 2a_k, 2m - 2a_1, \ldots, 2m - 2a_k\}$ , where each of the 2k integers listed are distinct because  $|D_{1,2m}| = |2D_{1,2m}|$ . Therefore,

$$\sum 2D_{1,2m} = \sum_{j=1}^{k} 2a_j + \sum_{j=1}^{k} (2m - 2a_j) = k(2m) = \sum D_{1,2m}.$$

Thus,  $\sum D_{2,2m} = \sum (D_{1,2m} \cup 2D_{1,2m}) = \sum D_{1,2m} + \sum 2D_{1,2m} = 2 \sum D_{1,2m}$  since  $D_{1,2m}$  and  $2D_{1,2m}$  are disjoint. Therefore, 1 and 2 are 2*m*-friends.

Now that we have established the result that 1 and 2 are 2m-friends for any odd m, we must build up some more theory before trying to tackle any other cases. The following lemma is essential for constructing  $mD_{1,n}$  for any m and n.

**Lemma 3.4.** Suppose a, b, and m > 1 are positive integers and gcd(m, b) = 1. Then at least one of the integers a + kb,  $0 \le k \le m - 1$ , is relatively prime to m.

*Proof.* We will show that the congruence classes modulo m of the integers  $a, a + b, \ldots, a + (m-1)b$  are distinct.

Suppose  $0 \le k < q \le m-1$  with  $a+kb \equiv a+qb \pmod m$ . Then  $m|(q-k)b \Longrightarrow m|(q-k)$  since gcd(m,b)=1. But  $1 \le q-k \le m-1$ , so it is impossible that m|(q-k).

Therefore, the congruence classes of the integers a+kb,  $0 \le k \le m-1$ , are distinct. Since there are m of these congruence classes, it must be that  $a+kb \equiv 1 \pmod{m}$  for some  $k \in \{0,\ldots,m-1\}$ . Thus,  $\gcd(a+kb,m) = 1$ .

In fact, the conclusion of the previous lemma can be sharpened to the following:  $\varphi(m)$  of the integers a+kb,  $0 \le k \le m-1$ , are relatively prime to m, where  $\varphi$  is Euler's totient function.

**Proposition 3.5.** Let  $m \in \mathbb{Z}$ , with 0 < m < n. If  $m \mid n$ , then

$$mD_{1,n} = \{d \in \mathbb{Z} | 0 < d < n \text{ and } gcd(d,n) = m\}.$$

Proof. ( $\subseteq$ ) Suppose  $d \in mD_{1,n}$ . Then  $d \equiv mj \pmod{n}$  for some  $j|_n1$ . Thus, d = mj + nv for some  $v \in \mathbb{Z}$ ; but, m|m and m|n, so m|d. Thus,  $gcd(d, n) \geq m$ . However, since  $j|_n1$ ,  $1 \equiv jl \pmod{n}$  for some  $l \in \mathbb{Z}$ , so  $m \equiv mjl \pmod{n} \equiv dl \pmod{n}$ , so  $d|_nm$ , which implies that gcd(d, n)|m and thus  $gcd(d, n) \leq m$ . Therefore, gcd(d, n) = m.

( $\supseteq$ ) Suppose that n, d, and m are positive integers satisfying 0 < d < n and m = gcd(d, n). Let integers c and t be defined by d = mc and n = mt. Then gcd(c, t) = 1.

We will show that  $d \equiv mx \pmod{n}$  for some  $x \in \{1, ..., n-1\}$  satisfying gcd(x, n) = 1.

Using the Unique Factorization Theorem, we can refactor n as n = MT, in which M|m, t|T, and gcd(M,T) = 1; also, every prime divisor of T is a prime divisor of t. Because gcd(c,t) = 1, it follows that gcd(c,T) = 1.

We will look for x in the arithmetic progression c+kT,  $0 \le k \le M-1$ . Observe that for all such k,  $m(c+kT) = mc + kmT = d + kmT \equiv d \pmod{n}$ , because t|T implies that n = mt|kmT. Therefore, it will suffice to show the existence of  $k \in \{0, \ldots, M-1\}$  such that gcd(c+kT, n) = 1.

Since gcd(M,T)=1, Lemma 3.4 allows us to conclude that gcd(c+kT,M)=1 for some  $k'\in\{0,\ldots,M-1\}$ . But since n=MT, it follows that gcd(c+k'T,n)=gcd(c+k'T,T). But, any common divisor of T and c+k'T must divide c, so gcd(c+k'T,T)=gcd(c,T)=1.

The following corollary is a generalization of parts (1) and (2) of Proposition 3.2:

**Corollary 3.6.** Suppose  $k \in \mathbb{Z}$  with 0 < k < n, and let M be the set of all positive integers m such that m|k and m|n. Then

$$D_{k,n} = \bigcup_{m \in M} m D_{1,n}.$$

2) 
$$mD_{1,n} \cap m'D_{1,n} = \emptyset \text{ for all } m, m' \in M, m \neq m'.$$

*Proof.* 1) ( $\subseteq$ ) Suppose  $a \in D_{k,n}$ . Then by Lemma 2.3, gcd(a,n)|k. Let  $m_a = gcd(a,n)$ . Then  $a \in m_aD_{1,n}$  by Proposition 3.5, where  $m_a|k$  and  $m_a|n$  implies that  $m_a \in M$ .

 $(\supseteq)$  If  $a \in mD_{1,n}$  for some  $m \in \mathbb{Z}$  with m|k and m|n, then  $a \equiv mj \pmod n$  for some  $j|_n 1$  and k = mp for some  $p \in \mathbb{Z}$ . Thus,  $jl \equiv 1 \pmod n$  for some

 $l \in \mathbb{Z}$ , so

$$k = mp$$

$$\equiv m(jl)p \pmod{n}$$

$$\equiv a(lp) \pmod{n},$$

so  $a|_{n}k$  and thus  $a \in D_{k,n}$ .

2) By way of contradiction, suppose there exists an a such that  $a \in m_1D_{1,n}$  and  $a \in m_2D_{1,n}$ , where  $m_1 \neq m_2$ . Then by Proposition 3.5,  $gcd(a,n) = m_1$  and  $gcd(a,n) = m_2$ , so  $m_1 = m_2$ .

Indeed, if we let k=2 and n=2m for an odd  $m \in \mathbb{Z}$ , then by Corollary 3.6 we get parts (1) and (2) of Proposition 3.2.

### **Example.** Consider $\mathbb{Z}_{12}$ :

$$D_{1,12} = \{1, 5, 7, 11\}$$

$$2D_{1,12} = \{2, 10\}$$

$$3D_{1,12} = \{3, 9\}$$

$$4D_{1,12} = \{4, 8\}$$

$$6D_{1,12} = \{6\}$$

Indeed,

$$D_{1,12} = \{1, 5, 7, 11\}$$

$$D_{2,12} = \{1, 2, 5, 7, 10, 11\} = D_{1,12} \cup 2D_{1,12}$$

$$D_{3,12} = \{1, 3, 5, 7, 9, 11\} = D_{1,12} \cup 3D_{1,12}$$

$$D_{4,12} = \{1, 2, 4, 5, 7, 8, 10, 11\} = D_{1,12} \cup 2D_{1,12} \cup 4D_{1,12}$$

$$D_{5,12} = \{1, 5, 7, 11\} = D_{1,12}$$

$$D_{6,12} = \{1, 2, 3, 5, 6, 7, 9, 10, 11\} = D_{1,12} \cup 2D_{1,12} \cup 3D_{1,12} \cup 6D_{1,12}$$

$$D_{7,12} = \{1, 5, 7, 11\} = D_{1,12}$$

$$D_{8,12} = \{1, 2, 4, 5, 7, 8, 10, 11\} = D_{1,12} \cup 2D_{1,12} \cup 4D_{1,12}$$

$$D_{9,12} = \{1, 3, 5, 7, 9, 11\} = D_{1,12} \cup 3D_{1,12}$$

$$D_{10,12} = \{1, 2, 5, 7, 10, 11\} = D_{1,12} \cup 2D_{1,12}$$

$$D_{11,12} = \{1, 5, 7, 11\} = D_{1,12}$$

**Proposition 3.7.** For any integer  $n \geq 2$  with prime factorization  $n = p_1^{k_1} \cdots p_r^{k_r}$ ,

$$\overline{I_n}(1) = \sum D_{1,n} = \frac{1}{2} (p_1^{2k_1 - 1}(p_1 - 1) \cdots p_r^{2k_r - 1}(p_r - 1)).$$

*Proof.* Consider Euler's totient function  $\varphi(n)$ , the number of positive integers k < n such that k is relatively prime to n. Then, by definition,  $|D_{1,n}| = \varphi(n)$ . It is well-known that

$$\varphi(n) = p_1^{k_1-1}(p_1-1)\cdots p_r^{k_r-1}(p_r-1).$$

Next, note that by Corollary 2.2, the values of  $D_{1,n}$  come in pairs, each summing to n. Thus, the average of the values of  $D_{1,n}$  is equal to  $\frac{n}{2}$ . Therefore, to get  $\sum D_{1,n}$  we take the average and multiply it with the cardinality to get that

$$\overline{I_n}(1) = \sum_{n \ge 1} D_{1,n} 
= \frac{n}{2} \cdot |D_{1,n}| 
= \frac{n}{2} \cdot \varphi(n) 
= \frac{p_1^{k_1} \cdots p_r^{k_r}}{2} \cdot (p_1^{k_1-1}(p_1-1) \cdots p_r^{k_r-1}(p_r-1)) 
= \frac{1}{2} p_1^{2k_1-1}(p_1-1) \cdots p_r^{2k_r-1}(p_r-1).$$

Examples.

$$\overline{I_6}(1) = 1 + 5 = 6 = \frac{1}{2}(2 \cdot 1 \cdot 3 \cdot 2).$$

$$\overline{I_{10}}(1) = 1 + 3 + 7 + 9 = 20 = \frac{1}{2}(2 \cdot 1 \cdot 5 \cdot 4).$$

$$\overline{I_{12}}(1) = 1 + 5 + 7 + 11 = 24 = \frac{1}{2}(2^3 \cdot 1 \cdot 3 \cdot 2).$$

$$\overline{I_{32}}(1) = \frac{1}{2}(2^9 \cdot 1) = 256.$$

Note in the case that the power of each prime in the prime factorization of n is 1 (i.e.,  $k_i = 1$  for all  $1 \le i \le r$ ),  $\overline{I_n}(1) = \frac{1}{2}(p_1(p_1 - 1) \cdots p_r(p_r - 1)) = \frac{n}{2}((p_1 - 1) \cdots (p_r - 1))$ .

**Lemma 3.8.** If p is prime and  $j, k \in \mathbb{Z}$  with  $0 \le j < k$ , then

$$|p^j D_{1,p^k}| = p^{k-(j+1)}(p-1).$$

*Proof.* By Proposition 3.5,  $d \in p^j D_{1,p^k}$  for some  $0 \le j < k$  if and only if  $0 < d < p^k$  and  $gcd(d, p^k) = p^j$ . There are exactly  $p^{k-j-1}(p-1)$  such  $d < p^k$  satisfying this requirement, which completes the proof.

**Example.** Consider  $\mathbb{Z}_{27}$ :

$$\begin{split} D_{1,27} &= \{1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26\} \\ 3D_{1,27} &= \{3,6,12,15,21,24\} \\ 9D_{1,27} &= \{9,18\}. \end{split}$$

Indeed,

$$|D_{1,27}| = 18 = 3^{2}(3-1)$$
$$|3D_{1,27}| = 6 = 3^{1}(3-1)$$
$$|9D_{1,27}| = 2 = 3^{0}(3-1).$$

Corollary 3.9. If p is prime and  $m, k \in \mathbb{Z}^+$  with  $0 \le m < k$ , then

$$\sum D_{p^m,p^k} = \frac{1}{2} p^{2k-(m+1)} (p^{m+1}-1).$$

*Proof.* Applying Corollary 3.6 and Lemma 3.8,

$$\sum D_{p^m,p^k} = \sum \left( \bigcup_{i=0}^m p^i D_{1,p^k} \right)$$

$$= \sum_{i=0}^m \left( \sum p^i D_{1,p^k} \right)$$

$$= \sum_{i=0}^m \frac{p^k}{2} |p^i D_{1,p^k}|$$

$$= \frac{p^k}{2} \sum_{i=0}^m p^{k-(i+1)} (p-1)$$

$$= \frac{p^k}{2} p^{k-(m+1)} \sum_{i=0}^m (p^{m-i}) (p-1)$$

$$= \frac{1}{2} p^{2k-(m+1)} (p^{m+1} - 1).$$

**Lemma 3.10.** Let  $a, b, n \in \mathbb{Z}^+$  with b < a < n and b|n. If  $a \in bD_{1,n}$ , then  $D_{a,n} = D_{b,n}$ .

*Proof.* Suppose  $a \equiv bc \pmod{n}$  for some  $c \in D_{1,n}$ , where  $cd \equiv 1 \pmod{n}$  for some  $d \in \mathbb{Z}$ .

- ( $\subseteq$ ) Suppose  $m \in D_{a,n}$ . Then  $mk \equiv a \pmod{n}$  for some  $k \in \mathbb{Z}$ . Thus, b  $\equiv bcd \pmod{n} \equiv ad \pmod{n} \equiv mkd \pmod{n}$ , so  $m|_n b$ , and thus  $m \in D_{b,n}$ .
- ( $\supseteq$ ) Suppose  $m \in D_{b,n}$ . Then  $m|_n b$ , which implies that  $ml \equiv b \pmod{n}$  for some  $l \in \mathbb{Z}$ , so  $bc \equiv mlc \pmod{n} \implies a = bc \equiv mlc \pmod{n}$ , and thus  $m|_n a$ .

We are now ready to characterize friendliness in rings  $\mathbb{Z}_n$  of cardinality equal to a prime power.

**Theorem 3.11.** If p is prime and  $k \in \mathbb{Z}^+$ , then every  $a \in \mathbb{Z}_{p^k} \setminus \{0\}$  is  $p^k$ -solitary.

*Proof.* Let  $a \in p^j D_{1,p^k}$  for some  $0 \le j < k$ ; then by Lemma 3.10,  $D_{a,p^k} = D_{p^j,p^k}$ . We will show that a has no  $p^k$ -friends.

Consider b with  $0 < b < p^k$  and  $b \neq a$ .

Suppose  $b \in p^j D_{1,p^k}$ . In this case, by Lemma 3.10 we have that  $D_{b,p^k} = D_{p^j,p^k} = D_{a,p^k}$ . Thus,

$$\overline{I_{p^k}}(a) = \frac{\overline{\sigma_{p^k}}(a)}{a} \\
= \frac{\sum D_{a,p^k}}{a} \\
= \frac{\sum D_{b,p^k}}{a} \\
\neq \frac{\sum D_{b,p^k}}{b} \\
= \overline{I_{p^k}}(b).$$

This takes care of  $b \in p^j D_{1,p^k}$ .

Now, suppose  $b \in p^i D_{1,p^k}$ , where  $i \neq j$ . Then by Lemma 3.10,  $D_{b,p^k} = D_{p^i,p^k}$ , so by Corollary 3.9,

$$\overline{I_{p^k}}(b) = \frac{p^{2k - (i+1)}(p^{i+1} - 1)}{2b}.$$

Thus, if  $\overline{I_{p^k}}(a) = \overline{I_{p^k}}(b)$ , then

$$\frac{p^{2k-(j+1)}(p^{j+1}-1)}{2a} = \frac{p^{2k-(i+1)}(p^{i+1}-1)}{2b},$$

which implies that  $a(1-p^{-(i+1)}) = b(1-p^{-(j+1)})$ . But,  $a \in p^j D_{1,p^k}$  and  $b \in p^i D_{1,p^k}$ , so by Proposition 3.5 we have that  $gcd(a,p^k) = p^j$  and  $gcd(b,p^k) = p^i$ . Thus,  $a = a'p^j$  for some integer a' with  $0 < a' < p^{k-j}$  and  $p \nmid a'$ , and  $b = b'p^i$  for some integer b' with  $0 < b' < p^{k-i}$  and  $p \nmid b'$ .

Therefore,

$$a(1 - p^{-(i+1)}) = b(1 - p^{-(j+1)})$$

$$\implies ap^{j+1}(p^{i+1} - 1) = bp^{i+1}(p^{j+1} - 1)$$

$$\implies a(p^{i+j+2} - p^{j+1}) = b(p^{i+j+2} - p^{i+1})$$

$$\implies a'(p^{i+2j+2} - p^{2j+1}) = b'(p^{2i+j+2} - p^{2i+1})$$

$$\implies a'p^{2j}(p^{i+1} - 1) = b'p^{2i}(p^{j+1} - 1).$$

Without loss of generality, assume i < j. Then

$$a'p^{2(j-1)}(p^{i+1}-1) = b'(p^{j+1}-1).$$

Now, p divides the left side but not the right side, a contradiction. Therefore,  $\overline{I_{p^k}}(a) \neq \overline{I_{p^k}}(b)$  for all  $0 < b < p^k$  with  $a \neq b$ , so a is  $p^k$ -solitary.

The natural question to ask next is does the converse of the statement hold? That is, do n-friends necessarily exist when n is not a prime power? In addition, is there any connection between the notion of n-friends and friends in the regular integers?

## References

- [1] P. Erdős, On the distribution of numbers of the form  $\sigma(n)/n$  and on some related questions, Pacific J. Math 52 (1), 1974.
- [2] Doyon Kim, Friends of 12, Alabama Journal of Mathematics (ajmonline) 39 (2015), 3 pp.
- [3] R. Laatsch, Measuring the abundancy of integers, Math. Magazine 59 (1986), 84-92.
- [4] Jeffrey Ward, Does ten have a friend?, International Journal of Mathematics and Computer Science 3 (2008), 153-158.
- [5] P.A. Weiner, The abundancy ratio, a measure of perfection, Math. Magazine 73 (2000), 307-310.