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Abstract

For integers n > 1, the n-abundancy index, analogous to the abun-
dancy index on the positive integers, is defined on Z,,\ {0}. Some basic
results, founded on basic results about divisor sets in Z,,, are obtained,
including the result that if n is a prime power, then the n-abundancy
index is one-to-one on Z, \ {0}.

1 Introduction

Throughout, Z will denote the set of integers and Z™ the set of positive
integers. For n € Z*, n > 1, the elements of the ring of integers modulo n
will be denoted Z,,. We allow each congruence class mod n to be represented
by any integer in that congruence class. For instance, 13 and 33 represent
the same congruence class in (i.e., element of) Zyg; this is the same assertion
as 13 = 33 (mod 20).

Each congruence class mod n has a representative among 0,1,...,n — 1.
In the definitions in the next section, we will use these favored representatives
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of the elements of Z,. We must warn that we will be switching back and
forth between Z and Z,, in these definitions—k& € {0,1,...,7n—1} may be an
element of Z,, in one part of the definition and a plain old integer in another
part. But we will take pains to make these matters clear.

As usual, d|n stands for d divides n, which is the same as stating that n is
a multiple of d. When this notation appears, it is understood that d,n € Z*
and that the multiplication involved is the usual multiplication in the ring
Z.

On Z*, the sum-of-divisors function is defined by o(n) = de d. The

abundancy index of n € Z* is defined by

This parameter has been of interest for many decades (see [1] and [5]), not
least because of its connection with the question, descending from antiquity,
of perfect numbers, which are positive integers n such that I(n) = 2.

Positive integers m and n are said to be friends if and only if m # n and
I(m) = I(n). Thus, all the perfect numbers are friends with each other. It
is not known whether or not there is an infinite cohort of mutual friends; the
perfect numbers are the only likely candidate, at present.

At the other end of the friendship spectrum, a positive integer n € Z*
is said to be solitary if it has no friends. It is known (see [4]) that 1 and
all prime powers are solitary. The only integers among 1,...,13 other than
1 or prime powers are 6, 10, and 12; 6 is perfect (therefore, with quite a
few friends), and 12 has at least one friend, namely, 234 [2]. At present, the
leading candidate for the smallest solitary n > 1 which is not a prime power
is 10.

In the next section we define, for n € Z*, n > 1, the n-abundancy index
I, : (Z,\ {0}) — Q = {rational numbers}. In the last section we prove some
basic results about this index, culminating in a proof that if n is a prime
power, then every a € Z, \ {0} is n-solitary.

2 Divisors and the Abundancy Index in Z,

Definition. For a,b € Z such that 0 < a,b < n and n € Z with n > 2, we
say that a is an n-divisor of b, denoted al,b, if there exists a d € Z, \ {0}
such that da = b (mod n).

We denote the set of n-divisors of b as Dy, = {a € Z : 0 < a < n and

al,b}.
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The next few lemmas state some well-known number theory facts and
relate them to our notation.

Lemma 2.1. Fora,be Z, \ {0}, a|l,b if and only if (n — a)|,b.
This immediately implies the following corollary:

Corollary 2.2. Let a,b € Z,,. We have that a € Dy, if and only if n —a €
Dy,,.

Lemma 2.3. Let a,b € Z, \ {0}. Then ged(a,n)|b if and only if al,b.

Proof. Let d = ged(a,n). To prove this lemma, we utilize Bézout’s Identity:
There exist u,v € Z such that d = ua + vn.

(=) Suppose d|b, with b = cd for some ¢ € Z. Then there exist u,v € Z
such that d = au + nv <= au = d (mod n), so b = c(au) (mod n) =
a(cu) (mod n), so al,b.

(<) Suppose al,b. Then there exists ¢ € Z,, such that b = ac (mod n), so
there exists y € Z such that b = ac + ny. But, d|a and d|n, so d|(ac+ ny) =
b. O

Note that this means a € Dy, if and only if gcd(a,n)|b. Furthermore,
Dy, ={a€Z:0<a<nand ged(a,n) =1}.

It is also useful to note that for a, b, ¢ € Z, \ {0}, if a|,,b and b|,c, then
a|nc. This immediately implies that if a € Dy, and b € D, ,,, then a € D, ,;
i.e., n-divisibility is transitive.

Definition. We define the sum of n-divisors function &, : Z, \ {0} — Z by

Fa(m) =Y _d.

dlnm

It is important to note that this sum is taken in the ring of integers, for
if the sum is taken mod(n), very often it results in 0.

Example. In Zg, 56(1) =1+5=6and 56(2) =1 +2+4+5=12.
Definition. For m € Z,,, we define the n-abundancy index of m as

Tn(m)

Example. In Zg, I5(1) = 8 = 6 and I5(2) = 2 =6.

1:
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Definition. If T,,(a) = I,,(b) for some a,b € Z, \ {0},a # b, we say that a
and b are n-friends. A number with at least one n-friend is called n-friendly,
while a number with no n-friends is called n-solitary.

Example. The following table shows 6-abundancy indices for all m € Zg \

{0}:

Because 1 and 2 both have 6 as their 6-abundancy indices, 1 and 2 are
6-friends. Likewise, 3 and 4 are also 6-friends. However, 5 is 6-solitary.

3 New Results

Based on everything stated so far, we can show a simple result involving
p-friends, where p is any prime.

Proposition 3.1. If p is prime, then every m € Z, \ {0} is p-solitary.
Proof. Since Z, is a field, every a € Z,\{0} is p-divisible by every b € Z,\{0}.

p—1
Therefore, 7, = Z k= p(p 5
k=1

1
) for every a € Z, \ {0}. Thus, for every a,

b€ Z,\ {0} such that a # b, T,(a) = 21 £ 2D T (p). O

Before we state our next result, let us present some notation. Let A C Z,
and let k € Z, 0 < k < n. Denote

kA = {ka (mod n)la € A}.

Thus, kA C {0,1,...,n—1}.

We will denote ) A as the integer sum of elements of a set A C Z.

Now, in view of our goal to characterize n-friend relations in generality,
we first build toward a result relating 1 and 2 in Z,,,, where m is odd.

Proposition 3.2. Consider Zs,,, where m is odd. Then the following state-
ments hold:

1) D39y = D12 U 2D oy,

2) D1,2m N 2D172m = @, and

3) | D1.2m| = |2D1 2m|-
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Proof. 1)

(D) Suppose a € Djap. Then als,l, so 1 = ad (mod 2m) for some
d € Zoy,. Thus, 2 = 2ad (mod 2m) = a(2d) (mod 2m), so als,2 and thus
a € D272m-

Instead suppose a € 2D 5,,. Then a = 2b (mod 2m) for some b € Dy oy,;
ie., bd = 1 (mod 2m) for some d € Zy,,. Thus, ad = 2bd (mod 2m) =
2 (mod 2m), so a|y,2 and thus a € Dag oy,

(C) Now suppose a € Dy o,,; that is, als,2. By Lemma 2.3, ged(a, 2m)|2.
This means that ged(a,2m) =1 or ged(a,2m) = 2.

If ged(a,2m) = 1, then als,1, so a € Dy op,.

If ged(a,2m) = 2, then 2|a, so a is even with a = 2¢ for some ¢ € Z*.
Since 1 < a < 2m, we have that 1 < ¢ < m; also, ged(c,m) = 1.

If ¢ is odd, then ged(c,2m) = 1, so a = 2¢ € 2D, 5,,. So, suppose ¢ is
even. Since m is odd, m + ¢ is also odd. Therefore, ged(m + ¢,2m) = 1;
also, 1 < m + ¢ < 2m. Consequently, m + ¢ € D o,,,. Therefore, a = 2c =
2(m +¢) (mod 2m) € 2D op,.

2) Suppose a € D a,. Then alan,l1, so ged(a,2m)|l = ged(a,2m) = 1,
so a must be odd. Now, note that all elements of 2D 5, are even, since if
b € 2D, 5, then there exists a ¢ € Dj gy such that b = 2¢ (mod 2m) =
b = 2c+ 2mv = 2(c + mv) for some v € Z. Therefore, a ¢ 2D 9y, sO
D1,2m N 2D172m - @

3) Consider the map ¢ : Dy o, — 2D; 91, ¢(a) = 2a (mod 2m). We will
show that ¢ is a bijection.

(Ingection:) Suppose ¢(a) = ¢(b) (mod 2m) for some a,b € Dyay. By
the above, both a and b are odd. Then 2a = 2b (mod 2m) implies that
2(a —b) = 0 (mod 2m). Thus, a — b = 0 (mod 2m), in which case a =
b (mod 2m) and we are done, or a —b = m (mod 2m), in which case a and
b being odd means that m is even, a contradiction. Thus, ¢ is injective.

(Surjection:) By definition, if a € 2D o, then a = 2b (mod 2m) for
some b € Dy 5,,. Thus, ¢ is surjective.

Therefore, |D172m| = ‘2D172m‘. O

We are now ready to state our first "new” result.
Theorem 3.3. If m is odd, then 1 and 2 are 2m-friends.

Proof. Note that Iy, (1) = G2, (1) = Y. Dy 9pm. We will show that 2D, o, =

>~ Dy op; this, in view of Proposition 3.2, will prove the theorem’s claim.
To this end, recall that by Corollary 2.2, a € D, oy, if and only if 2m —a €

D1 om, 80 Dyom = {a1, ..., a5, 2m — ay,...,2m — a;} for some k € Z, where
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we arrange the elements so that 1 < ay, ..., ap < m. Thus, > Do, =
ap+ -+ ap+ 2m—ay) + -+ (2m — ax) = k(2m).
Furthermore, since arrangements have been made so that 1 < aq, ...,

ar < m, we have that 2 < 2a; < 2m, for all j = 1,...,k. Meanwhile,
2(2m — aj) = 4m — 2a; = 2m — 2a; (mod 2m), and 0 < 2m — 2a; < 2m.
Therefore, 2D1 9, = {2ay,...,2a;,2m — 2ay,...,2m — 2a;}, where each of

the 2k integers listed are distinct because |Dj 9| = |2D1 2, |. Therefore,

k k
Z 2D1’2m = Z 2aj + Z(2m — 2aj) = ]{7(2771) = Z DLQm.
j=1 j=1

Thus, > Doom = > (D12mU2D1 0) = > Diom~+2_2D12m =2 Diop,
since D1 o, and 2D o, are disjoint. Therefore, 1 and 2 are 2m-friends. [

Now that we have established the result that 1 and 2 are 2m-friends for
any odd m, we must build up some more theory before trying to tackle any
other cases. The following lemma is essential for constructing mD, ,, for any
m and n.

Lemma 3.4. Suppose a, b, and m > 1 are positive integers and ged(m,b) =
1. Then at least one of the integers a+ kb, 0 < k < m—1, is relatively prime
to m.

Proof. We will show that the congruence classes modulo m of the integers
a,a+b,...,a+ (m—1)b are distinct.

Suppose 0 < k < ¢ < m — 1 with a + kb = a + ¢b (mod m). Then
m|(qg— k)b = m|(q— k) since ged(m,b) =1. But 1 <g—k <m—1,s0 it
is impossible that m|(q — k).

Therefore, the congruence classes of the integers a + kb, 0 < k <m — 1,
are distinct. Since there are m of these congruence classes, it must be that
a+kb=1 (mod m) for some k € {0,...,m — 1}. Thus, gcd(a + kb,m) =
1. ]

In fact, the conclusion of the previous lemma can be sharpened to the
following: ¢(m) of the integers a + kb, 0 < k < m — 1, are relatively prime
to m, where ¢ is Euler’s totient function.

Proposition 3.5. Let m € Z, with 0 < m < n. If m|n, then

mD;, ={d € Z|0 < d < n and gcd(d,n) = m}.
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Proof. (C) Suppose d € mD; ,,. Then d = mj (mod n) for some j|,1. Thus,
d = mj+nv for some v € Z; but, m|m and m|n, so m|d. Thus, gcd(d,n) > m.
However, since j|,1, 1 = 5l (mod n) for some [ € Z, so m = mjl (mod n) =
dl (mod n), so d|,m, which implies that ged(d, n)|m and thus ged(d, n) < m.
Therefore, ged(d,n) = m.

(D) Suppose that n, d, and m are positive integers satisfying 0 < d < n
and m = ged(d,n). Let integers ¢ and t be defined by d = mc and n = mt.
Then ged(c,t) = 1.

We will show that d = mx (mod n) for some = € {1,...,n—1} satisfying
ged(xz,n) = 1.

Using the Unique Factorization Theorem, we can refactor n as n = MT,
in which M|m, t|T, and ged(M,T) = 1; also, every prime divisor of T" is a
prime divisor of ¢. Because ged(c,t) = 1, it follows that ged(c,T) = 1.

We will look for x in the arithmetic progression ¢+ k7T, 0 < k < M — 1.
Observe that for all such k, m(c+kT) = me+kmT = d+kmT = d (mod n),
because t|T" implies that n = mt|kmT. Therefore, it will suffice to show the
existence of k € {0,..., M — 1} such that ged(c+ kT,n) = 1.

Since ged(M,T) = 1, Lemma 3.4 allows us to conclude that ged(c +
kT, M) =1 for some k' € {0,..., M —1}. But since n = MT, it follows that
ged(c+ KT, n) = ged(c+ KT, T). But, any common divisor of 7" and ¢+ k'T
must divide ¢, so ged(c+ K'T,T) = ged(c, T) = 1. O

The following corollary is a generalization of parts (1) and (2) of Propo-
sition 3.2:

Corollary 3.6. Suppose k € Z with 0 < k < n, and let M be the set of all
positive integers m such that m|k and m|n. Then

1)
Dk,n: U le,n-
meM

2)

mD1, Nm'Dy,, =@ for allm,m’ € M,m # m'.

Proof. 1) (C€) Suppose a € Dg,. Then by Lemma 2.3, gcd(a,n)|k. Let
mg = gcd(a,n). Then a € m,D;, by Proposition 3.5, where m,|k and m,|n
implies that m, € M.

(D) Ifa € mD ,, for some m € Z with m|k and m|n, then a = mj (mod n)
for some j|,1 and k& = mp for some p € Z. Thus, jl =1 (mod n) for some
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l€Z,so

k=mp
=m(jl)p (mod n)
= a(lp) (mod n),
so al,k and thus a € Dy,,.
2) By way of contradiction, suppose there exists an a such that a € my D, ,

and a € myDs ,,, where m; # my. Then by Proposition 3.5, ged(a,n) = my
and gcd(a,n) = may, S0 My = Mma. O

Indeed, if we let k = 2 and n = 2m for an odd m € Z, then by Corollary
3.6 we get parts (1) and (2) of Proposition 3.2.

Example. Consider Zs:

D, 12 =41,5,7,11}
2D1712 - {2, 10}

3D112 = {3,9}
4Dy 15 = {4,8}
6D1712 = {6}

Indeed,

Dy12 ={1,5,7,11}

Ds1o ={1,2,5,7,10,11} = Dy 15U 2Dy 19

D310 =41,3,5,7,9,11} = D; 15U 3Dy 12

Dy1o =41,2,4,5,7,8,10,11} = Dy 15 U2D; 120 U4D; 15
D510 ={1,5,7,11} = Dy 1o

D12 =41,2,3,5,6,7,9,10,11} = D; 15U 2D; 15 U 3D 12 U6D1 15
D710 ={1,5,7,11} = Dy 15
Dg12=41,2,4,5,7,8,10,11} = Dy 15 U 2D 10 U4D1 15
Dy12 =41,3,5,7,9,11} = D; 15U 3D 12

Dip12 ={1,2,5,7,10,11} = Dy 12 U 2D 19

Di112 ={1,5,7,11} = Dy 19

Proposition 3.7. For any integer n > 2 with prime factorization n =

k1 ko
pl ...pr ,

_ 1, g .
L,(1)=) Dy, = S o= 1) e = 1)),
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Proof. Consider Euler’s totient function ¢(n), the number of positive integers
k < n such that k is relatively prime to n. Then, by definition, |D; ,| = ¢(n).
It is well-known that
p(n) =piHp — 1) pHp, — 1),

Next, note that by Corollary 2.2, the values of D, come in pairs, each
summing to n. Thus, the average of the values of Dy, is equal to 5. There-
fore, to get > Dy, we take the average and multiply it with the cardinality
to get that

]_n(1> = Z Dl,n

=5 1D1

= g ~p(n)

- M PP =) P (e — 1))
= %pf'“_l(pl —1)--p pe = 1),

Examples.

1
(1) =1+5=6=3(2-1-3-2).

—_

T0(1) =14+34+74+9=20==(2-1-5-4).

[\]

_ 1
Ib(1)=1+5+7+11=24= §(23-1~3~2).
- 1

132(1)25(29-1):256.

Note in the case that the power of each prime in the prime factorization
of nis1 (ie, k;=1forall 1 <i<r), I,(1) = 3(pi(p1 = 1) -+ -p,(p, — 1)) =
5((pr—=1) -+ (pr — 1))

Lemma 3.8. If p is prime and j, k € Z with 0 < j < k, then

P/ Dy e = p" Ut (p —1).
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Proof. By Proposition 3.5, d € p’D; x for some 0 < j < k if and only if
0 < d < p* and ged(d, p*) = p’. There are exactly p*=7=1(p — 1) such d < p*
satisfying this requirement, which completes the proof. O

Example. Consider Zo;:
D97 ={1,2,4,5,7,8,10,11,13, 14,16, 17,19, 20, 22, 23, 25,26 }
3D 97 = {3,6,12,15,21,24}
9D, o7 = {9, 18}.
Indeed,
|Dio7| =18 =3*(3—1)
13D197] =6 =3'(3-1)
19D1 27 =2 =33 - 1).
Corollary 3.9. If p is prime and m, k € Z* with 0 < m < k, then

]' —(m m
Zmeka _ §p2k ( +1)(p +1 _ 1).

Proof. Applying Corollary 3.6 and Lemma 3.8,

m

> Dy =2 (UpiDka)

1=0

0

Lemma 3.10. Let a,b,n € Z* with b < a < n and bln. If a € bD,,,, then
Da,n - Db,n-
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Proof. Suppose a = be (mod n) for some ¢ € Dy, where c¢d = 1 (mod n)
for some d € Z.
(C) Suppose m € D, ,. Then mk = a (mod n) for some k € Z. Thus, b
= bed (mod n) = ad (mod n) = mkd (mod n), so m|,b, and thus m € Dy,,.
(D) Suppose m € Dy,,. Then m|,b, which implies that m{ = b (mod n)
for some [ € Z, so bc = mlc (mod n) = a = bc = mlc (mod n), and thus
m|,a. O

We are now ready to characterize friendliness in rings Z, of cardinality
equal to a prime power.

Theorem 3.11. If p is prime and k € Z*, then every a € Z,. \ {0} is
pk-solitary.

Proof. Let a € p’ Dy, for some 0 < j < k; then by Lemma 3.10, D, . =

D,; x. We will show that a has no pPF-friends.
Consider b with 0 < b < p* and b # a.
Suppose b € p’ Dy .. In this case, by Lemma 3.10 we have that Dy« =

D D, . Thus,

pi,pk =

RN

This takes care of b € p/ D .
Now, suppose b € p'D, ,x, where ¢ # j. Then by Lemma 3.10, Dy« =

D so by Corollary 3.9,

pt,pk>

2k—(i41) (itl _ |
- b p
Li(b) = Q(b )

Thus, if Ix(a) = Tx(b), then

p2k—(j+1)(pj+1 _ 1) B p2k—(i+1)(pi+1 _ 1)

2a 2b ’
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which implies that a(1 —p~C*V) = b(1 — p~U*t). But, a € p/ Dy e and b €
p'Dy ., so by Proposition 3.5 we have that gcd(a pk) = p’ and ged(b, p*) = p'.
Thus, a = a'p’ for some integer @’ with 0 < @’ < p*~7 and ptd’, and b = b'p’
for some integer b’ with 0 < &' < p*~% and p{ ¥’

Therefore,

a(l —p= D) =b(1 - p~U*Y)
— ap]-i-l( z—i—l 1) +1(p]+1 )
— CL( i+j+2 1) b( i+j+2 z+1)
) =

1 t+2542 2]—1—1 /(204742 2i+1
— d'(p b'(p —p)

— CLp (pz—i-l o 1) — b/p2l(p]+1 o 1)

b(1
bp

Without loss of generality, assume ¢ < j. Then

dp?UV(ptt = 1) =¥ (" - 1),

N ow, p divides the left side but not the right side, a contradlctlon Therefore,
Li(a) # Li(b) for all 0 < b < p* with a # b, so a is pF-solitary.
]

The natural question to ask next is does the converse of the statement
hold? That is, do n-friends necessarily exist when n is not a prime power? In
addition, is there any connection between the notion of n-friends and friends
in the regular integers?
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