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Abstract—Write-ahead log and data encryption technologies
are employed to ensure both crash consistency and data security
for persistent memory (PM). The encryption/decryption of both
data and log requests increase the memory request latency,
degrading the system performance. To tackle this issue, this
paper proposes a novel log-aware memory encryption scheme to
reduce encryption/decryption operations, without compromising
data security. Specifically, redo log blocks are stored as ciphertext
for their corresponding data blocks to avoid encryption/decryption
of log data blocks when in-place update operations are applied to
them. We further design a compact log record layout with fewer
encryption metadata in log records to reduce logging traffic. Our
simulation results show that the transaction throughput of the
proposed design outperforms the baseline design and the state-
of-the-art design by 87.3% and 55.3% on average, respectively.

Index Terms—Persistent Memory, Crash Consistency, Com-
puter Architecture

1. INTRODUCTION

Persistent memory (PM)’s non-volatility, large capacity, fast
speed, and byte-addressability make it become a promising
candidate to reduce the gap between main memory and tra-
ditional external storage. When PM is widely deployed, data
crash consistency and data security should be guaranteed. Data
crash consistency means that all data should be recovered to a
consistent state upon a system crash. The non-volatility of PM
enables attackers to access data stored in it if PM is stolen. To
ensure data security, an encryption engine is deployed in the
commodity PM controller [1]. However, it is challenging to
simultaneously ensure data crash consistency and data security
for PM without significant performance overhead.

Crash consistency requires that all data modifications within
a transaction are persisted to PM always in a nothing-or-
all manner, even upon a system crash. Traditional systems
adopt write-ahead logging, such as undo logging, redo logging,
or a combination of both, to guarantee crash consistency. A
transaction update is applied to in-place data only after its log of
modification is stored in PM. The ordering constraint between
logging and in-place update makes the logging method suffer
from inferior performance because their execution is on the
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critical path. In addition, software logging methods not only
put more burden on programmers but also potentially introduce
bugs. To address those limitations, hardware-assisted logging
methods [2]-[5] have been proposed to move the logging out of
the critical path and mitigate programming burden. Since redo
logging is superior to undo logging [5], we consider hardware-
assisted redo logging in this paper.

Since PM is non-volatile, attackers can easily access data
stored in PM if a powered-off PM device is stolen. Counter
mode encryption encrypts data stored in PM to make data
secure and hides data decryption latency [6]. Writing encrypted
data blocks to PM needs update corresponding counters. The
maintenance of crash consistency [6] requires that a modified
data block and its counter are atomically persisted to PM.
Otherwise, an inconsistent counter fails to decrypt the encrypted
data.

It is challenging to achieve crash consistency and data secu-
rity simultaneously, without suffering significant performance
loss. Firstly, counter mode encryption can effectively hide de-
cryption latency but still exposes the encryption latency to writ-
ing data blocks. In the conventional system, write operations
typically are not on the critical path, and the exposed encryption
latency does not hurt system performance much. However, the
redo logging causes the writing log entry operations to be on
the critical path. This is because log operations for an active
transaction must be completed before proceeding to the next
transaction. Secondly, maintaining counter update atomicity
introduces updated counters to log operations, exacerbating the
slow PM bandwidth issue.

To address the issues above, we propose the efficient
hardware-assisted redo logging design for encrypted PM. To
mitigate the encryption latency impact, we design a novel log-
aware memory encryption method that removes a significant
portion of data encryption and decryption operations without
compromising data security. Specifically, we propose to en-
crypt a logged data block in a log entry with the security
metadata for its home address, rather than with the security
metadata for the logged data block address. In this way, we
can avoid a decryption operation and an encryption operation
when executing an in-place update for a log entry. The reduced
operations on an encryption engine can significantly decrease



data encryption latency, improving system performance. To
minimize PM write operations caused by counters in log
entries, we propose a new log record layout that collates partial
counters and address metadata into a log record’s header. The
proposed method avoids storing a full counter block, which is
as large as the data payload in log entries, greatly decreasing
the write operations for log entries. However, the introduced
log record layout increases the counter cache miss latency.
To address the aforementioned latency issue, we introduce
the counter buffer and the counter-mapping table to reduce
counter cache miss latency, which is critical for PM read and
write operations, to improve system performance further. We
evaluate our designs and the simulation results demonstrate
that our proposed designs can collectively improve transaction
throughput by 87.3% and 55.3% over the baseline system and
the state-of-the-art design respectively.
Overall, this paper makes the following contributions:

« It proposes the log-aware memory encryption scheme that
reduces a significant portion of encryption and decryption
operations and minimizes data encryption latency, which
is exposed to the critical path in the transaction system
with log operations.

o It proposes the compact log record to decrease a large
portion of write operations for counter logging, efficiently
using PM write bandwidth.

o It reduces the counter cache miss latency by introducing
the counter buffer and the counter-mapping table.

We organize the rest of the paper as follows. We discuss PM
crash consistency and memory encryption in Section II. We
present our design and evaluation in Section III and IV. We
summarize related work in Section V and conclude this paper
in Section VI

II. BACKGROUND

A. PM Crash Consistency

Crash consistency ensures that data on PM can be recovered
into a consistent state after the system crash or power loss. Prior
studies [2], [3], [5], [7] have proposed multiple logging schemes
to achieve crash consistency. To support logging operations, PM
is divided into the home region and the log region. The home
region is visible to programs, the log region is only visible to
the memory controller in the hardware-assisted logging system,
which generates and issues log requests. While a data block’s
address in the home region is referred to as the home address,
the address for a logged data block in the log region is referred
to as the logged data block address. These logging schemes fall
into two categories: undo logging and redo logging, according
to log content. The undo log entries store the original data
contents before modified data is written to the home region,
redo entries store modified data contents before modified data
is updated to the home region. Undo logging scheme can start
the next transaction after data modifications are applied to their
home locations. Redo logging scheme can proceed to the next
transaction only after the current transaction’s log entries are
written to PM, which is referred to as committing a transaction.
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Fig. 1. Encryption and Decryption in Counter Mode

As a result, speeding up the logging operations can improve the
transaction throughput under the redo logging scheme.

To optimize PM write bandwidth, Ref. [2] proposes a log
organization scheme where seven 64B logged data blocks share
a 64B header block. The header contains home addresses for
these seven logged data blocks. Seven logged data blocks
and their header are referred to as a log record. This log
organization realizes the high write efficiency since its payload
ratio is 7/8.

B. Data Block Encryption

Due to PM’s non-volatility, data is still accessible in
powered-off PM. Attackers who steal the powered-off PM
device can stream out data from it, causing security issues.
Data blocks in cache hierarchy are plaintext since they are
in the security domain. To ensure the off-chip data security,
data must be encrypted and the corresponding ciphertext is
persisted to PM. Fig. 1 illustrates how the counter mode
encryption/decryption works. Before encrypting a data block,
an encryption engine generates a one-time-pad (OTP) with the
key, the data block address, and its counter. The corresponding
ciphertext is generated by XORing the data block with the OTP.
To decrypt a ciphertext, the encryption engine produces the
OTP with the key, the data block address, and its counter, and
then recovers the plaintext by XORing the ciphertext with the
OTP. Every update to a data block will increase its counter.
40ns data decryption latency [6] increases memory read latency,
significantly degrading performance. Therefore, the counter
cache is proposed to reduce data decryption latency [8]. When a
counter hits the counter cache, the counter mode encryption can
overlap the computation of OTP with the reading encrypted data
from PM, reducing memory read latency as shown in Fig. 1.
Note that Intel’s SGX [9] only encrypts the volatile memory
using the counter mode encryption, without ensuring crash
consistency for PM. However, this paper targets the hardware-
assisted secure PM to guarantee crash consistency.

A data block can be written to secure PM only after being
encrypted. Accordingly, the counter mode encryption does not
hide the data encryption latency for memory write operations,
which is not an issue for conventional workloads whose write
operations are off the critical path. However, write latency is
on the critical path for workloads with log operations. For
example, the redo logging requires that log write operations
for an active transaction are done before starting the next
transaction. Therefore, it is critical to reduce the memory
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encryption latency to improve system performance. However,
it is challenging to deploy multiple encryption engines in a
memory controller due to encryption engine circuit overhead.
In this work, we propose a novel log-aware memory encryption
scheme to minimize operations on the encryption engine and
decrease encryption latency.

Persisting an encrypted data block requires its counter also to
be persisted, so that the data can be correctly decrypted with the
consistent counter after a system crash. To support the counter
update atomicity [6], a log entry contains an encrypted data
block, its home address, and its corresponding counter block.
A data block’s address and its counter together are referred
to as its security metadata. Since the counter cache manages
the counters in the granularity of 64B [6], the counter block
component in a log entry is also 64B. This log entry scheme
realizes the low payload ratio, 64/(64 + 8 + 64), where a
data block, its address, and its counter block are 64B, 8B, and
64B, respectively. The low payload ratio not only wastes PM
write bandwidth but also hurts the PM lifespan. In this paper,
we propose an efficient log record layout to reduce counters’
logging overhead and increase its payload ratio.

III. DESIGN
A. Design Overview

We present our system architecture in Fig. 2. The secure
memory system encrypts data blocks stored in the persistent
memory with the counter mode encryption, leaving the plaintext
data blocks in the cache. A 64B data block is encrypted with
its dedicated 8B counter, which is buffered in the counter cache
inside the memory controller to speed up data decryption. Each
counter cache entry is 64B and stores eight counters for eight
adjacent 64B data blocks, same as [6].

To support crash consistency, we use the transaction mech-
anism that allows programmers to use tx_begin and tx_end
to indicate the scope of a transaction which requires crash
consistency. The memory controller generates redo log entries
for modifications of data blocks and their counters occurring in
a transaction, and these log entries are encrypted before being
written to the log region in PM. To mitigate the encryption
overhead, we present our proposed log-aware memory encryp-
tion scheme in Sec. III-B. To reduce the security metadata
overhead, we describe the compact log record in Sec. III-C.
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Fig. 3. Compare LAME with Counter Mode Encryption Scheme

After log entries are written to the log region, the mapping table
is updated to indicate that the latest version of the modified
blocks is in the log region and redirects read requests of
these blocks to the log region. Upon a counter cache miss,
the memory controller may need to read multiple counters in
the log region, introducing performance overhead. To address
this issue, we present the counter-mapping table and counter
buffer in Sec. III-D. The memory controller asynchronously
performs in-place update in background. Specifically, it applies
the committed log entries to the home region, reclaims the log
memory space, and updates the mapping table and the counter-
mapping table, which is detailed in Sec. III-E.

B. Log-Aware Memory Encryption

In the secure redo logging, a transaction can proceed to the
next transaction only after the on-going transaction’s log entries
are all encrypted and written to PM. Counter mode encryption
fails to hide encryption latency for writing log entries and
exposes it to the critical path of transaction execution, leading
to higher transaction committing latency and lower transaction
throughput. In addition, encryption and decryption log entries
increase pressure on the counter cache, causing higher counter
access latency. However, it is challenging to deploy multiple
encryption engines and larger capacity counter cache in the
memory controller, due to encryption engine and counter cache
area overhead.

To reduce encryption latency, we propose the Log-Aware
Memory Encryption (LAME) scheme that reduces workloads
for the encryption engine and the counter cache, without
compromising data security and crash consistency. The pro-
posed LAME is motivated by the following observation: the
conventional counter mode memory encryption scheme en-
crypts/decrypts all data stored in the physical memory space
in the same manner, without considering the contents of the
plaintext. Assuming a modified data block content is M, and
its home address is H A. Before writing to H A, the content
M is encrypted and persisted to the logged data block address
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LA as the block H A’s log entry. Fig. 3 shows that the counter
mode encryption encrypts the block in HA and the block in
LA with different addresses and counters, and produces dif-
ferent ciphertexts; even their plaintexts are identical. Memory
encryption operations could be avoided for two blocks with
identical plaintext. The main idea of the proposed LAME is
that a logged data block is encrypted with data block’s home
address, the counter of the home address, and the modified
data block so that we can avoid a decryption operation and an
encryption operation when performing the in-place update for
this log entry. Fig. 3 illustrates how LAME and the counter
mode encryption encrypt a logged data block differently. The
conventional counter mode encryption uses the modified data
content, M, the logged data block address, L A, and the counter
of LA, to generate the Ciphertext0 in LA for the logged data
block. However, LAME encrypts the modified data, M, with
the modified data block’s home address, H A, and the counter
of HA to generate C'iphertextl for the block in LA shown in
Fig. 3. Doing so allows LAME to copy the content of logged
data block, Ciphertextl, from the address LA in the log region
to the address H A in the home region when performing an in-
place update. Therefore, LAME avoids encryption operations
required by the conventional counter cache mode. Furthermore,
LAME can eliminate a decryption operation to obtain the
plaintext of log data content M in the in-place update process.
More details of LAME’s in-place update are presented later.
LAME does not require any changes to the encryption engine
because it computes a logged data block’s OTP with the same
encryption engine as counter mode but with different security
metadata.

LAME has two following benefits. Firstly, LAME can elim-
inate a decryption operation and an encryption operation when
performing an in-place update for a log entry, to mitigate
encryption/decryption latency. Fig. 4 shows the difference
between the conventional in-place update and the proposed
in-place update. Since the conventional log encryption treats
writing logged data block as normal memory write operation,
the logged data block’s address and its counter are used to
encrypt the logged data block itself. When performing an in-
place update, the conventional scheme decrypts a logged data
block to recover its plaintext with its address and its counter.
Then, the conventional scheme encrypts this plaintext data
block with its home address and the home address counter
before writing the encrypted data block to the home address.
Therefore, the conventional in-place update operation involves
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a decryption operation and an encryption operation. However,
without using the encryption engine, LAME can directly copy
the encrypted logged data block to its home address when
performing an in-place update. This is because LAME’s logged
data block is encrypted with its home address and home address
counter so that future memory accesses to the updated block
can be correctly decrypted with the request address and the
counter. Secondly, LAME can reduce the working set for the
counter cache, to further reduce encryption/decryption latency.
LAME’s log entries’ generation and in-place update do not
access counters for the log region, leading to a higher hit rate
for a given counter cache. Note that LAME’s primary goal
is not to improve the in-place update operations but to reduce
encryption/decryption operations. These reduced operations can
decrease the counter access latency and the queuing time for
the encryption engine, minimizing the encryption latency. The
decreased memory encryption latency can speed up the encrypt-
ing log entries on the critical path of transaction execution.
The faster log entry encryption translates to shorter transaction
commit latency, improving transaction throughput.

LAME and its in-place update scheme can ensure data
security. LAME stores encrypted modified data blocks in the
home region with the counter mode. LAME encrypts a logged
data block by using the same procedure as counter mode but
with different security metadata, which are its home address
and counter of home address. If an attacker has the counter and
the home address for a ciphertext in a log entry, the ciphertext
still can not be decrypted, due to lack of the key, which can
not be leaked in the counter mode encryption. A ciphertext
stored in the log region is as secure as a ciphertext stored in
the home region. When performing an in-place update, LAME
just copies an encrypted logged data block to its home address,
without causing security issues.

C. Compact Log Record

Counter mode encryption requires recording updated data
block counters, making them part of log entries’ payload. In
conventional log record layout, when a modified 64B data block
A generates a log entry, the 64B counter cache entry where the
A’s counter resides is also written to the log entry. This is
because the access granularity for a counter in PM is 64B [6].
Therefore, the counter payload is as large as the updated data



payload in the log entry shown in Fig. 5. The large size of
log entry consumes PM write bandwidth, degrading system
performance.

To reduce the size of the counter payload in log entries, we
devise a compact log record and its in-place update scheme.
This design is based on the following two observations. First,
each counter update only increases its value by one, and a full
64B counter cacheline is not necessarily stored in a log entry.
Second, the address component in a log entry unnecessarily has
63 bits, because PM’s capacity is much smaller than 2B and a
logged data block is 64B. Therefore, we store both data blocks’
home addresses and their counters’ less significant bits in a 64B
log record header, as shown in Fig. 5. A log header contains
eight metadata items and each item consists of a 45 bits address
and an 18 bits counter. The 45 bits address is sufficiently large
to cover 2% cachelines, which is 2PB, and the 18 bits counter
is the 18 less significant bits of a data block’s counter. The
remained 8 bits in the header are used to indicate the valid
items in a record. In this way, we can significantly reduce the
counter logging overhead.

Before performing an in-place update for a counter, we need
to read the old counter block stored in its home address, since
the log record header only has the less significant bits for
this counter. After reading the old counter block, we replace
the old counter’s less significant bits with the corresponding
partial counter stored in the log record header and then persist
the updated 64B counter block to its home address. In this
way, we can correctly update counters with negligible overhead.
This optimization introduces an extra overhead to read an old
counter block. However, this overhead is much lower than
the performance gain brought by the reduction of log write
traffic. This is because PM write operations are slower than
read operations.

Since a log record header only has less significant bits of
a counter, the overflow of the partial counter will incorrectly
update the counter in the home address. To avoid this issue,
we store the full 64B counter block to the data block in the
record. As shown in Fig. 5, each log record consists of a header
and eight logged data blocks. A metadata item in the header
is associated with a logged data block in the log record. Upon
partial counter overflow for the i-th metadata item, we store its
home address and the encrypted data block in the i-th metadata
item and ¢-th logged data block respectively, and set this item’s
partial counter to be zeros, to indicate the overflow. In addition,
its full counter is stored in the (i + 1)-th logged data block,
and hence the header’s (i + 1)-th valid bit is set to be invalid.
If a partial counter overflow occurs in the 8-th metadata item,
this log entry is stored in the next log record, by leaving 8-th
item unused.

D. Counter Buffer and Counter-Mapping Table

The compact log record dramatically reduces the log entry
size and minimizes the log write bandwidth consumption.
However, it increases the counter cache miss latency. To handle
the counter cache miss, we need to load the requested counter
cacheline which has eight counters for eight data blocks. It
is possible that some of these eight counters’ latest partial

versions are stored in log entries and these counters in the
home addresses have not been updated. In this scenario, we
need to read these latest partial counters scattered in multiple
log entries and the counter cacheline in home address to get the
latest counter cacheline. In the worst case, eight log entries are
read since the missed counter cacheline contains eight counters.
These extra accesses to log entries increase counter cache miss
latency.

To address the problem discussed above, we introduce the
counter buffer and the counter-mapping table. When a dirty
counter cacheline is evicted from the counter cache, it is written
to the counter buffer in the PM. Since a dirty counter cacheline
could have multiple speculatively modified counters, it can not
be written to the home address. Otherwise, these speculatively
modified counters can not correctly decrypt uncommitted data
blocks stored in the home region after the system recovers
from a power loss. The counter-mapping table, stored in the
memory controller, maintains the mapping from a counter
block home address and the counter block address stored in
the counter buffer. To serve a counter request, the memory
controller consults the counter-mapping table and the counter
cache simultaneously. Upon hitting the counter-mapping table,
a speculative counter can be served by the table. In the case of
hitting the counter cache, a speculative counter can be accessed
from the counter cache. The speculative counter cannot hit
both the mapping table and cache at the same time. When
a speculative counter misses both the mapping table and the
cache, the memory controller fetches the counter block from
its home address. When a dirty counter cacheline is evicted
from the counter cache and is not in the counter buffer, its
mapping entry is inserted into the counter-mapping table after
the cacheline is written to the counter buffer. After in-place
updates for log entries are done, their corresponding counter-
mapping entries are freed. It is unnecessary to ensure the crash
consistency for both the counter-mapping table and the counter
cache because they are introduced to reduce the counter read
latency, and the corresponding counters can be accessed from
log entries during the recovery process.

E. Put It All Together

Write Data: Upon a transaction write request, the memory
controller allocates the log memory space to log this write
request and a header block in case of no spare header entry to
use. When the request’s home address counter is available in the
counter cache, the memory controller increases the counter, and
the proposed LAME encrypts the write request with the updated
counter and its home address before writing it to the log region.
In addition, the proposed compact log record scheme only
stores the counter’s less significant bits and home address to the
header. When the header is full, it is flushed to PM. After the
encrypted write request written to PM, the memory controller
updates the mapping table.

Read Data: To serve a read request, the memory controller
needs to retrieve the latest encrypted data block and its counter
by looking up the mapping table and the counter-mapping table.
The memory controller consults the mapping table with the
request home address and reads the log entry indicated by the



TABLE 1
SYSTEM PARAMETERS

Cores 4 out-of-order cores @2GHz,192 ROB entries, 48 STQ entries

L1 I/D Cache private, 32KB, 2 cycles, 8 way
L2D Cache private, 256KB, 8 cycles, 8 way
LLC shared, 2MB per core, 64B cacheline, 25 cycles, 16 way

Memory Controller | 32 write queue entries, 64 read queue entries
512KB counter cache, 512KB mapping table

512KB counter-mapping table

Persistent Memory 2 ranks, 16 banks, 16GB

300(48) ns write(read) [6], [10]

En/Decryption 40ns latency [6], [8], 16-stages pipe AES engine [8]

mapping table entry in case of matching the mapping table.
Otherwise, the encrypted data block is read from the home
region.

To access the counter, the memory controller looks up the
counter-mapping table and the counter cache at the same time.
Since a counter is exclusively stored in the counter cache and
the counter buffer, the requested counter is read from where
the counter resides. When hitting the counter-mapping table,
the counter cacheline is also inserted to the counter cache,
followed by being removed from the counter-mapping table.
If both the counter cache and counter-mapping table miss, the
counter is read from the home address and then inserted into
the counter cache. When the insertion of the counter cacheline
evicts a dirty counter cacheline from the counter cache, the
victim counter cacheline is inserted into the counter buffer and
its entry is inserted to the counter-mapping table. When the
counter is available, the memory controller can decrypt the
encrypted data before returning its plaintext to the CPU cache.

In-Place Update: The in-place update involves updating
both data blocks and their counters in the home region. To
update data blocks, the memory controller copies the logged
data blocks to the home region specified by the corresponding
headers for these committed transactions, then the related
mapping entries are removed from the mapping table. To
update counters, the memory controller reads the full counters
from their home addresses and merges them with the partial
counters stored in the headers. Since the partial counters are
the latest less significant bits of updated counters, the merged
counters represent the full and latest counters. After the full
latest counters are persisted to PM, the memory controller may
update the counter cache, the counter-mapping table, and the
counter buffer. If these counters hit the counter cache and they
have the same values as the counters in the counter cache,
these counter cache entries are changed from dirty to clean
because these modified counters have been written to PM. If
these counters have the same values stored in the counter buffer,
their corresponding counter-mapping entries are removed. After
in-place updates are done, the memory controller reclaims log
records memory space.

IV. EVALUATION

A. Experiment Setup

We implement the proposed designs in the simulator Champ-
Sim [11] with DRAMSim2 [12]. ChampSim models the out-
of-order execution CPU including detailed memory access
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behaviors. To accurately model PM accesses, our simulator
incorporates the cycle-accurate DRAMSim2 to ChampSim, and
supports tx_begin and tx_end to demarcate a transaction bound-
ary. We list the simulator’s configuration of CPU and memory
system in Table I. The workloads include commonly used
PM data structures, which are RBtree, Hash, BPlustree,
Btree, and Skiplist. One transaction in the workload inserts
or updates a key-value pair. The keys of these workloads follow
the Zipfian distribution, similar to SSP [13].
We evaluated the following designs.

o Secure Redo Logging (SRL): We implement hardware-
assisted redo logging with conventional counter mode
encryption. After a modified data block is encrypted with
the logged data block address and the counter of logged
data block address, the corresponding ciphertext is stored
to the log region. Before performing in-place update for
a log entry, its ciphertext is decrypted with the log entry
information, and the resultant plaintext is encrypted with
the home address and the counter of home address. A log
entry has a 64B counter block.

o Log-Aware Memory Encryption (LAME): We implement
our log-aware memory encryption scheme for hardware-
assisted redo logging. A log entry has a 64B counter block.
It has the counter buffer and the counter-mapping table.

e Compact LAME (CLAME): We implement the log record
optimization over LAME with the counter buffer and the
counter-mapping table.

o EASY-PM: We implement EASY-PM [14], which is a
state-of-the-art secure undo logging for PM. For fair com-
parisons, a header is not encrypted in EASY-PM in that
headers stored as plaintext do not leak the data content.

B. Log Entry Encryption Latency and Write Traffic

Fig. 6 shows log entry encryption latency reductions for
CLAME and LAME, compared with SRL. The log entry
encryption latency includes the counter access latency and the
encryption engine access latency. CLAME and LAME can
reduce the encryption latency by 95.3% and 92.6% on average,
compared with SRL. Unlike the SRL, CLAME and LAME
do not access counters of logged data block addresses and
reduce the counter cache working set. The counters of these
logged data block addresses have poor temporal locality, and
the removal of accesses to these counters can increase the
counter cache hit rate, reducing the counter access latency.
CLAME and LAME can eliminate memory encryption and
decryption operations for their in-place update operations and
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significantly reduce pressure on the encryption engine, leading
to the lower queuing time. In addition, CLAME achieves
shorter encryption latency due to the compact log record layout,
which can efficiently reduce PM write traffic shown in Fig. 7.

Fig. 7 shows that CLAME can reduce write traffic by 37.9%
on average, compared with LAME. This is because CLAME
uses the spare bits in log headers to store the counter updates
and dramatically reduces log record size, resulting in less log
writing traffic. Therefore CLAME reduces memory write traffic
over LAME.

C. Transaction Committing Latency Reduction

Fig. 8 shows CLAME, LAME, and EASY-PM can reduce
the transaction committing latency by 84.5%, 76.9%, and
54.6% on average, compared with SRL. The redo logging can
commit a transaction only after its log entries are written. Since
writing these log entries accesses the encryption engine, a larger
counter cache working set and more encryption and decryption
operations lead to long encryption latency for writing these log
entries. Since CLAME and LAME successfully reduce counter
cache working set and workloads on the encryption engine,
the encryption latency is significantly reduced, as shown in
Fig. 6. The shorter encryption latency can speed up log write
operations, leading to shorter transaction committing latency.
However, EASY-PM, which is based on undo logging, has
more synchronizing write operations than redo logging. Before
committing a transaction, EASY-PM writes its log entries and
performs in-place updates for its log entries. The extra write
operations in the committing stage are one of the reasons
for EASY-PM’s longer committing latency. More importantly,
EASY-PM fails to reduce encryption operations compared with
CLAME and LAME; therefore EASY-PM takes a longer time
to finish these write operations during committing. It is noticed
that EASY-PM commits faster than SRL. This is because
SRL’s in-place updating encryption operations executed in
the background compete with logging encryption operations
occurred in a transaction’s committing stage, while EASY-PM’s
undo logging’s committing operations are not interfered with
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background updating operation. Furthermore, SRL uses extra
logged data block counters to encrypt log entries, which has
larger counter cache working set than EASY-PM.

D. Transaction Throughput Improvement

Fig. 9 shows CLAME, LAME, and EASY-PM can improve
transaction throughput by 87.3%, 71.5%, and 20.8% over SRL
on average. Compared with LAME and EASY-PM, CLAME
can improve transaction throughput by 9.2% and 55.3% on
average, respectively. LAME can eliminate encryption and
decryption operations during in-place update and avoid access
to counters for the log region. CLAME’s compact log record
layout reduces the log write traffic, to improve throughput
further.

V. RELATED WORK

Crash Consistency. The adoptions of software logging to
legacy systems not only require software modifications but
also are prone to introduce bugs, increasing programmers’
burden. Additionally, software logging introduces performance
overhead caused by synchronizations between logging and
updating. Research efforts on hardware logging approaches
seek to address limitations of software logging [2], [3], [5],
[7], [15]-[19]. ATOM [2] proposes a hardware undo logging
design that moves the logging off the critical path and reduces
the undo log metadata overhead. To speed up in-place update
for redo logging, ReDU [5] proposes the hardware redo-logging
which stores transaction updates in a large DRAM-cache,
and asynchronously flushes them from DRAM-cache to PM,
without reading from the log in the slow PM. Ref. [16] pro-
poses a hardware undo+redo logging method, that can leverage
existing caching policies to relax memory data persistent order
constraints. HOOP [17] introduces fine-granularity logging,
efficient address remapping, and the merging in-place update
operations across transactions, to improve redo logging system
performance. MorLog [15] proposes a hardware logging design
that avoids unnecessary data logging, and also dynamically
selects log encoding scheme to reduce write traffic.

Secure PM. Due to its non-volatility, PM devices are
vulnerable to attacks and PM encryption is necessary. After
identifying the counter atomicity overhead for the counter mode
encryption, Ref. [6] proposes the selective counter atomicity
to reduce the overhead, which applies counter atomicity to
memory updates keeping data recoverability. DeWrite [20]
applies memory deduplication to reduce PM write traffic, and



also applies encryption operations for the secure PM. Super-
Mem [21] leverages a write-through counter cache to persist
data and its counter atomically, and proposes a counter write
coalescing scheme and cross-bank counter storage scheme to
reduce the counter write overhead. Recently, there are works
focus on PM coupled with memory encryption and integrity
verification [10], [22]-[26]. Osiris [22] re-purposes ECC to
sanity-check counter validity and avoids premature counter
evictions from the counter cache to decrease PM write traffic.
STAR [26] persists the modifications of the integrity tree parent
nodes in their child nodes to efficiently recover dirty metadata,
and it also conducts a multi-layer index to speed up recovery
process. Janus [10] proposes parallelizing and pre-executing
memory encryption, memory verification, and others, to im-
prove PM system performance. Triad-NVM [23] discusses the
security metadata persisting and studies the efficient recovery of
the memory integrity tree. EASY-PM [14] is the most related to
our work. However, our proposed methods remove a significant
portion of memory encryption/decryption operations and reduce
logging write traffic, outperforming EASY-PM.

VI. CONCLUSION

Achieving both memory encryption and crash consistency
is required for a persistent memory system. The conventional
memory encryption scheme fails to hide memory encryption la-
tency for a memory write operation and this encryption latency
is on the critical path for log entry write operations, which is
required for crash consistency, degrading system performance.
We propose a novel Log-Aware Memory Encryption (LAME)
scheme to reduce encryption/decryption operations, without
compromising data security, to tackle this issue. Specifically,
LAME encrypts the updated data block with its security meta-
data and stores the ciphertext in the log entry, avoiding en-
cryption/decryption operations of log data blocks in the process
of in-place updating log entries. Furthermore, to mitigate the
persistent overhead of encryption metadata in log records, we
design a novel compact log record layout for logging encryption
metadata efficiently. Simulation results show that our proposed
designs boost the transaction throughput by 55.3% on average,
over the state-of-the-art design.
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