Accelerate Hardware Logging for Efficient Crash
Consistency in Persistent Memory

Zhiyuan Lu*, Jianhui Yue*, Yifu Deng*, Yifeng Zhu
*Computer Science, Michigan Technological University, Houghton, Michigan, USA
TElectrical & Computer Engineering, University of Maine, Orono, Maine, USA
{zhlu,jyue, yifud} @mtu.edu, yifeng.zhu@maine.edu

Abstract—While logging has been adopted in persistent memory
(PM) to support crash consistency, logging incurs severe perfor-
mance overhead. This paper discovers two common factors that
contribute to the inefficiency of logging: (1) load imbalance among
memory banks, and (2) constraints of intra-record ordering. Over-
loaded memory banks may significantly prolong the waiting time
of log requests targeting these banks. To address this issue,
we propose a novel log entry allocation scheme (LALEA) that
reshapes the traffic distribution over PM banks. In addition,
the intra-record ordering between a header and its log entries
decreases the degree of parallelism in log operations. We design a
log metadata buffering scheme (BLOM) that eliminates the intra-
record ordering constraints. These two proposed log optimizations
are general and can be applied to many existing designs. We
evaluate our designs using both micro-benchmarks and real
PM applications. Our experimental results show that LALEA
and BLOM can achieve 54.04% and 17.16% higher transaction
throughput on average, compared to two state-of-the-art designs,
respectively.

Index Terms—Persistent Memory, Crash Consistency, Logging,
ADR

I. INTRODUCTION

Persistent memory (PM) successfully bridges the gap be-
tween memory and storage with large capacity, fast speed,
non-volatility, and byte-address-ability. However, one important
challenge in adopting PM into real systems is the efficiency
of crash consistency, which is to guarantee the atomicity of
transaction updates in the event of system crash or power loss.

Crash consistency requires that all updates within a transac-
tion are always committed to PM in a nothing-or-all manner,
even upon a system crash. Traditional systems adopt undo
logging, redo logging, or a combination of both to guarantee
crash consistency. With logging, a transaction update cannot
be applied to in-place data until the log of its modifications
has been stored in PM. However, logging methods often suffer
from inferior performance due to the order constraints between
logging and in-place update, which places the execution of
logging in the I/O critical path. Memory barriers are often
introduced to ensure the ordering constraint that a memory
update cannot be performed until its log has been written to
PM. Both flushing operations of dirty cache lines and memory
barriers degrade the overall system performance significantly.
To reduce the logging overhead, prior work [1]-[8] have been
proposed to move logging operations out of the I/O critical
path. However, they do not eliminate the logging overhead.

This research is supported by the NSF grant SHF-1745748 and SHF-
1618536. Corresponding author is Jianhui Yue.

Our research is motivated by the observation that the in-
efficiency of logging is mainly caused by two factors: (1)
imbalanced workload over underlying PM banks, and (2) intra-
log record persistence ordering. The imbalanced workload over
banks leads to the high latency of log request persistence if a log
request is served by the bank with a large number of pending
memory requests. However, it is challenging to solve the bank
workload imbalance. Reference locality tends to make requests
cluster around a few banks, leading to workload imbalance
over banks. Conventional log entry allocation schemes blindly
allocate a physical address to a log request, further deteriorating
this issue. To address this, we propose a load-aware log entry
allocation (LALEA) scheme that allocates a log request to an
address whose bank has the smallest amount of workload. The
intra-log record persistence ordering requires a log record’s
metadata can be persisted only after all log entries of this record
have been persisted to PM. The persisting serialization between
a log record metadata and its entries aggravates transaction
throughput. To remove this ordering constraint, we propose
a new schedule, called buffer log metadata (BLOM), which
stores metadata in a non-volatile ADR buffer until its log can
be removed. BLOM not only eliminates the constraint of intra-
record ordering but also avoids writing metadata to PM. Both
LALEA and BLOM are generic and can be applied to many
prior designs. Our evaluation shows that LALEA can achieve
54.04% higher transaction throughput on average, compared to
the state-of-the-art design REDU. BLOM can achieve 17.16%
throughput improvement over REDU on average. LALEA and
BLOM together can boot throughput by 56.62%.

The main contributions of this paper are as follows:

« We identify two fundamental and common reasons that
lead to the inefficiency of logging. Log requests are likely
to be sent to banks with heavy workloads, causing high
persistence latency. The intra-record ordering serializes
the persistence of data entries and metadata, increasing
transaction commit latency.

o To reduce the log request persistence time, we propose
a load-aware log entry allocation (LALEA) scheme that
allocates log request to the address whose bank has the
lightest workload.

o To address the intra-record ordering issue, we propose to
buffer log metadata (BLOM) in a non-volatile ADR buffer
until its log can be removed.

o Both LALEA and BLOM are generic. We incorporated

REDO Logging Metadata [7]]
Stall Cache Line 1
core Ll T Cache Line 2
Cache Line 3
|TX1 Log Data | | Header }4 |TX2 Log Data Cache Line 4
PM Cache Line 5
TX1 In-place Update Cache Line 6
Cache Line 7
—— > Ordering |:| Unused bytes
(@) ®)

Fig. 1: (a) Ordering constraints of transaction execution in redo
log. (b) A log record.

them into the state-of-art designs including REDU and
LAD, and evaluated them using both micro-benchmark
and real PM application workloads. Our experimental
results show our designs significantly reduce log entry
persistence latency and transaction commit latency, and
hence boost transaction throughput considerably.

The rest of this paper is organized as follows. Section II
discusses logging for crash consistency and ADR buffer. We
present our design and evaluation in Section III and IV.
Section V summarizes related work, and Section VI concludes
this paper.

II. BACKGROUND

A. Logging for Crash Consistency

Persistent memory systems need to guarantee crash consis-
tency to be able to recover from system crash or power failure.
Prior studies [1]-[3], [5], [9] have proposed various software-
based logging schemes to achieve crash consistency. Based on
log content, these logging schemes can be classified into two
categories: undo log and redo log. For undo log, the target
stale data to be updated are copied as log before new data
are written in-place. After a crash, logs are used to undo all
changes made to recover data back to a consistent state. For the
redo log, new data are written to the log before in-place stale
data are updated. During recovery, logs are used to redo all
modifications. Both undo and redo log can degrade the overall
performance significantly.

Ordering constraints are the root cause of the slow execution
of transactions. Figure 1(a) shows the ordering in redo log. The
execution of transaction 7'X1 is stalled when the CPU core
meets Tx End, which is sfence in the X86 architecture. T X 1
is stalled until all log requests of T'X1 have been persisted
to PM, marked as time instance t2. After 2, the CPU core
proceeds to execute transaction 7' X2 as the memory controller
performs in-place updates for 77X 1 in background. The s fence
puts part of log operations on the critical path, speeding up their
execution can reduce CPU stall time and hence improve the
system performance, which motivates the research presented in
this paper.

B. Conventional Log Organization

A transaction log includes a 64-byte data content and a
8-byte home address for each write request occurred in this
transaction. The address information in the log is referred to as

log metadata. To reduce the log metadata write traffic, ATOM
[1] proposes log entry collation (LEC) that co-locates seven
log blocks’ metadata in a 64-byte block referred to as a header.
These seven log entries and the header constitute a log record,
shown in Figure 1(b). A log record header can be persisted to
PM only after its log data blocks are written to PM. This is the
ordering constraint for persisting a log record, and it is referred
to as the intra-record ordering. The intra-record ordering is on
the critical execution path for both the redo and undo logging
scheme. Figure 1(a) shows the ordering under redo logging.

However, LEC is sub-optimal in terms of write traffic re-
duction when the number of write requests in a transaction is
smaller than seven. For example, if a transaction writes one
cache line, its 64B log record header stores an 8B address,
wasting PM write bandwidth. Whisper [10] shows most trans-
actions have less than two write requests in the PM workloads.
In addition, the log metadata traffic accounts for 12.5% of log
traffic for transactions with a large number of write requests,
degrading performance, and PM endurance.

C. ADR Buffer

Recently, Intel introduced Asynchronous DRAM Refresh
(ADR) [11], which ensures that some pending write requests
received by the memory controller will be persisted to NVM
even upon the power failure, by utilizing backup power held
in capacitors. With the support of ADR, the memory controller
sends an acknowledgment immediately to the CPU for each
clwb instruction accepted by the ADR buffer. ADR allows the
memory controller to become part of the persistence domain.
The ADR buffer can accommodate 16 cache lines in the state-
of-art Intel Optane [12]. ADR provides an exciting opportunity
to design mechanisms with less log to achieve the atomicity
of transaction updates. LAD [8] takes advantage of the non-
volatility of the ADR buffer to eliminate log operations for
a transaction if the write set of the transaction is smaller
than ADR. Otherwise, LAD falls back to undo log to ensure
crash consistency. However, concurrent transaction execution
frequently makes LAD to incur ADR buffer overflow and suffer
from log operations, leading to inefficient utilization of the
ADR buffer.

III. DESIGN

In this section, we present two optimizations to speed up
logging process. The first one is the load-aware log entry
allocation (LALEA), which accelerates the persistence of log
requests. The second one is an efficient log metadata block
buffering (BLOM) that further reduces the overhead caused by
intra-record ordering.

A. Load-Aware Log Entry Allocation (LALEA)

The log operation execution of a transaction could be on the
critical path. For example, redo logging can commit a pending
transaction only after its all log requests are persisted. The
slow execution of these log operations dictates the transaction
commit latency. Log requests in a bank with a larger number
of pending requests suffer from a higher persistence latency.
Therefore, the slow log operation execution could be caused

S bfTxi0] Valid_ont [Home addri7] |
B | W2| o | L2 | L | Next_ptr Log addr[7] | [0] |—>|Logged Data [LR Reg. (# Core * 8B)]
Bank1 |W3 : | [1] -»|Logged Data In-place Update | Bank Info. Table
T [2] . Queue .
: Proposed Logging L 37 : #wrt (8 bits)
Bank0 |W1[W2[L2| o ﬂ Log Queue FLE FIFO (1024)
Bank1 |W3| L1 L3 : TxD| Valid_cnt |Home addr[7] | [51]
= L[[6] : FE-Collector FH FIFO (1024)
> time Next_ptr Log addr([7] LV
In-place update Log write l_ .'.ﬂ Logged Data

(@ (b)

©

Fig. 2: (a) Compare LALEA with conventional logging. (b) LALEA log record organization. (c) LALEA controller.

by the imbalanced workloads over memory banks. The uneven
workload distribution over banks could be caused by the
inherent locality of workloads [13], [14], which makes in-place
updates occur in one or a few banks. Furthermore, all prior
designs prefer to allocate a well-known contiguous PM space
for log entries, to facilitate log management and recovery. This
workload-agnostic log allocation scheme deteriorates the issue
of bank workload imbalance.

As discussed above, balanced workload among banks can
lead to low latency for log requests. To balance banks workload,
we propose a novel strategy that performs load-aware log entry
allocation (LALEA) and effectively balances log write requests
over PM banks. The main idea of LALEA is to allocate a
log entry address according to the underlying banks’ current
pending operations. Specifically, LALEA allocates an incoming
log write operation a free block in the log region whose bank
has the smallest number of pending requests. Such adaptive
log entry allocation can mitigate the workload imbalance of
memory banks caused by transactions’ in-place update opera-
tions. The balanced workload brings two performance benefits:
(1) reduced log request persistence latency and (2) reduced
memory latency for non-log requests. The evenly distributed
bank traffic can decrease memory latency for both memory read
requests and memory write requests issued in the transaction
execution stage.

Fig. 2(a) compares our LALEA with the conventional log
management by using a simple example. For simplicity, assume
that the system has only two banks, Bank(O and Bankl, and
they have two pending in-place update requests and one in-
place update request, respectively. Conventional log manage-
ment schemes sequentially allocate free memory blocks in
Bank0 to log requests L1, L2, and L3, ignoring the current
workload on these banks. This leads to a longer service time
for the log request L3. However, our proposed method can
allocate a log entry to the bank with the minimal number of
pending operations, and these three log entries are allocated to
two banks. LALEA can balance memory requests over banks
and reduce the log requests completion time, especially for L3,
decreasing the transaction commit latency.

The log organization scheme, such as LEC, requires that
all log entries of a log record are sequentially stored in the
log region so that they can be accessed without storing their
addresses. However, the lack of the addresses of log entries

makes it impossible for LELEA to access non-sequentially
stored log entries of a log record. To address this issue, we
enhance a log recorder header that includes an extra 64B
metadata block to store addresses for seven log entries stored
in different banks, as shown in Fig2(b). The field next_ptr in
the second metadata block points to the log header of the next
log record belonged to a transaction. The next_ptr is NULL
if its log record is the last one in a transaction. The valid_cnt
in the header indicates the count of valid log entries in its log
record. The two-64B header is allocated to the same bank that
has the minimal number of pending requests. Although LALEA
writes extra log metadata to PM, the introduced performance
overhead is shadowed by the performance improvement brought
by LALEA, which is confirmed by our experimental results.

LALEA requires that each bank has a managed log region
to store log entries. Two contiguous 64B data blocks of a
LALEA header must be stored in the same bank. However,
two contiguous free log entries cannot be guaranteed to be
found in the free block list quickly. To solve this issue, we
divide a bank’s log region into the log entry region and the
header region, and their allocation entries are 64B and 128B,
respectively. The free log entry (FLE) FIFO and the free header
(FH) FIFO indicate the free blocks to be allocated. When an
entry is released, its address is appended to its related FLE
FIFO. These two FIFOs only maintain addresses of free blocks.
They are not required to be persisted in that they can be rebuilt
during the crash recovery process.

Fig. 2(c) shows the LALEA controller. It contains a bank
information table, log record registers (LR), a free entries
collector (FE), a log queue, and an in-place update queue.
Each entry of the bank information table includes a write
operation counter, an FLE FIFO, and an FH FIFO. An 8-bit
operation counter indicates the number of pending memory
operations in the bank. Upon a log entry or a header allocation
request, the controller first identifies the bank with the minimal
operation counter and then grabs a free block address from the
corresponding FIFO in the bank. An FLE FIFO and an FH
FIFO contain 1024 and 256 free block addresses, respectively.
A free block address only includes a row address and a partial
column address. Assuming a row address and a column address
have 16 and 10 bits respectively, a log entry block address
and a header address have 20 bits and 19 bits. Therefore, an
FLE FIFO and an FH FIFO require 2.5 KB and 2.375 KB,

Conventional REDO

Stall

Core X1 =2

PM ITX1 Log Datal Header |
Metadata Buffering
REDO
Core TX1 L2l TX2
PM TX1 Log Data
t1 t2 t3

Fig. 3: Compare the redo logging and our proposed log meta-
data buffering.

respectively. A CPU core has an 8B LR register that points to
the header of the first log record whose transaction’s log records
have been persisted to PM. The LR register is non-volatile in
that persisted log entries of a CPU core are accessed through
its LR register.

In case of a crash, the recovery module can revert the system
to a consistent state, by accessing log entries persisted to PM.
The non-volatile LR register maintains the address to the chain
of headers for these persisted log data blocks. The next_ptr
in a log record header links log records stored in PM, forming
the chain. Following this chain, we can walk through these
persisted log record headers and apply each logged data to the
home region, to make the system state back to a consistent
state.

B. Buffering Log Metadata in ADR

Conventional log organization is inefficient in terms of log
writing throughput. The intra-record ordering constraints the
degree of parallelism in log writes. Additionally, the low
utilization of the recorder header wastes precious PM write
bandwidth when the corresponding transaction has a few write
requests, which is common in PM workloads [10].

To address these limitations of conventional log organization,
we propose to buffer log metadata in ADR buffer, which is
referred to as BLOM. The main idea is that log metadata blocks
are buffered in the ADR buffer until they are not needed. Log
metadata blocks can be discarded when all in-place updates
of their corresponding transaction are completed. If there is
no crash, the buffering log metadata blocks are not written
to PM, improving the system performance and enhancing PM
lifetime. Upon a crash, ADR persists the buffered log metadata
blocks to PM. When the system reboots, the recovery module
can recover the system to a consistent state, following the
conventional recovering procedure. When the ADR buffer is
used up, the memory controller writes the buffered metadata
block of a selected transaction to PM.

Fig. 3 compares our proposed metadata buffering and the
conventional redo logging. The conventional redo logging ini-
tiates the persisting of transaction 7T'X1’s header at the time
point t2 when the log entries are persisted. The header write
operation is finished at time ¢3. The intra-recorder ordering

requires the serialization of the persisting log data blocks and
the header, and the stall of the CPU core execution until
time t3. Our proposed log metadata buffering eliminates the
ordering constraint by buffering the metadata block in the ADR
buffer. Furthermore, this metadata buffering avoids writing the
metadata block to PM. Therefore, the metadata buffering allows
transaction 7' X 2 to execute at time ¢2, reducing the CPU core
stalling time.

Our proposed metadata buffering is inspired by LAD [8].
However, ours differs from LAD in the following aspects.
First, while LAD buffers all update requests of a transaction,
our design only buffers log metadata blocks. LAD degrades
to the conventional logging scheme when the ADR buffer
overflows. This is a common case when multiple transactions
run concurrently and compete for the limited ADR buffer. ADR
buffer overflow happens infrequently in our design as it only
buffers metadata blocks. In addition, our design writes a smaller
number of blocks than LAD upon an ADR buffer overflow. An
overflow forces LAD to write log blocks for all update requests
in a transaction, while our design only writes the minimal
number of buffered metadata blocks.

IV. EVALUATION
A. Experiment Setup

Cores 4 000 core @2GHz,192 ROB entries, 48 STQ entries

TLB L1: 6 sets, 4 ways; L2: 128 sets, 12 ways
L1 I/D Cache private, 32KB, 2 cycles, 8 ways
8 log buffer entries
L2D Cache private, 256KB, 8 cycles, 8 ways
LLC 8MB, 25 cycles, 16 ways

1 channel, 1 rank, 8 banks, 8GB NVM
16 ADR Buffer entries [12], 32 Log Queue entries
300(48) ns write(read) [15], [16]

Memory Controller

NVM Access Latency

TABLE I: System Parameters

The proposed design is implemented and evaluated by using
ChampSim [17] with DRAMSim?2 [18]. ChampSim is an Intel
PIN [19] based simulator that models out-of-order micro-
architecture at cycle level with detailed memory access behav-
iors, including TLB, LSQ memory dependence, and MSHR. To
accurately model PM accesses, the cycle-level memory simu-
lator DRAMSim? is integrated with ChampSim. We enhance
ChampSim to support tx_begin, and tx_end. The configurations
of the processor and memory system used in our experiments
are listed in Table I. The default memory address mapping
is the page-level interleaving. We use both micro-benchmarks
and real workloads in our experiments. The micro-benchmarks
include B tree (B-Tree), chain queue (ChainQueue), hash table
(HashTable), and red-block tree (RB-Tree), the real workloads
include TPCC [20] and TATP [21]. Workloads are simulated
under a 4-core processor and each core executes the same
workload.

Our proposed LALEA and BLOM are generic logging
optimization methods that can be applied to prior designs.
Due to space limitation, this paper only demonstrates their
capabilities by only applying them to two start-of-the-art de-
signs: REDU [5] and LAD [8]. LALEA and BLOM rep-
resent that they are applied to REDU, while LALEA-LAD

denotes the LALEA optimization is applied to LAD. Since
LALEA and BLOM are orthogonal, they can work together.
LALEA+BLOM represents their combinations is applied to
REDU.

B. Transaction Throughput

Figure 4 shows the transaction throughput improvement
over REDU. LALEA, BLOM, and LALEA+BLOM improve
the throughput of REDU by 54.04%, 17.16%, and 56.62%
on average, respectively. LALEA balances the banks’ work-
loads and reduces log operation latency, leading to throughput
improvement. BLOM removes the intra-recording ordering
constraints and reduces log traffics, thus also improving the
throughput. LALEA is more effective than BLOM. This is
because LALEA accelerates the writing of all log entries while
BLOM only speeds up serving log record headers. As expected,
LALEA+BLOM achieves an extra 2.58% throughput gain over
LALEA.

Our evaluation shows that LAD is inferior to REDU in
throughput. There are several reasons for LAD’s performance
degradation. First, concurrent transactions under multi-core
CPU compete for the limited ADR buffer and the depletion of
ADR buffer makes LAD fall back to log operations. Second,
ADR buffer capacity is limited in the commodity CPUs which
support PM. For example, the ADR buffer in the memory
controller for Intel Optane memory only can buffer 16 cache
lines [12]. Last but not the least, LAD issues log requests when
LAD buffer overflows, while REDU can immediately initiate
log requests as soon as they arrive. The delayed issue of log
requests increases LAD transaction commit latency. In addition,
REDU’s logging scheme is more efficient than the logging
scheme used by LAD. After being applied to LAD, LALEA
can efficiently execute log requests and outperform LAD by
67.45% in terms of throughput.

100%
75% T

50%
= 1h) | il | | |
0% - -
2 e <] < <
25% -+ &z \»Q,o «,56 ;\(Q,Q’ ,&S «Q(/ @
9, A '(‘O- o Qg)
-50% - C‘@\ R
m LALEA BLOM LALEA+BLOM LAD m LALEA-LAD

Fig. 4: Improving transaction throughput

- J: I - I I I I I
80%
N R ©

Q’f\&z O\\Q’& &8 Q’f\@e <X /\Q(,c v
N & <«
s® A
m LALEA LALEA-LAD

Fig. 5: Reducing log entry persistence latency

C. Log Entry Persistence Latency

Figure 5 shows incorporating LALEA into REDU and LAD
can reduce the latency of log entry persistence by 92.51% and
93.66% on average over these two prior designs, respectively.
LALEA effectively reduces log request queuing time by bal-
ancing PM banks workloads. The short queuing time can be
translated into decreased persistence latency, leading to the
higher transaction throughput.

100%
70%
0% |
10%
< 4 e 2 Q < O
AP ONP S SR\ LIPS 3
® & S &
> W@
&
M LALEA BLOM LALEA+BLOM LALEA-LAD

Fig. 6: Reducing transaction commit latency
40% T

20% +

o {1

& @ 2 K < <
a0 5 {\o"?’Q & S <& ¢
® ¥
-40% L
B LALEA m BLOM m LALEA+BLOM = LAD m LALEA-LAD

Fig. 7: Improving transaction throughput with cache line level
interleaving

D. Transaction Commit Latency

Figure 6 shows transaction commit latency reduction for
LALEA, BLOM, and LALEA+BLOM over REDU, and for
LALEA-LAD over LAD. A transaction commit latency is
defined as the period from the issue of its last instruction to the
completion of its all log requests. On average, LALEA, BLOM,
and LALEA+BLOM decrease the transaction commit latency
by 86.55%, 28.74%, and 88.74%, respectively. In addition,
LALEA reduces the commit latency by 79.02%, when it is
applied to LAD. Since LALEA can reduce the log entry
persistence latency, a transaction’s log requests take a shorter
time to complete, leading to a lower commit latency. BLOM
avoids persisting log metadata block and thus also decreases
the finish time of log requests. When these two optimizations
work together, the commit latency is further reduced.

E. Throughput under the Alternative Address Mapping Scheme

We have demonstrated that LALEA and BLOM can improve
the transaction execution performance, by decreasing the log
entry persistence latency. These two optimizations work well
when the imbalanced bank workload causes the longer log per-
sistence latency. To demonstrate LALEA and BLOM capability,

we evaluate them under an aggressive address mapping scheme,
cache line level interleaving, which distributes contiguous cache
lines to different banks. Due to space limitations, we only
present LALEA, BLOM, and LALEA+BLOM throughput im-
provement over REDU under this aggressive address mapping
scheme. Figure 7 indicates that they improve the throughput
by 17.01%, 0.99%, and 24.81% on average, respectively. In
addition, LALEA improves LAD’s throughput by 10.96%. As
expected, the aggressive address mapping scheme can mitigate
the imbalance of bank workload and achieve less performance
gain for these optimizations than page-level address mapping.
The more balanced bank workload makes BLOM achieve
marginal performance improvement. However, LALEA still
achieves significant performance gain.

V. RELATED WORK

To efficiently reduce the overhead of logging, there are some
research works on optimizing the logging operations. LAD [8]
and VADR [22] were introduced to ensure the transaction
atomicity and crash consistency, with logging-free support
based on a non-volatile ADR buffer. In such design, all the
cache lines in the ADR buffer can be flushed to NVM without
logging once all updated cache lines of an in-flight transaction
are collected inside the ADR buffer. Besides these in-place
update approaches mentioned, the out-of-place update is also
an emerging choice for crash consistency. Shadow Sub-page
[23], [24] have been proposed to efficiently perform out-of-
place updates based on hardware.

Memory scheduling algorithms can improve memory sys-
tem performance. Recently, PPO [25] schedules persistent
requests to improve the parallelism of memory and network,
to achieve BLP-aware global barrier epoch management under
the buffered epoch persistence model. Our LALEA differs from
the prior bank-level-parallel (BLP) aware memory scheduling
algorithm in the following aspects. First, LALEA is more
aggressive than PPO in that LALEA reshapes the log requests
distribution over banks to more effectively attack the issue
of bank workload imbalance. In contrast, PPO only passively
schedules memory requests. Second, LALEA works for more
situations than PPO. For example, PPO does not work ef-
ficiently for either a non-buffered persistency model or the
workload without inter-thread dependencies. Lastly, LALEA is
orthogonal to PPO and can be integrated into PPO to improve
performance further.

VI. CONCLUSIONS

Logging schemes are widely used to ensure crash consistency
for persistent memory (PM). The ordering constraints between
log operations and a transaction execution places some log
operations on the I/O critical path, thus introducing severe
performance overhead. We have identified two fundamental
and common reasons for the inefficiency of log operations.
First, the over-loaded PM banks increase the queuing time
for log requests served by these banks, leading to a high
persistence latency for log requests. Second, the intra-record
ordering serializes the persisting of log entries and the header,
increasing transaction commit latency. To address the first

issue, we propose LALEA that balances banks’ workload
through the novel log entries allocation method. To address
the second issue, we propose BLOM that removes intra-record
ordering constraints by buffering headers in the ADR buffer.
Our evaluation shows that LALEA can achieve 54.04% and
17.16% higher transaction throughput on average compared to
prior designs, respectively.

REFERENCES

[1] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: atomic
durability in non-volatile memory through hardware logging,” in HPCA,
2017, pp. 361-372.

[2] K. Doshi, E. Giles, and P. J. Varman, “Atomic persistence for SCM with
a non-intrusive backend controller,” in HPCA, 2016, pp. 77-89.

[3] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for NVM,” in
MICRO, 2017, pp. 178-190.

[4] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in ISCA, 2017, pp. 175-186.

[5] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,” in
MICRO, 2018, pp. 520-532.

[6] M. Cai, C. C. Coats, and J. Huang, “Hoop: Efficient hardware-assisted
out-of-place update for non-volatile memory,” in ISCA), 2020.

[7]1 X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “Morlog: Morphable
hardware logging for atomic persistence in non-volatile main memory,”
in ISCA. IEEE, 2020, pp. 610-623.

[8] S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless atomic durability
with persistent memory,” in MICRO, 2019, p. 466-478.

[9] T. Nguyen and D. Wentzlaff, “PiCL: A software-transparent, persistent

cache log for nonvolatile main memory,” in MICRO, 2018, pp. 507-519.

S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,

“An analysis of persistent memory use with whisper.”

[11] D. Mulnixl. Intel Xeon processor D product family technical overview.

https://software.intel.com/en-us/articles/intel-xeon-processor-dproduct-

family-technical-overview/.

“Intel Optane DC persistent memory sampling today revenue delivery

2018,” 2018. [Online]. Available: https://www.servethehome.com/intel-

optane-dc-persistent-memory-sampling-today-revenue-delivery-2018

[13] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA. ACM,
2009, pp. 14-23.

[14] P.Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-transparent

secure persistent memory with low overheads,” in MICRO. ACM, 2019,

pp. 479-492.

S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted

non-volatile main memory systems,” in HPCA, 2018, pp. 310-323.

S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:

Optimizing memory and storage support for non-volatile memory sys-

tems,” in ISCA, 2019.

[17] Champsim. https://github.com/ChampSim/.

[18] Dramsim. https://github.com/umd-memsys/DRAMSim2.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in PLDI, 2005.

[20] Transaction processing performance council (TPC),
http://www.tpc.org/tpcc/default.asp.

[211 A. W. Markku manner Vilho Raatikka Simo Neuvonen. TATP telecom-
munication application transaction processing (benchmark description).
http://tatpbenchmark.sourceforge.net/TATP-Description.pdf.

[22] Z. Lu, J. Yue, Y. Deng, and Y. Zhu, “Improving the performance of
nvm crash consistency under multicore,” in 2020 IEEE 38th International
Conference on Computer Design (ICCD), 2020, pp. 561-564.

[23] Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. L. Miller, “SSP: Eliminating
redundant writes in failure-atomic NVRAMs via shadow sub-paging,” in
MICRO, 2019.

[24] Y. Deng, J. Yue, Z. Lu, and Y. Zhu, “Efficient hardware-assisted out-
place update for persistent memory,” in 2021 Design, Automation Test in
Europe Conference Exhibition (DATE), 2021, pp. 507-512.

[25] X. Hu, M. Ogleari, J. Zhao, S. Li, A. Basak, and Y. Xie, “Persistence
parallelism optimization: A holistic approach from memory bus to RDMA
network,” in MICRO. IEEE Computer Society, 2018, pp. 494-506.

[10]

[12]

[15]

[16]

TPC-C.

