
FlashWalker: An In-Storage Accelerator for Graph
Random Walks

Fuping Niu†, Jianhui Yue‡, Jiangqiu Shen‡, Xiaofei Liao†, Haikun Liu†, Hai Jin†

†National Engineering Research Center for Big Data Technology and System/Services Computing Technology
and System Lab/Cluster and Grid Computing Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan, 430074, China
‡Department of Computer Science, Michigan Technological University, Houghton, Michigan, 49931, USA

nfp@hust.edu.cn, jyue@mtu.edu, jshen2@mtu.edu, xfliao@hust.edu.cn, hkliu@hust.edu.cn, hjin@hust.edu.cn

Abstract—Graph random walk is widely used in the graph
processing as it is a fundamental component in graph analysis,
ranging from vertices ranking to the graph embedding. Different
from traditional graph processing workload, random walk fea-
tures massive processing parallelisms and poor graph data reuse,
being limited by low I/O efficiency. Prior designs for random
walk mitigate slow I/O operations. However, the state-of-the-art
random walk processing systems are bounded by slow disk I/O
bandwidth, which is confirmed by our experiments with real-
world graphs.

To address this issue, we propose FlashWalker, an in-storage
accelerator for random walk that moves walk updating close
to graph data stored in flash memory, by exploiting significant
parallelisms inside SSD. Featuring a heterogeneous and parallel
processing system, FlashWalker includes a board-level acceler-
ator, channel-level accelerators, and chip-level accelerators. To
address challenges posed by the tight resource constraints for
processing large-scale graphs, we propose novel designs: storing
a few popular subgraphs in accelerators, the pre-walking for
dense walks, two optimizations to search the subgraph mapping
table, and a subgraph scheduling algorithm. We implement
FlashWalker in RTL, showing small circuit area overhead. Our
evaluation shows FlashWalker reduces the execution time of
random walk algorithms by up to 660.50×, compared with
GraphWalker, which is the state-of-the-art system for random
walk algorithms.

Index Terms—random walk, graph computing, in-storage pro-
cessing, accelerator

I. INTRODUCTION

Random Walk (RW) [1] is a fundamental graph processing
algorithm widely used in the commercial fields, such as
Google, Facebook, Alibaba, Tencent, LinkedIn, and Twit-
ter [2]. Sim-Rank [3] computes the similarity of a vertex pair
with RW, and random walk domination [4] measures the influ-
ence diffusion over the graph with RW. It generates small but
representative samples from large-scale graphs because they
are not publicly available or hard to analyze [5]. RW is also
adopted in graph analytic tasks, such as Personalized PageR-
ank [6], Graphlet Concentration [7], and Network Community
Profiling [8]. More recently, the graph representation learning
algorithms, such as DeepWalk [9] and Node2Vector [10],
use RW to obtain negative nodes, to learn embeddings of
nodes in a given graph. These learned node embeddings are
used by the downstream machine learning tasks, such as
node classification [10], [11], link prediction [10], and graph

classification [12]. More importantly, training graph neural
networks (GNN) also involves the RW to learn the weight
parameters, achieving state-of-the-art performance in graph
analytics [13].

The common execution pattern of random walk algorithms
is that they start walks from massive vertices, and each walk
randomly jumps to a neighbor of the vertex the walk landing
in until some specific condition is met. The randomness of RW
algorithm execution exacerbates the issue of poor data locality
of graph processing caused by the irregular graph structures,
and becomes a severe performance bottleneck. In response,
there are many research efforts to address this issue. However,
these prior works [12], [14]–[17] still suffer from low I/O
utilization, low walk updating rate, slow disk I/O accesses,
as well as high memory cost and energy consumption for
managing graph and walks.

The execution pattern adopted by out-of-core graph process-
ing for large-scale graphs features a high level of parallelism
in walk updating and suffers from slow and large disk I/O
operations. Processing a large-scale graph needs to first split
it into subgraphs that can fit in the memory. Moving a walk
w accesses the subgraph in which w resides. As a result,
the randomness of the algorithm leads to the poor subgraph
reuse, generating excessive disk I/O operations. To improve
subgraph reuse, GraphWalker [17] proposes a state-aware
subgraph scheduling algorithm that prioritizes subgraphs with
more walks residing in it. However, our experimental results
show that GraphWalker is bounded by slow disk I/O operations
shown in Figure 1. This is because massive parallel walks may
generate a large number of accesses to different subgraphs with
poor locality. Transferring these subgraphs are limited by low
PCIe bus bandwidth and narrow channel buses inside the SSD.

To address the disk I/O overhead of random walks, we
propose the in-storage accelerator for the random walks for
large-scale graphs, referred to as FlashWalker. We move walks
updating close to graph stored in flash memory, to avoid
graph structure data transferring over narrow channel data bus
inside SSD. Different from prior in-storage accelerators, the
low arithmetic computing intensity of random walks makes
it feasible to deploy walk updating units to a large num-
ber of low-level storage units, including flash channels and
flash chips, with reasonable circuit area overhead, which is

Fig. 1: GraphWalker time cost breakdown on ClueWeb

confirmed by our evaluation. The proposed design not only
efficiently exploits the significant I/O parallelisms in SSD but
also executes a large number of concurrent walk updating. To
this end, we design a board-level accelerator, channel-level
accelerators, and chip-level accelerators, and map the random
walks to these accelerators, to efficiently utilize the resources
in SSD.

There are several challenges to design FlashWalker under
the tight resource budget constraints. A large graph is divided
into many subgraphs, and the updating walks require their
subgraphs to be loaded by accelerators.

First, a board-level accelerator or a channel-level accelerator
has much more resources than a chip-level accelerator, but
suffers from the data transferring from flash memory arrays.
It is challenging to map random walks to board-level and
channel-level accelerators to effectively use their resources and
minimize data transferring from the underlying flash memory
arrays. To solve this issue, we propose to store a few subgraphs
with top in-degrees so that most walks can be updated in
board-level and channel-level accelerators, as vertices’ degrees
follow the power-law distribution.

Second, the capacity of subgraph buffer limits the number
of edges each subgraph can hold. However, a dense vertex
may have a large number of edges, making it impossible
to be fully accommodated by the accelerator. To solve this
problem, we distribute a dense vertex’s outgoing edges into
several subgraphs so that each one of them can be loaded by
the accelerator. We propose the pre-walking that only loads
required graph structural information, rather than all these
subgraphs, and selects one of the subgraphs before choosing
the next hop for a walk.

Third, walks are organized by their destination subgraphs
so that walks are buffered in a buffer entry associated with
a subgraph. Determining the destination subgraph for a walk
requires looking up the subgraph mapping table, which in-
volves excessive accesses to the mapping table, leading to
a performance bottleneck. To solve this issue, we proposes
two methods. The first one is we perform the subgraph range
query in channel-level accelerators to significantly reduce walk
queries in board-level accelerator. The second method designs
several small walk query caches to further reduce accesses to
the mapping table.

Fourth, walk buffer entries that overflow are written to
flash memory, leading to low throughput. To reduce flash

memory writes caused by the buffer overflow, we propose a
subgraph scheduling algorithm that prioritizes subgraphs that
more likely induce walk buffer overflow.

To summarize, the main contributions of our work are as
follows.

• We propose an in-storage accelerator for graph random
algorithms for large-scale graphs, to address graph data
movement overhead caused by low I/O bandwidth of
the underlying SSD. The proposed in-storage accelerator
moves the walk updating close to graph data, avoiding
data transmission over narrow data bus. Furthermore, it
can efficiently exploit the untapped large I/O parallelism
inside SSD, to boost walk updating rate.

• To address constraints of tight resource budget in SSD,
we propose to store a few popular subgraphs in board-
level and channel-level accelerators, achieving high walk
updating rate.

• To update walks in dense vertices, we propose the pre-
walking for these walks, without loading the complete
subgraphs for a dense vertex.

• To reduce the overhead of walk queries, we propose the
approximate walk query that reduces search operations
for a query, by limiting the search range. To further
reduce the overhead, we design the walk query cache.

• We propose a novel subgraph scheduling algorithm to
reduce flash memory write operations caused by the
walk buffer overflow. In addition, we design an efficient
method to implement the proposed scheduling algorithm
with less overhead.

• We implement FlashWalker in RTL and evaluate it using
a cycle-level microarchitectural simulator. We use both
large scale real-world graphs and synthetic graphs to
evaluate our design. Experiment shows that FlashWalker
achieves 51.56× speedup on average over the state-of-
the-art random walk engine GraphWalker.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the graph random walk
algorithm, describe challenges faced by existing graph analysis
systems when executing random walk algorithms, and ana-
lyzes the limitations of random walk specific systems. Finally,
we introduce the architecture of modern SSDs, and discuss
their potentials to accelerate random walk algorithms.

A. Graph Random Walk

The general framework of random walk algorithm for
graphs is as follows. In the initialization phase, it selects
a number of vertices in the graph as starting points, and
initiates random walks from these selected vertices. During
the execution, each walk randomly jumps to a neighbor of
the vertex that the walk lands in, based on the neighbor-
sampling probability distribution specified by both the graph
and algorithm. This process is repeated until a walk reaches
the termination condition.

The difference among variant random walk algorithms
mainly lies in the neighbor-sampling probability distribution

and the walk termination condition. For weighted graphs,
the edges’ weights may determine the neighbor-sampling
probability distribution. For example, the vertices pointed to
by edges with greater weights are more likely to be selected
as the destination, which is referred to as the biased random
walk algorithm. The algorithm is unbiased if the next hop of
a walk is uniformly sampled from its neighbors. A random
walk algorithm is static if its neighbor-sampling probability
distribution remains constant throughout the execution, while
a random walk algorithm is dynamic if its neighbor-sampling
probability distribution depends on the state of a walk. The
walk termination condition could be: 1) a walk terminates
after it has completed a specified number of hops; or 2) a
walk terminates according to some probability.

B. Drawbacks of Existing Systems

The out-of-core graph processing systems [18] divide a
large graph into a number of partitions so that a partition can
fit in the memory. After a partition is processed, the graph
processing system proceeds to the next partition. Since most
graph analytic algorithm are iterative, the next iteration can be
started after all partitions of the current iteration are finished.
This is because the next iteration depends on the latest values
updated in the current iteration.

They suffer from extremely low I/O utilization and walk
updating rate, when performing random walks. The iteration-
wise synchronization forces updated walks to be written back
to disks before walks are completed, incurring significant slow
disk operations. Moreover, the iteration-wise synchronization
prevents finished partitions of current iteration from being ini-
tiated. However, the inherent asynchronous nature of random
walks can allow walks to be independently updated, without
requiring the iteration-wise synchronizations.

To improve the performance of random walk, Graph-
Walker [17] proposes the asynchronous walk updating scheme,
by taking advantage of asynchronous nature of random walks.
Instead of updating walks in the loaded blocks only once
and then putting them back to disk, it keeps updating them
until they leave these blocks or have reached the termination
conditions. In addition, it gives preference to blocks with a
higher number of walks inside to load into the memory. In this
way, a higher I/O efficiency and walk updating rate is realized.
However, GraphWalker still fails to solve the performance
problem caused by the slow I/O bandwidth, which is especially
obvious for large-scale graphs. As shown in Figure 1, time
spent on loading graph structure data still accounts for the
majority of total execution time. This inspires us to implement
an architecture inside the SSD to shorten the data-path and
thus mitigate the impact of I/O operations on the overall
performance.

C. Modern SSD Architecture

The architecture of an SSD [19]–[24] consists of four main
parts: a SSD controller, an on-board DRAM, flash channel
controllers, and flash chips mounted on each flash channel.
The SSD controller has two modules: the host-interface logic

TABLE I: SSD architectural characteristics

SSD Organization 32 Channels,
4 Chips per Channel

Flash Channel ONFI 3.1 (NV-DDR2),
Width: 8 bit, Rate: 333 MB/s

Flash Microarchitecture
4KB Page,

4 Planes per Die,
2 Dies per Chip

Flash Access Parameters Read Latency: 35 µs,
Program Latency: 350 µs

(HIL), and the flash translation layer (FTL). HIL decodes and
executes I/O commands (SATA or NVMe) from the external
host device. FTL manages resource of the entire SSD: 1) the
dynamic allocation of physical address space to support the
out-place-update, 2) caching of stored data with the on-board
DRAM, 3) the logical-to-physical address mapping, 4) the
transaction scheduling, 5) the garbage collection, and 6) the
wear-leveling.

Flash channel controllers execute commands to read data
from, write, and erase data on flash chips, with the Open
NAND Flash Interface (ONFI) protocol. A flash chip includes
multiple dies, and each die contains multiple planes. A plane
consists of a number of flash blocks, and an SRAM-based
page register. A flash block contains a number of flash pages,
which is a basic unit for reading and writing flash memory.

As shown in Table I, SSD has significant I/O parallelisms
and has great potential to achieve high data transmission rate.
For example, the SSD has 32 channels, and further each
channel has four chips with two dies, which consists of four
planes. SSD could deliver huge data transmission bandwidth
if all planes work in parallel. However, the narrow bandwidth
of a channel bus and a PCIe bus is a roadblock to realize such
large bandwidth. First, the flash channel of ONFI 3.1 NV-
DDR2 only supports up to 333MB/s, while the aggregation
bandwidth of all planes in this channel reaches 1786 MB/s.
Second, the bandwidth of four PCIe lanes is 4GB/s, while
the aggregate bandwidth of 32 channels is 57.1GB/s. This
observation motivates us to design an in-storage accelerator
that takes advantage of the internal parallelism to unleash high
bandwidth of SSDs.

III. FLASHWALKER DESIGN

A. System Overview

1) Design Philosophy: Excessive slow disk I/O operations
and the low arithmetic intensity of graph random walks make
it fit to in-storage computing. Due to poor locality, RW
requires a large amount of data transferring from the slow
SSD. The narrow data buses, including SSD channel buses
and a PCIe bus, become data transmission bottleneck, making
it challenging to efficiently exploit parallelism of many flash
memory devices. In addition, the updating walks of RW only
involve low arithmetic operations and can be executed on
customized hardware units with low area/power overhead.

Fig. 2: Overall design of FlashWalker

These observations motivate us to pursue the in-storage accel-
erating RW algorithms for large-scale graphs. To reduce data
transmissions, we move walk-update close to flash memory
devices as much as possible, avoiding data transmissions over
narrow data buses. Performing walk-update near flash memory
naturally exploits SSD’s inherent parallelisms offered by its
many flash memory devices.

2) Overall Architecture: Figure 2 shows the architecture of
FlashWalker which includes chip-level accelerators, channel-
level accelerators, and a board-level accelerator. These accel-
erators can fetch, and update walks with loaded subgraphs in
them. To update walks, each accelerator loads corresponding
subgraphs to its subgraph buffer. After fetching walks from
flash planes and on-board DRAM, a chip-level accelerator
updates walks in its walk buffer if the accelerator has loaded
the subgraph in which these walks land. When going beyond
loaded subgraphs in the accelerator, an uploaded walk is
buffered for the further processing and this walk is referred
to as a roving walk. Similar to a chip-level accelerator, a
channel-level accelerator updates walks after fetching roving
walks from the chip-level accelerators connected to the chan-
nel. Besides fetching roving walks from channel accelerators
and updating walks, a board-level accelerator writes overflow
walks, completed walks, and foreigner walks to flash memory.

Walks can be updated if the accelerator has loaded sub-
graphs where they land. To facilitate accesses to walks, walks
in the same subgraph are buffered in a walk queue entry.
After updating a walk, the accelerator moves the walk to its
destination buffer. The walk-updating requires the accelerator
to provide as many walk queue entries as the number of
loaded subgraphs in an accelerator. However, constrained
resource in the accelerators necessitates small size subgraph
and limited number of subgraphs, and makes it impossible
to accommodate all subgraphs and walks at the same time.
Therefore, we divide a graph into graph partitions and limit the
number of subgraphs in each partition. FlashWalker proceeds
to the next graph partition when there is no walk in the current
partition. In addition, the board-level accelerator provides the
partition walk buffer to keep walks in subgraphs in the current
graph partition.

B. Chip-level Accelerator

Figure 3 shows a chip-level accelerator that fetches sub-
graphs and their walks, updates walks, and processes updated
walks. After receiving a loading subgraph command issued by
the board-level accelerator, a chip-level accelerator reads the

Fig. 3: Chip-level design of FlashWalker

subgraph from flash planes in this chip, and collects its walks
from partition walk buffer in the on-board DRAM and from
the flash planes. The subgraph are then stored in a subgraph
buffer entry and the walks are put in its associated walk queue
entry (step ¬). A subgraph is stored in CSR format, which
contains an offsets array and an edges array. A walk, w, state
includes the ID of its source vertex, the offset of the current
vertex in the subgraph, and the number of hops, indicated by
w.src, w.cur, and w.hop, respectively.

The walk updater first fetches a walk w from a walk queue
and stores it in a register (step ­). In unbiased random walk,
updating a walk can be formulated as randomly choosing an
out-going edge of a given vertex. The updater instructs the
random number generator to produce a random number rnd0
(step ®), and calculates outDegree (step ¯) at the same time,
where outDegree is the out-degree of w.cur. The rnd0 is
fed to the ALU to produce the integer random number, rnd1,
between 0 and outDegree−1. The updater fetches the vertex
ID of w’s next stop from the subgraph’s edges array using
rnd1 as the offset relative to the edge list of w.cur (step °),
and changes w.cur to be the fetched vertex’s full ID (step
±). In addition, w.hop is decremented. After updating w, the
walk updater moves it to the guide buffer (step ²). The walk
updater then fetches the next walk from the walk queue if the
queue is not empty. Otherwise, it enters the idle state.

FlashWalker supports biased random walk by adopting
Inverse Transform Sampling (ITS) technique [12]. To this end,
an offsets array of a subgraph stores the sum of weights of
out-edges for a vertex and it is denoted as sumWeight. To
choose an out-edge for a vertex v, the updater first generates
a random number rnd in [0, v.sumWeight) and finds the

largest index idx of the cumulative distribution list CL, which
is the notation of pre-computed function for a vertex, so that
rnd is smaller than CL[idx]. The biased random walk requires
more storage space for CL and more cycles for the binary
search.

After updating a walk, the updater moves an updated walk
to the guide buffer to determine its destination subgraph. To
this end, the walk guider reads a walk from the guide buffer
to its register and finds out whether the walk is in a loaded
subgraph in this chip-level accelerator by comparing w.cur
with two end vertices of each loaded subgraph. If w is in a
loaded subgraph, then it is moved to the corresponding walk
queue. Otherwise, w is referred to as a roving walk, and is
moved to the roving walk buffer. The channel-level accelerator
checks and fetches these roving walks in a fixed time interval
before stalling the chip-level accelerator’s execution.

When a walk is completed, an updater moves it to the
completed walk buffer. If the completed walk buffer is full,
the completed walks in it are written to flash memory.

C. Channel-level Accelerator

A channel-level accelerator operates similar to a chip-level
accelerator. However, there are two significant differences.
First, a channel-level accelerator stores K subgraphs whose
in-degree are top K among subgraphs stored in flash chips
connected to the channel. In this way, the channel-level
accelerator can effectively update more walks by keeping a
few hot subgraphs. This is because real-world graphs exhibit
power-law degree distribution [25]. Second, it accepts and
forwards commands/data from the board-level accelerator to a
chip-level accelerator, as there is no direct connection between
them. These commands are implemented by extending the
ONFI commands, which are transferred over a channel bus.
Its guider checks each walk in the guide buffer to see if a
walk lands in a subgraph in the channel-level accelerator. If it
does, the walk is moved to the walk queue for that subgraph.
Otherwise, the walk is migrated to the roving walk buffer.

Approximate Walk Search: Although some walks landing
in a few hot subgraphs stored in a channel-level accelerator
can be updated, there are considerable roving walks that are
processed by the board-level accelerator to determine their
destination subgraphs, which requires looking up the subgraph
mapping table. For a walk query, FlashWalker executes a
binary search on the mapping table, which may generate many
accesses, forming a performance bottleneck. To address this
issue, a channel-level accelerator performs an approximate
search for a walk query. This approximate search only returns
the range of subgraphs that a given walk lands in. A range of
subgraphs is a subgraph set whose vertices’ IDs are consec-
utive and it can be denoted as the vertices range [lowEndID,
highEndID]. After this query, these walks are tagged with
the ID of the range. To serve these tagged walks, a board-
level accelerator searches the corresponding range of subgraph
mapping table, reducing the overhead.

To support the approximate walk search, the channel-level
accelerator has the subgraph range mapping table where each

Fig. 4: Board-level design of FlashWalker

entry stores the ID of the low-end vertex and the high-end
vertex in the corresponding range of subgraphs. If a subgraph
range has 256 subgraphs, the subgraph range mapping table
can be reduced by 256×, leading to small number of table
entries. Searching this small mapping does not introduce a per-
formance overhead. In addition, the subgraph range mapping
table can also decide whether a walk is in the current graph
partition. If a walk is beyond the current graph partition, it
is called a foreigner and can not be processed by the board-
level accelerator. Therefore, a guider moves the foreigner to
the foreigner buffer. If the foreigner buffer is full, walks in it
are flushed to flash memory.

D. Board-level Accelerator

Figure 4 shows the architecture of the board-level acceler-
ator. It performs the four major tasks: directing roving walks
to the corresponding walk buffer, updating walks landing in
subgraphs stored in the subgraph buffer, scheduling subgraphs
for chip-level accelerators, and writing walks to flash memory.
Similar to channel-level accelerators, board-level accelerator
also keeps several hot subgraphs in the subgraph buffer. After
fetching roving walks from the guide buffer, the walk guider
directs them to walk queues, partition walk buffer, or foreigner
buffer. This directing decision needs the subgraph mapping
table and the dense vertices mapping table, which map a
vertex ID (vID) to the corresponding subgraph ID (sgID) or
IDs. The walk updater grabs a walk from the walk queue and
updates it with the help of subgraphs stored in the subgraph
buffer. The board-level accelerator schedules a subgraph to
a chip-level accelerator whenever there is an empty space in
its subgraph buffer. The board-level accelerator also writes
completed walks, overflow walks, and foreigner walks to flash
memory.

Subgraph Mapping Table: Before updating a walk w, the
accelerator needs to determine its subgraph containing the
vertex w.cur, as the choosing the next stop for w has to
access the edges of w.cur stored in the subgraph. A subgraph
stores its vertices and their out-edges in a flash memory block
with the fixed size and the flash memory block is referred
to as a graph block. Therefore, a subgraph contains varied
number of vertices since it has different number of out-
edges. To determine a subgraph for a vertex, we set up the
subgraph mapping table whose entry has: two end vertices
in the subgraph, a flash memory address for the subgraph,
and the sum of out-degree of the subgraph. We can determine
the subgraph’s ID for a vertex, by comparing the vertex’s ID
with two end vertices in the subgraph mapping entries. To
reduce the search latency, we perform the binary search for
the subgraph mapping table whose entries are sorted with the
ID of the low-end vertex in a subgraph.

Walk Query Cache: An updater performs the binary search
on the subgraph mapping table. Although the binary search
can significantly reduce the number of searches, a walk query
still requires many searches to complete. In addition, the
mapping table access contentions, caused by multiple walk
guiders, further worsen the access latency. To reduce the
latency, we propose the walk query cache that stores a very
small frequently accessed subgraph mapping entries. There
are two reasons the walk query cache works. First, a binary
search always touches common nodes in the upper level
of the binary search tree, and therefore these nodes exhibit
strong temporal locality. Second, vertices in graphs follow
the power-law distribution, and hence there are significant
number of walks that walk through a very few hot subgraphs.
Accordingly, a guider accesses the subgraph mapping table
upon query cache miss, significantly reducing access traffic to
the subgraph mapping table.

Partition Walk Buffer: A updated walk could jump to a
subgraph which is unavailable in an accelerator of FlashWalker
since the number of loaded subgraphs is small for a large-
scale graph. The partition walk buffer is designed to store
walks whose subgraph is absent in the accelerator, and these
walks are updated after their subgraphs are loaded by the
accelerators. Walks landing in the same subgraph are stored
in the same partition walk buffer entry. . Since the walk buffer
storage overhead is proportional to the number of subgraphs,
the large number of subgraphs makes it impossible to store
walk buffer entries for all subgraphs in the on-board DRAM.
Accordingly, only the fixed number of subgraphs’ walk buffer
entries are in the accelerator. To this end, we divide a graph
into graph partitions, each of which consists of the same
number of subgraphs, except for the last partition. We associate
one entry of the partition walk buffer with one entry in the
subgraph mapping table so that only the required subgraph
mapping entries are stored in the accelerator, reducing the
space overhead of the table. Because some walks could go
beyond a graph partition, the subgraph mapping table can not
determine subgraphs for these walks, referred to as foreigner
walks, so we set up the foreigner buffer to store these walks.

Pre-walking for a Dense Vertex: Since a vertex degree
follows the power-law distribution in many graphs, especially
for social network graphs, a small number of vertices have
a very large number of out-edges so that these edges can
not fit in a graph block. In this case, such a vertex, referred
to as a dense vertex, is accommodated by multiple graph
blocks. For example, a dense vertex has 1,213,787 out-edges
and requires 19 graph blocks in the Twitter graph. We call a
walk w a dense walk if w.cur is a dense vertex. As discussed
earlier, updating a walk w needs the subgraph containing the
vertex w.cur, which means that if w is a dense walk, all the
graph blocks where w.cur lands are required to be loaded.
However this is impossible due to the resource constraints. To
address this issue, we propose the pre-walking technique for
the dense walks. Its main idea is that we choose the graph
block gbnext in which w’s next stop dstnext lands before
determining dstnext. Deciding dstnext is similar to choosing
the next stop for a walk, and this decision requires the metadata
about all graph blocks of w.cur. In the case of the unbiased
random walk, we first get a random number rnd in [0,
w.cur.outDegree−1] and the gbnext is the drnd/size(gb)eth
graph block of w.cur, where size(gb) is the number of edges
in each graph block. After gbnext is available, the guider
moves w to the walk buffer entry associated with gbnext.

We design the dense vertices mapping table to determine the
graph block for a dense walk. The table consists of a bloom
filter and a hash table. The bloom filter checks the membership
of dense vertices, while the hash table returns the dense vertex
metadata for a dense vertex query. The metadata of a dense
vertex dv describes graph blocks of dv’s subgraph dsg, and it
contains: the amount of graph blocks for dsg, the ID of the
first graph block of dsg, and the out-degree of its last graph
block of dsg. The bloom filter could output a false positive
response for a non-dense vertex. Such a false positive response
makes the hash table fail to find the graph block list for this
vertex. Hence, the proposed dense vertices mapping can work
correctly. The walk guider looks up the dense vertices mapping
table before the subgraph mapping table. This serial looking
up two tables does not introduce performance overhead due
to the bloom filter and a smaller number of dense vertices.

Writing Walks to Flash Memory: The board-level acceler-
ator manages different types of buffers, including the partition-
walk buffer, the completed walk buffer, and the foreigner
buffer. The accelerator flushes walks in the completed walk
buffer and the foreigner buffer if they overflow. When a
partition-walk buffer entry is used up, the accelerator move this
entry to the walk-overflow buffer in the chip-level accelerator,
which is then flushed to the flash memory.

Subgraph Scheduling: Unlike GraphWalker, FlashWalker
aims to minimize the flash memory writes caused by walk
buffer overflow. The overflow of a walk buffer entry makes
GraphWalker immediately flush buffered walks to flash mem-
ory, leading to large number of flash memory write operations.
To reduce flash memory write operations, we propose a novel
subgraph scheduling algorithm that reduces occurrences of
walk buffer overflow, by prioritizing more critical subgraphs

over less critical subgraphs.
The critical degree of a subgraph indicates how possible

these walks in the subgraph are flushed to flash memory and
the priority of subgraph scheduling to achieve high throughput,
by favoring subgraphs with more number walks [17]. Base
on the above analysis, the critical degree for subgraph i is
defined as scorei in Eq. 1, where sgi.pwb and sgi.f ls are the
number of walks in the partition-walk buffer and the number
walks in the flash memory for the subgraph i, respectively. The
parameter α indicate that walks in the partition walk buffer are
more critical than walks in the flash memory. This is because
the former is written to flash memory if the entry overflows,
leading to low walk update rate, while the latter does not have
slow flash memory operations.

The β is introduced to consider difference between
dense walks/subgraphs and non-dense walks/subgraphs. A
dense/non-dense subgraph includes/excludes a dense vertex.
We can store more dense walks in a buffer entry or a flash
memory page, without storing cur for these walks. The storage
of dense walks has two conflicting implications: 1) A non-
dense walk buffer entry is more susceptible to overflow than
a dense walk buffer entry if they have the same number of
walks, and 2) Reading walks stored in flash for a non-dense
subgraph could take longer time than for a dense subgraph
if they have the same number of walks. The appropriate β
can balance between the overhead of buffer overflow and
the benefit of high walk updating rate. Each subgraph in the
current graph partition has a score entry in the scoreboard
backed by eDRAM.

scorei =

{
(sgi.pwb× α+ sgi.f ls)× β nondense
sgi.pwb× α+ sgi.f ls dense

(1)

When a walk queue for a loaded subgraph becomes empty
in a chip-level accelerator, the subgraph scheduler in the board-
level accelerator is informed to decide a subgraph and issue
a subgraph loading command to the chip-level accelerator.
To reduce subgraph transmission overhead caused by narrow
channel bus, FlashWalker restricts that subgraphs fetched by
a chip-level accelerator must be in the same chip’s flash
planes. Since there are a large number of subgraphs, retrieving
information and sorting score for them need many cycles,
leading to a low performance. To avoid this sorting overhead,
we maintain score for top N subgraphs for each chip, referred
to as the topN list, and the changed score of a subgraph
could update the topN list. N is a design parameter. Frequent
inserting walks to the partition walk buffer triggers the modifi-
cation of score of a subgraph, and causes accesses to the topN
list, greatly degrading the performance. However, we find that
the inserting one walk to the partition walk buffer does not
change the value of score much. Therefore, we access the
topN list every M walk-insertions for a subgraph, to avoid
the performance overhead.

IV. EVALUATION

In this section, to validate the performance benefits brought
by FlashWalker, we choose GraphWalker [17], the state-of-

TABLE II: FlashWalker accelerators configurations

Module Chip-level Channel-level Board-level

Frequency 500MHz 500MHz 1GHz
Updaters 1 1 4

Updater Cycle 16ns 8ns 4ns
Guiders 1 4 128

Guider Cycle 16ns 8ns 4ns
Subgraph Buffer Cap 1MB 2MB 16MB

Walk Queues Cap 64KB 128KB 1MB
Guide Buffer Cap - 16KB 128KB

Roving Walk Buf Cap 32KB 8KB -
Area (mm2) 1.30 1.84 14.31

TABLE III: FlashWalker SSD & DRAM configurations

SSD Configurations

PCIe Bandwidth 1GB/s×4
Host Interface Type NVMe

Chans, Chips, Dies, Planes 32, 4, 2, 4
Blocks, Pages 2048, 64
Page Capacity 4KB

Flash Comm Protocol NV-DDR2
Channel Transfer Rate 333MT/s

Flash Technology MLC
Flash Read Latency 35µs

Flash Program Latency 350µs
Flash Erase Latency 2ms

DRAM Configurations

Protocol DDR4
Frequency 1600MHz
Capacity 4GB

Channels 1
Chip Width 16bit
Bus Width 64bit

BL 8
tCL 22

tRCD 22
tRP 22

tRAS 52

the-art random walk specific graph system, as the baseline for
comparison, and use a range of different graph datasets and
random walk hyper-parameters for experiments.

A. Experimental Setup

We implement FlashWalker PEs in RTL with Chisel [26]
and synthesize it using Yosys [27] on the 45ns FreePDK45
standard cell library [28], with a target of 1 GHz frequency.
The scratchpad memory and SRAM overhead in our design
are estimated using Destiny2 [29] and Cacti [30]. We evaluate
FlashWalker using a cycle-level microarchitectural simulator,
which includes MQSim [20] and DRAMSim3 [31] to model
SSD and DRAM respectively.

The configurations of each level accelerators, SSD, and
DRAM for FlashWalker in our experiments are summarized
in Table II and Table III. The updater cycle and guider
cycle indicate the time interval between each two operations
performed by walk updater and guider respectively. The walk
updater performs 5 operations to process a walk if not stalled,
while the guider performs a different number of operations for
each walk according to the number of queries issued.

For walk query, we set board-level subgraph mapping table
capacity to 2MB, walk blocks mapping table capacity to
128KB, and dense vertices mapping table capacity to 128KB.
We also provide 32 walk query caches in total for board-
level walk guiders, and every 4 walk guiders share a single
walk query cache. Each walk query cache has a capacity
of 4KB. In the absence of additional explanations, α and
β in Equ. 1 are set to 1.2 and 1.5, respectively. We run
the baseline GraphWalker [17] on the computer that has a
AMD Ryzen 7 3700X 8-Core @ 3.60GHz processor, 32GB
DDR4 memory, and a 2TB Samsung 970 EVO Plus SSD with

TABLE IV: Statistics of datasets

Dataset |V | |E| CSR Size Text Size

Twitter (TT) 41.6M 1.46B 5.8GB 23GB
Friendster (FS) 65.6M 3.61B 14GB 59GB
ClueWeb (CW) 4.78B 7.94B 95GB 138GB
RMAT2B (R2B) 62.5M 2B 8GB 32GB
RMAT8B (R8B) 250M 8B 32GB 137GB

Fig. 5: FlashWalker speedup with different number of walks

PCIe3.0×4 interface. Since simulating large-scale graphs takes
much longer time, our evaluations use medium-scale graphs to
project FlashWalker’s performance for large-scale graphs, by
artificially setting the memory capacity used by GraphWalker
to be 8GB by default. The statistics of GraphWalker execution
is averaged over 10 repetitions, and the operating system cache
is cleared before starting the next repetition, to exclude caching
effects of the same input graph.

Table IV lists the graph datasets [32] used in our ex-
periments, where TT [33], FS [34], and CW [35] are real-
world graphs, while R2B and R8B are synthesized using
PaRMAT [36]. The vertex IDs of TT, FS, R2B, and R8B are
represented using 4 bytes, while the vertex IDs of CW are
represented using 8 bytes as the total number of its vertices
exceeds the 4-byte representation range. Similarly, for TT, FS,
R2B, and R8B, we set the subgraph size to 256KB, while for
CW, we set the subgraph size to 512KB. The walk length is
fixed as 6 in all experiments.

The graph partitioning time overhead in the pre-processing
phase is O(#edges), which is similar to GraphWalker. Our
measured execution time excludes the time required by graph
partitioning, as partitioned graphs are standard inputs to many
different graph processing tasks, and it is also excluded by
the evaluation of many typical graph processing systems [12],
[14], [17], [37].

B. Speedup over GraphWalker

Figure 5 shows the FlashWalker speedup over GraphWalker
with varied number of walks. FlashWalker achieves 4.79×
to 660.50× (51.56× on average) speedup over GraphWalker
shown in Figure 5. Notice that the average speedup ratio for
larger graphs is higher than smaller graphs. This is mainly
because GraphWalker’s memory can accommodate almost the
entire small graphs like TT and R2B, and it only needs to load
the graph data through the PCIe lanes once at the beginning.
In such cases, the advantages brought by FlashWalker mainly
lie in the much higher bandwidth utilization than PCIe lanes
and the parallelism provided by 128 flash chips.

Fig. 6: Flash memory read traffic reduction and bandwidth improve-
ment

To confirm the reasons for the speedup of FlashWalker,
Figure 6 shows its improvement of achieved flash memory
bandwidth and its flash memory read traffic reduction. Due
to exploiting large I/O parallelism of flash planes and the
finer granularity of subgraphs, FlashWalker achieves 17.21×
flash memory bandwidth improvement and 3.82× read traffic
reduction over GraphWalker on average, for all tasks. In
addition, for tasks where the number of walks is set as 109

for CW and 4 × 108 for the remaining graphs, FlashWalker
achieves 33.44× flash memory bandwidth improvement and
1.23× read traffic reduction on average.

In particular, when processing TT, FlashWalker reads a
higher total amount of data than GraphWalker. This is due
to the parallelism overload caused by the small size of TT.
Chip-level accelerators always manage to stay busy to avoid
idleness, and thus frequently load new subgraph from flash,
even if the new subgraph only has a few walks in it. In contrast,
GraphWalker keeps most of the graph data in memory, and
only one subgraph is chosen to process at a time, thus reducing
the amount of data read. However, since the average bandwidth
utilization of FlashWalker is always much higher, it offsets the
loss caused by more reads and allows the overall performance
to remain higher than GraphWalker.

When processing CW, the total amount of data read by
FlashWalker is much less than GraphWalker. There are two
main reasons for this. First, the graph data significantly
exceeds the memory capacity of GraphWalker, resulting in
frequent subgraph swapping in and out. Second, FlashWalker
has smaller subgraph granularity, making it unnecessary to
read an entire big subgraph (1GB in GraphWalker) for only a
few walks, thus improving the utilization of graph data, which
is also noted as I/O efficiency.

C. FlashWalker Performance Projection

In this subsection, we study the FlashWalker performance
under different scales of graphs with the same set of work-
loads, by configuring the memory capacity used by Graph-
Walker to be 4GB, 8GB, and 16GB and fixing the memory
capacity of FlashWalker. For the same graph, GraphWalker
execution with smaller memory leads to more block I/O
operations and emulates RW behavior for a larger-scale graph.
Therefore, FlashWalker speedup over the GraphWalker with
4GB and 16GB memory can project performance of graphs
larger and smaller than 8GB, respectively, shown in Figure 7.

Fig. 7: FlashWalker speedup over GraphWalker with varied DRAM
capacities

The number of walks are set as 109 for CW and 4× 108 for
the remaining graphs. As shown in Figure 7, FlashWalker’s
speedup does not drop significantly when the memory capacity
is increased to 16GB. For TT, as GraphWalker is already able
to accommodate the entire graph when using 8GB memory, the
larger buffer does not bring much additional benefit. For CW,
as the graph size still far exceeds the memory capacity, large
amount of SSD data reads are still inevitable. For remaining
graphs, the performance advantages of FlashWalker overshad-
ows GraphWalker’s performance gains from the reduced SSD
data reads due to its high bandwidth utilization, parallelism,
and I/O efficiency.

D. Resource Consumption Behavior of FlashWalker

Figure 8 shows the FlashWalker resource consumption
behavior in the execution process. These resources include
flash memory read bandwidth, flash memory write bandwidth,
the SSD channel bandwidth. In addition, we also show the
achieved overall bandwidth and the progression of RW exe-
cution, which is the percentage of the finished walks.

We make the following observation for FlashWalker execu-
tion. First, the channel bandwidth is saturated in the most time
for TT, FS, and R8B as the figure shows it close to 10.4GB/s,
which is the theoretically maximal aggregated channel BW.
Secondly, flash memory read bandwidth are not fully used
for TT, FS and R8B during a long period of time, since
their flash memory read BW is below 55.8GB/s, which is
the theoretically maximal aggregated chip read throughput.
Thirdly, there are very small flash memory write bandwidth
consumption, which is consistent with the RW algorithm.
Lastly, CW execution is bound by the straggler processing
because it finishes about 90% walks in the first 2 seconds and
spends 5.5 seconds to handle 10% stragglers.

The low flash memory read BW is due to the high den-
sity of walks in the early stages, which prevents chip-level
accelerators from fetching new subgraphs frequently, while
a large amount of uploaded roving walks cause the channel
bus to become a bottleneck. As the number of remaining
walks drops, the bottleneck goes back to flash, thus leading
to the rapid increase of the flash memory read BW. The low
flash memory write bandwidth, on the other hand, represents
a low write-back frequency, which proves the effectiveness
of FlashWalker’s subgraph scheduling. The observation about
CW is discussed in section IV-E.

E. Speedup of Proposed Optimizations

Figure 9 evaluates speedup for three proposed optimizations
over the baseline FlashWalker, which has no any optimiza-
tions. These three optimizations are: 1) the walk query (WQ)
that applies approximate walk search to channel-level acceler-
ators and adopts the walk query cache to the board-level ac-
celerator; 2) the hot subgraphs (HS) that stores hot subgraphs
in channel-level accelerators and the board-level accelerator;
and 3) the subgraph scheduling (SS) that schedules subgraphs
according to their scores calculated with Equ. 1, where α is
0.4 to reduce the burden on the channel bus according to the
observation in Section IV-D and β is 1.5. These optimizations
are incrementally enabled and are applied to prior enabled
optimization(s).

WQ successfully reduces the walk query latency and hence
greatly improves the performance of FS, R2B, and R8B by
18.39%, 16.68%, and 13.80% respectively. However, TT does
not benefit much from it (only 5.02%), due to the skewness of
TT’s edge distribution which allows some of the subgraphs to
gather a large number of walks. A single chip-level accelerator
does not have a particularly strong capability to quickly update
so many walks in a few subgraphs, and thus cannot provide
enough roving walks for the channel-level and board-level
accelerators. Therefore, the main bottleneck of the system does
not lie in the walk query, but in the walk update. Although
HS has little effect on FS, R2B, and R8B, on the other hand,
it significantly improves the performance of TT (20.76%,
together with WQ) as it allows the board-level and channel-
level accelerators to update the walks landing in hot subgraphs
with greater efficiency, thus sharing the burden of the chip-
level accelerators. Lastly, SC further improves the performance
of TT, FS, R2B, and R8B by 21.53%, 21.26%, 18.83%, and
18.31% over the baseline.

However, these optimizations improve the performance of
CW marginally. This is because the number of walks is
relative small compared with the graph size. As shown in
Figure 8(d), FlashWalker takes most of the time to process
the stragglers, and the bottleneck to process these stragglers
is caused by the slow flash read latency, which can not be
mitigated by these optimizations. If CW has more walks,
the processing of stragglers becomes a small portion of its
execution time, and these optimizations are expected to be
effective to process those non-stragglers, achieving noticeable
performance improvement. However, we do not evaluate CW
with more walks, since it requires longer simulation time.

V. RELATED WORK

A number of software graph processing frameworks have
been proposed in recent years [18], [38], [39], to simplify
the programming for graph analytics. These graph processing
frameworks are based on many different programming models,
including vertex-centric paradigms, sparse matrix operations,
task-based models, etc., with the most popular being the
vertex-centric paradigm.

By integrating high-bandwidth memory, GPU-based graph
processing solutions can achieve many orders of magnitude

(a) TT (4× 108 walks) (b) FS (4× 108 walks) (c) R8B (4× 108 walks) (d) CW (109 walks)

Fig. 8: Resource consumption behavior of FlashWalker

Fig. 9: FlashWalker speedup under different optimizations

performance improvements over CPU solutions [40]–[42].
These systems are built by integrating a number of graph
analysis software frameworks and libraries optimized specifi-
cally for GPUs. However, most of these frameworks require a
costly offline or online preprocessing to transform irregular
data layout into regular one, and such preprocessing often
dominates the entire execution process, e.g., the preprocessing
time of Gunrock [40] reaches twice the processing time.

To address the slow data movement issue, processing-in-
memory (PIM) has been applied to the graph computing. There
are categories of PIM for graph processing: 1) processing
near memory (PnM) with the logical layer of 3D stacked
memory [43]–[46], and 2) processing using memory (PuM)
by adopting a scheme based on ComputeDRAM [47], [48],
and 3) in-situ computing by exploiting the properties of
ReRAM [49]–[52]. However, these PIM proposals suffer from
the limited storage capacity of the memory. For example, the
current 3D stacked memory is smaller than 64GB, and the
commodity DRAM capacity is smaller than 100 GB in a
commodity server. The capacity-limited PIM fails to handle
more larger data sets.

As for domain-specific accelerators, Graphicionado [53]
adopts a pipelined architecture, and introduces a large capacity
on-chip eDRAM to improve the locality of vertex property
updates. However, its update process still suffers from irregu-
larities. To address this issue, GraphPulse [37] adopts an event-
driven model and proposes the coalesce operation, making
serialization unnecessary.

There are some prior works on random walk specific graph
systems. DrunkardMob [14] adopts a lightweight scheduling
strategy and follows GraphChi’s [18] iteration-based model
to implement a random walk system on a single PC. Graph-
Walker [17] optimizes the I/O management mechanism and

proposes the asynchronous updating scheme, improving the
performance significantly. KnightKing [12] designs a dis-
tributed graph random walk system, and optimizes the walk
updates for complex random walk algorithms.

VI. CONCLUSION

Graph random walk algorithms are important and basic
to graph analytic. However, the state-of-the-art random walk
processing systems are bounded by slow disk I/O bandwidth.
To address this issue, we propose FlashWalker, an in-storage
accelerator for random walk that moves walk updating close
to graph data stored in flash memory, by exploiting signifi-
cant parallelisms inside SSD. Featuring a heterogeneous and
parallel processing system, FlashWalker includes a board-level
accelerator, channel-level accelerators, chip-level accelerators,
with small circuit overhead. To address challenges posed by
the tight resource constraints for processing large scale graph,
we propose novel designs: storing a few popular subgraphs
in accelerators, the pre-walking for dense walks, two opti-
mizations for search for the subgraph mapping table, and a
subgraph scheduling algorithm. Our evaluation shows Flash-
Walker reduces the execution time of random walk algorithms
by up to 660.50×, compared with the state-of-the-art system
for random walk algorithms.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-
ments and helpful suggestions. This work is supported jointly
by National Natural Science Foundation of China (NSFC)
under grants No. 61825202, 62072198, 61732010, and USA
NSF 1745748.

REFERENCES

[1] Z. Bar-Yossef, A. C. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz,
“Approximating aggregate queries about web pages via random walks,”
in Proceedings of VLDB, 2000, pp. 535–544.

[2] K. Yang, X. Ma, S. Thirumuruganathan, K. Chen, and Y. Wu, “Random
walks on huge graphs at cache efficiency,” in Proceedings of SOSP,
2021, pp. 311–326.

[3] G. Jeh and J. Widom, “SimRank: a measure of structural-context
similarity,” in Proceedings of SIGKDD, 2002, pp. 538–543.

[4] R. Li, J. X. Yu, X. Huang, and H. Cheng, “Random-walk domination
in large graphs,” in Proceedings of ICDE, 2014, pp. 736–747.

[5] P. Yi, H. Xie, Y. Li, and J. C. S. Lui, “A bootstrapping approach
to optimize random walk based statistical estimation over graphs,” in
Proceedings of ICDE, 2021, pp. 900–911.

[6] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scaling fully
personalized pagerank: Algorithms, lower bounds, and experiments,”
Internet Math., vol. 2, no. 3, pp. 333–358, 2005.

[7] N. Przulj, “Biological network comparison using graphlet degree distri-
bution,” Bioinformatics, vol. 26, no. 6, pp. 853–854, 2010.

[8] S. Fortunato and D. Hric, “Community detection in networks: A user
guide,” CoRR, vol. abs/1608.00163, 2016.

[9] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: online learning of
social representations,” in Proceedings of SIGKDD, 2014, pp. 701–710.

[10] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of SIGKDD, 2016, pp. 855–864.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” IEEE Data Engineering Bulletin,
vol. 40, no. 3, pp. 52–74, 2017.

[12] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang, “KnightKing:
a fast distributed graph random walk engine,” in Proceedings of SOSP,
2019, pp. 524–537.

[13] A. Jangda, S. Polisetty, A. Guha, and M. Serafini, “Accelerating graph
sampling for graph machine learning using GPUs,” in Proceedings of
EuroSys, 2021, pp. 311–326.

[14] A. Kyrola, “DrunkardMob: billions of random walks on just a PC,” in
Proceedings of RecSys, 2013, pp. 257–264.

[15] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu, “C-SAW: a framework
for graph sampling and random walk on GPUs,” in Proceedings of SC,
2020, pp. 56:1–56:15.

[16] S. Sun, Y. Chen, S. Lu, B. He, and Y. Li, “ThunderRW: an in-memory
graph random walk engine,” Proceedings of the VLDB Endowment,
vol. 14, no. 11, pp. 1992–2005, 2021.

[17] R. Wang, Y. Li, H. Xie, Y. Xu, and J. C. S. Lui, “GraphWalker: an
I/O-efficient and resource-friendly graph analytic system for fast and
scalable random walks,” in Proceedings of ATC, 2020, pp. 559–571.

[18] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: large-scale graph
computation on just a PC,” in Proceedings of OSDI, 2012, pp. 31–46.

[19] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in Proceedings
of ATC, 2008, pp. 57–70.

[20] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu,
“MQSim: A framework for enabling realistic studies of modern multi-
queue SSD devices,” in Proceedings of FAST, 2018, pp. 49–66.

[21] M. Jung, J. Zhang, A. H. M. O. Abulila, M. Kwon, N. Shahidi, J. Shalf,
N. S. Kim, and M. T. Kandemir, “SimpleSSD: modeling solid state
drives for holistic system simulation,” IEEE Computer Architecture
Letters, vol. 17, no. 1, pp. 37–41, 2018.

[22] V. S. Mailthody, Z. Qureshi, W. Liang, Z. Feng, S. G. D. Gonzalo,
Y. Li, H. Franke, J. Xiong, J. Huang, and W. Hwu, “DeepStore: in-
storage acceleration for intelligent queries,” in Proceedings of MICRO,
2019, pp. 224–238.

[23] K. K. Matam, G. Koo, H. Zha, H. Tseng, and M. Annavaram,
“GraphSSD: graph semantics aware SSD,” in Proceedings of ISCA,
2019, pp. 116–128.

[24] S. Gupta, J. Morris, M. Imani, R. Ramkumar, J. Yu, A. Tiwari, B. Ak-
sanli, and T. S. Rosing, “THRIFTY: training with hyperdimensional
computing across flash hierarchy,” in Proceedings of ICCAD, 2020, pp.
27:1–27:9.

[25] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
erGraph: distributed graph-parallel computation on natural graphs,” in
Proceedings of OSDI, 2012, pp. 17–30.

[26] “Chisel/FIRRTL hardware compiler framework.” [Online]. Available:
https://www.chisel-lang.org

[27] C.Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[28] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,

P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
“FreePDK: an open-source variation-aware design kit,” in Proceedings
of MSE, 2007, pp. 173–174.

[29] M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie, “DESTINY: a tool
for modeling emerging 3D NVM and eDRAM caches,” in Proceedings
of DATE, 2015, pp. 1543–1546.

[30] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization, vol. 14, no. 2, pp. 14:1–14:25, 2017.

[31] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. L. Jacob, “DRAMsim3:
A cycle-accurate, thermal-capable DRAM simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 110–113, 2020.

[32] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of AAAI,
2015, pp. 4292–4293.

[33] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi, “Measuring
user influence in Twitter: The million follower fallacy,” in Proceedings
of ICWSM, 2010, pp. 10–17.

[34] Friendster social network, “Friendster: the online gaming social net-
work,” https://archive.org/details/friendster-dataset-201107.

[35] C. L. A. Clarke, N. Craswell, and I. Soboroff, “Overview of the TREC
2009 web track,” in Proceedings of TREC, 2009.

[36] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable SIMD-efficient
graph processing on GPUs,” in Proceedings of PACT, 2015, pp. 39–50.

[37] S. Rahman, N. B. Abu-Ghazaleh, and R. Gupta, “GraphPulse: an event-
driven hardware accelerator for asynchronous graph processing,” in
Proceedings of MICRO, 2020, pp. 908–921.

[38] N. Sundaram, N. Satish, M. M. A. Patwary, S. Dulloor, M. J. Anderson,
S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat: high performance
graph analytics made productive,” Proceedings of the VLDB Endowment,
vol. 8, no. 11, pp. 1214–1225, 2015.

[39] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: edge-centric
graph processing using streaming partitions,” in Proceedings of SOSP,
2013, pp. 472–488.

[40] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: a high-performance graph processing library on the GPU,”
in Proceedings of PPoPP, 2016, pp. 11:1–11:12.

[41] Z. Fu, B. B. Thompson, and M. Personick, “MapGraph: A high level API
for fast development of high performance graph analytics on GPUs,” in
Proceedings of GRADES, 2014, pp. 2:1–2:6.

[42] H. Liu and H. H. Huang, “Enterprise: breadth-first graph traversal on
GPUs,” in Proceedings of SC, 2015, pp. 68:1–68:12.

[43] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
ISCA, 2015, pp. 105–117.

[44] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie,
and H. Yang, “GraphH: A processing-in-memory architecture for large-
scale graph processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 38, no. 4, pp. 640–653, 2019.

[45] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “GraphP: reducing communication for PIM-based graph
processing with efficient data partition,” in Proceedings of HPCA, 2018,
pp. 544–557.

[46] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:
enabling instruction-level PIM offloading in graph computing frame-
works,” in Proceedings of HPCA, 2017, pp. 457–468.

[47] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: in-
memory compute using off-the-shelf DRAMs,” in Proceedings of MI-
CRO, 2019, pp. 100–113.

[48] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun,
J. Beránek, K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria, L. Gi-
aninazzi, I. Stefan, J. Gómez-Luna, J. Golinowski, M. Copik, L. Kapp-
Schwoerer, S. D. Girolamo, N. Blach, M. Konieczny, O. Mutlu, and
T. Hoefler, “SISA: set-centric instruction set architecture for graph
mining on processing-in-memory systems,” in Proceedings of MICRO,
2021, pp. 282–297.

[49] G. Dai, T. Huang, Y. Wang, H. Yang, and J. Wawrzynek, “GraphSAR: a
sparsity-aware processing-in-memory architecture for large-scale graph
processing on ReRAMs,” in Proceedings of ASPDAC, 2019, pp. 120–
126.

[50] L. Song, Y. Zhuo, X. Qian, H. H. Li, and Y. Chen, “GraphR: accelerating
graph processing using ReRAM,” in Proceedings of HPCA, 2018, pp.
531–543.

[51] M. Zhou, M. Imani, S. Gupta, Y. Kim, and T. Rosing, “GRAM: graph
processing in a ReRAM-based computational memory,” in Proceedings
of ASPDAC, 2019, pp. 591–596.

[52] N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swami-
nathan, J. Sampson, Y. Chen, and V. Narayanan, “GaaS-X: graph
analytics accelerator supporting sparse data representation using crossbar
architectures,” in Proceedings of ISCA, 2020, pp. 433–445.

[53] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in Proceedings of MICRO, 2016, pp. 56:1–56:13.

https://www.chisel-lang.org
http://www.clifford.at/yosys/

	Introduction
	Background and Motivation
	Graph Random Walk
	Drawbacks of Existing Systems
	Modern SSD Architecture

	FlashWalker Design
	System Overview
	Design Philosophy
	Overall Architecture

	Chip-level Accelerator
	Channel-level Accelerator
	Board-level Accelerator

	Evaluation
	Experimental Setup
	Speedup over GraphWalker
	FlashWalker Performance Projection
	Resource Consumption Behavior of FlashWalker
	Speedup of Proposed Optimizations

	Related Work
	Conclusion
	References

