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Abstract

We call a matrix algorithm superfast (aka running at sublinear cost) if it involves much fewer
flops and memory cells than the matrix has entries. Using such algorithms is highly desired
or even imperative in computations for Big Data, which involve immense matrices and are
quite typically reduced to solving linear least squares problem and/or computation of low rank
approximation of an input matrix. The known algorithms for these problems are not superfast,
but we prove that their certain superfast modifications output reasonable or even nearly optimal
solutions for large input classes. We also propose, analyze, and test a novel superfast algorithm
for iterative refinement of any crude but sufficiently close low rank approximation of a matrix.
The results of our numerical tests are in good accordance with our formal study.

Keywords: Superfast (sublinear cost) algorithms, Linear least squares problem, Low rank ap-
proximation, Johnson and Lindenstrauss lemma, Iterative refinement

2020 Math. Subject Classification: 65Y20, 65F05, 65F55, 68Q25, 68W20, 68W25

1 Introduction to dual superfast matrix algorithms

We study Least Squares Solution of a Highly Overdetermined Linear System of Equations, aka Lin-
ear Least Squares Problem (LLSP) for short,1 and Low Rank Approximation of a matrix (LRA).2

Both problems are among the most fundamental in Numerical Linear Algebra and Data Mining
and Analysis, with applications ranging from PDEs to machine learning theory, neural networks,
term document data, and DNA SNP data. See the classical books [36] and [4] for LLSP and more
recent coverage of both LLSP and LRA in the book [69] and survey [41]; also see [18], [61], [7], [3],

1Some authors call this problem differently, e.g., Linear Least Squares Approximation Problem [41] or Linear
Regression [69].

2In the study of LRA it is customary to rely on an informal basic concept of low rank; we also use other informal
concepts such as “large”, “small”, “ill-” and “well-conditioned”, “near”, “close”, and “approximate”, quantified in
context, in our high level presentation but we complement this description with formal presentation and analysis.
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[20], [40], and the bibliography therein for LLSP and [39], [32], [14], [67], [46], [68], [35], [42], [6],
[70], and the bibliography therein for LRA.

An algorithm runs superfast (aka at sublinear cost) if for an m × n input matrix it involves
o(mn) flops,3 thus accessing only a small fraction, o(mn) of all its mn entries – at most two entries
per flop. Can such an algorithm output a meaningful solution to LLSP and/or LRA? No, it cannot
for worst case inputs, for which the output error of any superfast algorithm are arbitrarily large,
but one cannot accept this “No” for an answer in the study of Big Data (e.g., unfolding matrices
of multidimensional tensors): quite typically they are so immense that realistically one can access
only a tiny fraction of their entries and must perform computations superfast.

Empirically one can solve LRA by means of applying Cross–Approximation C-A iterations4

(aka Adaptive Cross–Approximation) iterations (see [65], [30], [31], [29], [66], [5], [26], [9], [8], [25],
[27], [46], [45]), which can be viewed as specialization of ADI celebrated techniques to LRA, but
the power of C-A iterations relies on their surprisingly fast and consistent global convergence, right
from the start, whose formal support has long remained overdue; a very limited recent support in
[38] should motivate further effort.

Dramatic progress in the LLSP-LRA area was based on the Johnson and Lindenstrauss (JL)
transform of an input matrix into a matrix of a much smaller size, for which optimal solution is
computed superfast and is still nearly optimal with a high probability (whp) for the original task of
a much larger size (cf. [33], [17], [41]). Overall cost of the solution, however, remains superlinear,
dominated by the cost of the JL transform.

In this paper we explore the following dual way to circumventing the conundrum: in addition
to the algorithms that at superlinear cost compute solution for ANY input matrix whp we devise,
analyze, and test superfast ones, which solve the same problem for MANY input matrices, namely,
for their large and important classes.

Towards our goal we first introduce a natural probabilistic structure in the space of input
matrices, then trivialize the known JL transforms to run them superfast, and finally prove that for
a random input the resulting algorithms whp output nearly optimal solution to LLSP as well as
meaningful LRA. Thus our superfast algorithms dramatically accelerate solution for a large class
of inputs based on dual JL transform.

One would prefer to compute solution superfast for all inputs, but
(a) as we said, the output errors of any superfast algorithm can be arbitrarily large for both

LLSP and LRA and
(b) the user should be satisfied even if the problem is solved just for the input class of her/his

interest.
Furthermore we can strengthen the chances for success of our superfast algorithms by reapplying

them under modification of their parameters and/or superfast pre-processing of an input matrix. In
this way we narrow the need for application of the known solution algorithms that run at superlinear
cost, and this gain is significant for LRA according to Corollary 10.3 and Remark C.1 and for LLSP
according to our extensive tests with both synthetic and real world inputs.

We have almost instantly arrived at formal support of our superfast dual algorithm for LLSP, but
technical challenge was significantly greater in the case of LRA, and our progress was restricted to
input matrices admitting sufficiently close LRA. Our effort, however, has been rewarded when with
more work we devised an algorithm for superfast iterative refinement of any crude but reasonably
close LRAs, say, those output by our superfast algorithms, C-A iterations, or another known
algorithm, which must sacrifice so called “relative error” property of output accuracy – within a

3“Flop” stands for “floating point arithmetic operation”.
4This concept has been coined by E.E. Tyrtyshnikov in [66]).
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factor of 1 + ε from the optimal – in order to ensure their numerical stability [23, Thm. 3.4]. We
analyz, extensively test this refinement algorithm, and in Part III propose to enhance its power by
combining it with C-A iterations.

We hope that our progress will motivate further effort towards the design, analysis, and imple-
mentation of superfast algorithms for LLSP, LRA, and possibly other challenges in matrix compu-
tation (cf. Part III of our paper).

Some related works (also see the end of Section 6). Our dual JL transforms extend pioneering
dual matrix algorithms devised, analyzed, and tested in [54], [57], [56], [55], [59], [60], [49], [52],
and [53] for LRA and other fundamental matrix computations such as Gaussian elimination with
no pivoting. In Part II we compare our study with an alternative JL-like approaches to LRA in
[52] and [53], which had preliminary versions in the reports [50], [51], and [47]. The report [49] has
been devoted to a distinct and more primitive approach to superfast iterative refinement of LRA
– based on recursive application of a superfast Subalgorithm for LRA given as a part of an input,
whereas for our present algorithm for iterative refinement of LRA we do not assume that such a
basic Subalgorithm is available.

Organization of the paper. In Parts I and II we recall some related known works, specify
LLSP and LRA, and present and analyze our algorithms in some detail. The main result of Part I
is very simple, but introduces our duality approach, and is well supported with our extensive tests.
We devote short Part III to conclusions.

PART I. Superfast Approximate Least Squares Solution of a
Highly Overdetermined Linear System of Equations (LLSP)

2 Introduction to Superfast LLSP

Our progress in LLSP. In the beginning of Section 4 we demonstrate that the output of any
superfast algorithm fails miserably for the solution to LLSP problem on the worst case inputs, but
next we circumvent the problem by applying a dual variation of the Sarlòs randomized algorithm
of [63].

That algorithm implements the JL transform by means of multiplying an input matrix of LLSP
by a random rectangular multiplier, which dramatically decreases the input size of LLSP. Sarlòs
proves that the solution of the resulting LLSP is also a nearly optimal solution of the original LLSP
of a much larger size whp in the case of proper choices of a multiplier, in particular in the case of a
Gaussian random multiplier, that is, a matrix filled with independent identically distributed i.i.d.
Gaussian (aka normal) random variables. Hereafter we call such a matrix just Gaussian.

In his algorithm the original input matrix can be assumed to be orthogonal5 without loss of
generality [63], and then its product with a Gaussian multiplier of a smaller size is Gaussian, by
virtue of the well-known orthogonal invariance property. Now we observe that his result still holds
for the solution of the dual LLSP, with a Gaussian input matrix and any orthogonal multiplier (see
our Theorem 4.1).

Is this observation of any interest? Yes, because by choosing sparse orthogonal multipliers we
arrive at superfast algorithms that compute nearly optimal solutions to LLSP for a large class of
inputs since they do so for a random input whp.

Organization of the rest of PART I. In the next section we recall the LLSP and its
randomized approximate solution of [63]. We present its superfast variation in Section 4. In

5A real m×n matrix M is orthogonal or orthonormal if MTM = In or MMT = Im for MT denoting the transpose
of M and Is denoting the s× s identity matrix.
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Section 5 we cover our numerical tests.

3 Randomized Approximate Solution of an Overdetermined Lin-
ear System of Equations

Problem 3.1. [Least Squares Solution of an Overdetermined Linear System of Equations (LLSP).]
Given two integers m and d such that 1 ≤ d < m, a matrix A ∈ Rm×d, and a vector b ∈ Cm,
compute a vector x ∈ Rd that minimizes the spectral norm ||Ax− b|| or equivalently computes the
subvector x = (yj)

d−1
j=0 of the vector

y = (yj)
d
j=0 = argminv ||Mv|| such that M = (A | b) and v =

(
x
−1

)
. (3.1)

The minimum norm solution to this problem is given by the vector x = A+b for A+ denoting
the Moore–Penrose pseudo inverse of A; A+b = (A∗A)−1A∗b if a matrix A has full rank d.

Algorithm 3.1. (Randomized Approximate Solution of LLSP from [63].)

Input: An m× (d+ 1) matrix M .

Output: A vector x ∈ Rd approximating a solution of Problem 3.1.

Initialization: Fix an integer s such that d ≤ s� m.

Computations: 1. Generate a matrix F ∈ Rs×m.

2. Compute a solution x of Problem 3.1 for the s× (d+ 1) matrix FM .

Clearly, the transition to an input matrix FM simplifies Problem 3.1 because its size decreases,
and the simplification is dramatic where s � m, while the following theorem shows that the
algorithm still outputs nearly optimal approximate solution to Problem 3.1 for M whp if

√
s F is

in the linear space of s×m Gaussian matrices.6

Theorem 3.1. (Error Bound for Algorithm 3.1. See [63] or [69, Theorem 2.3].) Let us be given
two integers s and d such that 0 < d ≤ s, a real m × (d + 1) matrix M ∈ Rm×(d+1), an s × m
Gaussian matrix F , and two tolerance values γ and ε such that

0 < γ < 1, 0 < ε < 1, and s =
(
d+ log

(1

γ

)) η

ε2
(3.2)

for a constant η. Then

Probability
{

1− ε ≤ 1√
s

||FMy||
||My||

≤ 1 + ε for all vectors y 6= 0
}
≥ 1− γ. (3.3)

The computation of the matrix FM involves order of dsm ≥ d2m flops; for m � s this
dominates the overall arithmetic computational cost of the solution of Problem 3.1.

The current record upper estimate for this cost is O(d2m), while the record lower bound has
order (m+ d)sε−1 log(md) provided that the relative output error norm is within a factor of 1 + ε
from its minimal value (see [69, Section 2.1]).

6Such an approximate solution serves as a pre-processor for practical implementation of numerical linear algebra
algorithms for Problem 3.1 of least squares computation [41, Section 4.5], [3].
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4 Superfast Dual LLSP

Any superfast algorithm for LLSP misses an input entry mi,j for some pair i and j; therefore for
its output the norm ||My|| exceeds the norm ||Mxoptimal|| by an arbitrarily large factor for the
worst case input M . Indeed modification of mi,j does not change the output of such an algorithm
but can dramatically change an optimal solution to the LLSP.7 The argument can be immediately
extended to randomized algorithms, and so any superfast deterministic or randomized algorithm
fails miserably on some inputs. These observations should make the following simple extension of
Theorem 3.1 quite interesting.

Theorem 4.1. [Error Bounds for Dual LLSP.] Suppose that we are given three integers s, m, and
d such that 0 < d ≤ s < m, and two tolerance values γ and ε satisfying (3.2). Define an orthogonal
matrix Qs,m ∈ Rs×m and an m× (d+ 1) Gaussian matrix Gm,d+1. Write

F := a Qs,m and M := b Gm,d+1 (4.1)

for two scalars a and b such that ab
√
s = 1. Then

Probability
{

1− ε ≤ ||FMz||
||Mz||

≤ 1 + ε for all vectors z 6= 0
}
≥ 1− γ.

Proof. The claim follows from Theorem 3.1 because the s × (d + 1) matrix 1
abFM is Gaussian by

virtue of orthogonal invariance of Gaussian matrices.

The theorem shows that for a Gaussian matrix M and any properly scaled orthogonal matrix F
of (4.1), Algorithm 3.1 outputs a solution of Problem 3.1 that whp is optimal up to a factor lying
in the range [1− ε, 1 + ε], and clearly, these computations become superfast for a proper choice of
a sparse multiplier F .

5 Numerical Tests for LLSP

In this section we present the results of our tests of superfast dual version of Algorithm 3.1 for both
synthetic inputs from [3] and real-world data. We worked with random orthogonal multipliers, let
x := arg minu ||FAu− Fb||, and computed the relative residual norm

||Ax− b||
minu ||Au− b||

.

In our tests these ratios quite closely approximated 1 from above.
We used the following random scaled orthogonal multipliers F ∈ Rs×m:
(i) full rank s×m submatrices of m×m random permutation matrices,
(ii) ASPH matrices of our Appendix A, recalled from [52] and [53]. They are output after

performing just the first three recursive steps out of log2m steps involved into the generation of
the matrices of subsampled randomized Hadamard thansform, and

(iii) block permutation matrices formed by filling s×m matrices with c = m/s identity matrices,
each of size s× s, and by performing random column permutations; we have chosen c = 8 to match
the computational cost of the application of ASPH multipliers.

We also included the test results with s×m Gaussian multipliers, for comparison.
We performed our tests on a machine with Intel Core i7 processor running Windows 7 64bit;

we invoked the lstsq function from Numpy 1.14.3 for solving the LLSPs.

7Here we assume that yj 6= 0. Otherwise we could delete the jth column of M , thus decreasing the input size.
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Figure1:RelativeresidualnormintestswithGaussianinputs

5.1 SyntheticInput Matrices

Forsyntheticinputs,wegeneratedinputmatricesA∈Rm×dbyfollowing(withafewmodifications)
therecipesofextensivetestsin[3],whichcomparedtherunningtimeoftheregularLLSPproblems
andthereducedoneswith WHT,DCT,andDHTpre-processing.
Weusedinputmatrices Aofthesizes4096×50and16834×100beingeitherGaussianmatrices

orrandomill-conditionedmatrices. Wegeneratedtheinputvectorsb= 1
||Aw||Aw+

0.001
||v||v,where

wandvwererandomGaussianvectorsofsizedandm,respectively,andsobwasintherangeof
Auptoasmallerterm0.001||v||v.
Figure1displaysthetestresultsforGaussianinputmatrices.
Figure2displaysthetestresultsforill-conditionedrandominputsdefinedbytheirSVDA=

UΣV∗wheretheorthogonalmatricesUandVofsingularvectorsweregivenbytheQfactorsin
thethinQR-factorizationoftwoindependentGaussianmatricesandwhereΣ=diag(σj)jwith
σj=10

5−jforj=1,2...,14andσj=10
−10forj>14.

OurinputmatricesAwerehighlyover-determined,havingmanymorerowsthancolumns. We
havechosens=dh,h=2,3,4,5,6forthemultipliersF.Bydecreasingtheintegersandtheratio
h=s/dwecouldhaveacceleratedouralgorithm,butwehadtokeepthemlargeenoughinorder
toyieldaccuratesolution.
Weperformed100testswith100randommultipliersforeverytripleoftheinputclass,multiplier

class,andtestsizes(cf.(3.2))andcomputedthemeanofthe100relativeresidualnormsofthe
outputs.
WedisplaythetestresultsinFigures1and2withratio hmarkedonthehorizontalaxis.The

testsshowthatourmultiplierswereconsistentlyeffectiveforrandommatrices.Theperformance
wasnotaffectedbytheconditioningofinputmatrices.
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Figure2:Relativeresidualnormintestswithill-conditionedrandominputs

5.2 Red WineQualityDataandCaliforniaHousingPricesData

Inthissubsectionwepresentthetestresultsforsomerealworldinputs,namelytheRed Wine
QualityDataandCaliforniaHousingPricesData.Foreachtripleofthedatasets,multipliertype,
andmultipliersize,werepeatedthetestfor100randommultipliersandcomputedthemeanrelative
residualnorm.TheresultsforthesetwoinputclassesaredisplayedinFigures3and4.

11physiochemicalfeaturedataoftheRed WineQualityDatasuchasfixedacidity,residual
sugarlevel,andpHlevelweretheinputvariablesinourtestsandonesensorydatawinequality
weretheoutputdata;thetestscovered1599variantsofthePortuguesewine”VinhoVerde”.See
furtherinformationin[12].Thisdatasetisoftenappliedinregressionteststhatusephysiochemical
dataofaspecificwineinordertopredictitsquality,andamongvarioustypesofregressionLLSP
algorithmsareconsideredapopularchoice.
Fromthisdatasetweconstructeda2048×12inputmatrixAwitheachrowrepresentingone

variantofredwine,andwithcolumnsconsistingofabiascolumnandelevenphysiochemicalfeature
columns.Theinputvectorbwasavectorconsistingofthewinequalitylevel(between0and10)
foreachvariant. Wekeptthe1599rowsoftheoriginaldata,paddedtherestoftherowswith
zeros,andperformedafullrowpermutationofA.

TheCaliforniaHousingPricesdataappearedin[48]andwerecollectedfromthe1990California
Census,including9attributesforeachofthe20,640BlockGroupsobserved.Thisdatasetisused
forregressiontestsinordertopredictthemedianhousingvalueofacertainareagivencollected
informationofthisarea,suchaspopulation,medianincome,andhousingmedianage.
Werandomlyselected16,384observationsfromthedatasetinordertoconstructanindependent

inputmatrixA0ofsize16384×8andadependentinputvectorb∈R
16384. Furthermore,we

augmentedA0withasinglebiascolumn,i.e.A= A0 1.

WecomputedapproximatesolutionsbyapplyingthealgorithmsupportingTheorem4.1andby
usingourmultipliers.Figure3and4showthattheresultingsolutionwasalmostasaccurateas
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theoptimalsolution. Moreover,usingGaussianmultipliersratherthanoursparsemultipliersonly
enabledamarginaldecreaseofrelativeresidualnorm.

PARTII.SuperfastLowRankApproximationDirectedbyLever-
ageScores

6 IntroductiontosuperfastcomputationofLRA

EverysuperfastLRAalgorithmfailsmiserablyontheinputmatricesofthesmallfamiliesofAp-
pendixB,butsimilarlytothecaseofLLSPwedonotstopatthatpoint.In[52]and[53]the
authorsextendoursuperfastsolutionofLLSPofPartItosuperfastLRAwhp.8

Namely,intheknownrandomizedLRAofamatrixM bymeansofsubspaceprojection(cf.,
e.g.,[32]or[67])aJLtransformisperformedbymeansofcomputingthematrixFMorMH fora
randomrectangularmultiplierForH(calledatestmatrix)andthenLLSPissolvedforaninput

8In[52]extensionreliesonsolvinggeneralizedLLSP,whereamatrixBsubstitutesforavectorbontheright-hand
side.TheSarĺossolutionandourvariationofitcanbereadilyextended.
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matrix FM or MH of a smaller size. As in the case of LLSP, it has been proved that for Gaussian,
SRHT, SRFT, and some other random test matrices the output LRA is close to optimal whp, and
that the computation can be performed superfast except for the stage of computing the product
FM or MH. By choosing a proper sparse test matrix F or H, [52] and [53] run the entire LRA
algorithm superfast.

In both papers the authors define a probabilistic structure in the input space and then prove
that their output LRAs are reasonably close whp, although are not optimal. Furthermore in [49]
the authors propose, analyze, and test a superfast extension to LRA of the classical algorithm for
iterative refinement of the solution of a matrix equation, which is based on recursive application of
the superfast algorithm of [52] as a basic Subalgorithm given as a part of an input.

Next we follow this pattern but use a different framework. Instead of applying subspace projec-
tion, we rely on the random sampling algorithm of [19], which performs a JL transform by means
of sampling relatively small numbers of rows and columns of an input matrix. This sampling is
directed by sampling probabilities, called leverage scores; the algorithm outputs nearly optimal
LRA whp for proper leverage scores and apart from the stage of their computation runs superfast.

We arrive at superfast algorithms for dual LRA by trivializing that stage and then prove that
they still output reasonably close LRA of matrices of a large class. This follows from our stronger
result that whp these algorithms output close LRA of a random input matrix provided that it
admits sufficiently close LRA, that is, lies near a matrix of low rank within a sufficiently small
distance specified in Theorem 8.3 and Remark 8.6 and estimated empirically in Section 11.2.

Actually, whp our superfast algorithms compute a close LRA of any matrix admitting sufficiently
close LRA and pre-processed with Gaussian multipliers (see Theorem C.6). Of course, we cannot
perform such pre-processing superfast, for otherwise we would have arrived at superfast LRA for a
worst case input, but empirically superfast pre-processing with various sparse orthogonal multipliers
works as efficiently (see Remark C.1).

[52] and [53] obtain similar results under the same randomization model, but rely on distinct
and more primitive choices of test matrices and arrive at weaker LRAs. In particular in our present
paper and both [52] and [53] the upper estimates for the output errors grow as an input matrix
deviates from a low rank matrix, but this growth is the slowest in our case because leverage scores
are not too much affected by the perturbation of an input matrix (see Section 11.2).

Our most surprising and practically promising novelty of Part II is a novel algorithm for superfast
refinement of a crude but reasonably close LRA. We first observe that one can superfast compute
leverage scores of a low rank matrix, and in particular of LRA of a matrix. That observation
motivated our work on extension of the algorithms of [19] to superfast refinement of ANY crude but
reasonably close LRA of a matrix. This natural challenge turned out to be technically demanding,
but we succeeded based on estimating the angles between subspaces associated with singular vectors
and computed recursively in our refinement process.

As in [19], our algorithms output CUR LRA, which is a particularly memory efficient form of
LRA, traced back to [30], [29], and [31]. As in [19], our formal support of the proposed algorithm
requires sampling a fairly large numbers of rows and columns of an input matrix. In numerical tests
with real world data reported in [19], however, the algorithms of that paper succeeded with quite
reasonable numbers of row and column samples, and similarly in our tests presented in Section
11.1, our superfast refinement algorithm improved an initial LRA by sampling only a small number
of rows or columns at each iteration and output a close-to-optimal solution in a few iterations.

Related works: The papers [19] and [34] were the points of departure for our study of LRA
and its refinement, respectively. The first formal support for dual superfast LRA is due to the
papers [50], [51], and [47].

Organization of the rest of Part II. We devote the next section to background for LRA.

10



In Section 8 we recall subspace sampling algorithms of [19], directed by leverage scores. In Section
9 we cover randomized iterative refinement of a crude but sufficiently close LRA. In Section 10 we
prove that our superfast variation of the algorithms of [19] is accurate whp for a random input. In
Section 11.1 we present the results of our tests of randomized iterative refinement of Section 9. In
Section 11.2, the contribution of the third author, we cover our tests of the perturbations of leverage
scores caused by the perturbation of some real world inputs. In addition to the background material
of the next section, we recall such material also in the Appendix, in particular some background
on random matrices in Appendix C and the auxiliary algorithms of [19] for random sampling and
re-scaling in Appendix D.

7 Background for LRA

7.1 Matrix norms, pseudo inverse, and SVD

For simplicity we assume dealing with real matrices in Rp×q throughout. r-top SVD of a matrixM of
rank at least r is the decomposition Mr = U (r)Σ(r)V (r)T for the diagonal matrix Σ(r) = diag(σj)

r
j=1

of the r largest singular values of M and two orthogonal matrices U (r) and V (r) of the associated
top left and right singular spaces, respectively. Mr is said to be the r-truncation of M .

Mr = M for a matrix M of rank r, and then its r-top SVD is just its compact SVD

M = UMΣMV
T
M , for UM = U (r), ΣM = Σ(r), and VM = V (r).

M+ := VMΣ−1
M UTM is the Moore–Penrose pseudo inverse of M .

Hereafter || · || denotes the spectral norm, as in Part I, || · ||F denotes the Frobenius norm, and
by following [32] we use the unified notation ||| · ||| for both of these matrix norms.

Lemma 7.1. [The norm of the pseudo inverse of a matrix product.] Suppose that A ∈ Rk×r, B ∈
Rr×l, and the matrices A and B have full rank r ≤ min{k, l}. Then |||(AB)+||| ≤ |||A+||| |||B+|||.

7.2 2-factor LRA

A matrix M has ε-rank at most r if it admits approximation within an error norm ε by a matrix
M ′ of rank at most r or equivalently if there exist three matrices A, B and E such that

M = M ′ + E where |||E||| ≤ ε |||M |||, M ′ = AB, A ∈ Rm×r, and B ∈ Rr×n. (7.1)

ε-rank ρ of a matrix M is numerically unstable if ρth and (ρ+ 1)st or ρth and (ρ− 1)st largest
singular values of M are close to one another, but it is quite common to define numerical rank,
nrank(M), of a matrix M as its ε-rank for a tolerance ε fixed in context, e.g., depending on computer
precision, an input class and output requirement (cf. [24]).

A matrix admits its close approximation by a matrix of rank at most r if and only if it has
numerical rank at most r.

Theorem 7.1. [24, Theorem 2.4.8].) Write τr+1(M) := minN : rank(N)=r |||M − N |||. Then
τr+1(M) = |||M − Mr||| under both spectral and Frobenius norms: τr+1(M) = σr+1(M) under

the spectral norm and τr+1(M) = σF,r+1(M) :=
√∑

j>r σ
2
j (M) under the Frobenius norm.

11



7.3 Canonical CUR LRA and 3-factor LRA

For two sets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} define the submatrices

MI,: := (mi,j)i∈I;j=1,...,n,M:,J := (mi,j)i=1,...,m;j∈J , and MI,J := (mi,j)i∈I;j∈J .

Given an m × n matrix M of rank r and its nonsingular r × r submatrix G = MI,J one can
readily verify that M = M ′ for

M ′ = CUR, C = M:,J , U = G−1, and R = MI,:. (7.2)

We call the matrices G and U the generator and nucleus of CUR decomposition of M , respectively.
9

In the case of a matrix M of numerical rank r (7.2) defines its canonical CUR approximation
M ′ of rank r as long as the CUR generator G is nonsinguar, although this approximation M ′ can
be arbitrarily poor in the case of ill-conditioned generator G.

Generalize canonical CUR LRA by allowing to use k× l CUR generators G of (7.3) for k and l
satisfying

r ≤ k ≤ m, r ≤ l ≤ n (7.3)

and for the nucleus defined by the r-truncation of G as follows:

U := G+
r , ||U || = 1/σr(G).

Hereafter we follow [19] [14], [46] by studying such a canonical CUR LRA, for which the computation
of a nucleus involves kl memory cells and O(klmin{k, l}) flops.

Remark 7.1. In a more general definition of CUR LRA one fixes a pair of matrices C and R
made up of two sets of columns and rows of M and chooses any l×k nucleus U for which the error
matrix E = CUR −M has a smaller norm. In particular the Frobenius error norm is minimized
for the nucleus U = C+MR+, computed at superlinear cost (see [43, equation (6)]):

||E||F = ||M − CUR||F ≤ ||M − CC+M ||F + ||M −MR+R||F .

Unlike 2-factor LRA of (7.1), CUR LRA is a 3-factor LRA, which can generally be represented
as follows:

M = M ′ + E, |E| ≤ ξ, M ′ = ATB, A ∈ Rm×k, T ∈ Rk×l, B ∈ Rl×n, (7.4)

and one typically seeks LRA with k � m and/or l � n. The pairs of maps AT → A and B → B
as well as A→ A and TB → B turn a 3-factor LRA ATB of (7.4) into a 2-factor LRA AB of (7.1).

The r-top SVD and a CUR LRA of M are two important examples of 3-factor LRAs.

7.4 Principal Angle Distance

Definition 7.1. [34]. Let E1 and E2 be two subspaces of Rm, and let G, G⊥, H, and H⊥ be
matrices with orthonormal columns that generate subspace E1, (E1)⊥, E2, and (E2)⊥, respectively.
Define the Principal Angle Distance between E1 and E2:

Dist(E1, E2) = ||GT⊥H|| = ||HT
⊥G||. (7.5)

9The pioneering papers [30], [29], [31], [26],[27], [25], [44], and [46] define CGR approximations having nuclei G;
“G” can stand, say, for “germ”. We use the acronym CUR, which is more customary in the West. “U” can stand,
say, for “unification factor”, and we notice the alternatives of CNR, CCR, or CSR with N , C, and S standing for
“nucleus”, “core”, and “seed”.
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Remark 7.2. Let E1 and E2 be two linear subspaces of Rm. Then
(i) Dist(E1, E2) ranges from 0 to 1,
(ii) Dist(E1, E2) = 0 if and only if Span(E1) = Span(E2), and
(iii) Dist(E1, E2) = 1 if rank(E1) 6= rank(E2).

8 Linear least squares and LRA computation with leverage scores

In this section we recall statistical approach to the solution of generalized LLSP and the compu-
tation of CUR generators for LRA by means of subspace sampling directed by leverage scores. We
refer the reader to Appendix C for background on random matrix computations.

8.1 Definition of rank-r leverage scores

Definition 8.1. Given an m× n matrix M , with σr(M) > σr+1(M), and its SVD

M =
[
U (r) U⊥

] [Σ(r)

Σ⊥

] [
(V (r))T

V T
⊥

]
(8.1)

where U (r) and V (r) are m× r and n× r orthogonal matrices, write

γi :=
r∑
j=1

V (r)(i, j)2, for i = 1, 2, . . . , n, and (8.2)

γ̃i :=

r∑
j=1

U (r)(i, j)2, for i = 1, 2, 3, . . . ,m, (8.3)

and call γi and γ̃i the rank-r Column and Row Leverage Scores of M , respectively.

Remark 8.1. Notice that
∑m

i=1 γ̃i =
∑n

i=1 γi = r. Therefore these row/column leverage scores
naturally define a probability distribution. In fact, we can fix β, 0 < β ≤ 1, and by applying one
of Algorithms D.1 and D.2 of Appendix D, reproduced from [19], compute the sampling probability
distribution {pi|i = 1, ..., n} such that

pj > 0, pj ≥ βγj/r for j = 1, . . . , n, and
n∑
j=1

pj = 1. (8.4)

Given γ̃i, we can fix β, 0 < β ≤ 1, and similarly compute distribution {p̃i|i = 1, ...,m} such that

p̃j > 0, p̃j ≥ βγ̃j/r for j = 1, . . . ,m,
m∑
j=1

p̃j = 1. (8.5)

Remark 8.2. Here we assume that σk(M) > σk+1(M); then the k-top left and right singular spaces
of M are uniquely defined.
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8.2 LRA based on solving generalized LLSP and directed by leverage scores

Theorem 8.1 (Adapted from Theorem 5 [19]). Let γ̃i for i = 1, ...,m be the rank-r row leverage
scores of a rank r matrix A ∈ Rm×r and let M ∈ Rm×n. Fix three positive numbers ε < 1,
ξ < 1, and β ≤ 1, and compute probability distribution {p̃i|i = 1, ...,m} satisfying relationships
(8.5). Write l := 1296β−1r2ε−2ξ−4 and let S and D be the sampling and scaling matrices output
by Algorithm D.1. Then

rank(DTSTA) = r and ||AX̃ −M ||F ≤ (1 + ε)||AA+M −M ||F (8.6)

with a probability no less than 1− ξ where

X̃ := (DTSTA)+DTSTM. (8.7)

Sampling directed by leverage scores has two advantages:
(1) Even with sampling a small number of rows of the matrices A and M we can obtain a very

accurate solution, whose error matrix E = AX̃ −M satisfies

||E||F ≤ (1 + ε) minX ||AX −M ||F (8.8)

whp for any fixed positive ε.
(2) Instead of solving generalized LLSP with matrices A and M at superlinear cost we solve

it superfast for matrices DTSTA and DTSTM of much smaller sizes, and whp this yields a very
accurate solution to the original generalized LLSP, defined by matrices A and M .

8.3 Matrix CUR LRA directed by leverage scores

The CUR LRA algorithms of [19], implementing this approach, outputs CUR LRA of a matrix M
such that whp

||M − CUR||F ≤ (1 + ε)σF,r+1 (8.9)

for σF,r+1 of Theorem 7.1 and any fixed positive ε. The algorithm is superfast even for the worst
case input, except for the stage of computing leverage scores.

Let us supply some details. Let Mr = U (r)Σ(r)V (r)T be r-top SVD where U (r) ∈ Rm×r,
Σ(r) ∈ Rr×r, ,V (r)T = (t

(r)
j )nj=1 ∈ Rr×n and σr(M) > σr+1(M).

Let scalars γ1, . . . , γn be the rank-r column leverage scores for the matrix M (cf. (D.1)). They
stay invariant if we pre-multiply the matrix V (r)T by an orthogonal matrix. Furthermore, for a
fixed positive β ≤ 1, we can compute a sampling probability distribution p, . . . , pn at a dominated
computational cost, where

p̃j > 0 and p̃j ≥ γj/r for j = 1, . . . , n. (8.10)

For any m×n matrix M [32, Algorithm 5.1] computes the matrix V (r) and distribution p1, . . . , pn
by using mn memory cells and O(mnr) flops.

Given an integer parameter l, 1 ≤ l ≤ n, and distribution p1, . . . , pn, Algorithm D.1 or D.2
computes auxiliary sampling and re-scaling matrices S = SM,l and D = DM,l, respectively. (In
particular Algorithm D.1 samples and re-scales exactly l columns of an input matrix M – the ith
column with probability pi, while Algorithm D.2 samples and re-scales at most its l columns in
expectation – the ith column with probability min{1, lpi}.) Then [19, Algorithms 1 and 2] compute
a CUR LRA of a matrix M as follows.

Algorithm 8.1. [CUR LRA by using leverage scores.]
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Input: A matrix M ∈ Rm×n and a target rank r.

Initialization: Choose two integers k ≥ r and l ≥ r and real β and β̄ in the range (0, 1].

Computations: 1. Compute the probability distribution p1, . . . , pn of (8.4).

2. Compute sampling and re-scaling matrices S and D by applying Algorithm D.1 or D.2.
Compute and output a CUR factor C := MS.

3. Compute distribution p̃1, . . . , p̃m satisfying relationships (8.4) under the following re-
placement: M ← (CD)T and β ← β̄.

4. By applying Algorithm D.1 or D.2 to these leverage scores compute k× l sampling matrix
S̄ and k × k re-scaling matrix D̄.

5. Compute and output a CUR factor R := S̄TM .

6. Compute and output a CUR factor U := DW+D̄ for W := D̄S̄TMSD.

Complexity estimates: Overall Algorithm 8.1 involves kn+ml+kl memory cells and O((m+
k)l2 + kn) flops in addition to mn cells and O(mnr) flops used for computing SVD-based leverage
scores at stage 1. Except for that stage the algorithm is superfast if k + l2 � min{m,n}.

Bound (8.9) is expected to hold for the output of the algorithm if we choose integers k and l by
combining [19, Theorems 4 and 5] as follows.

Theorem 8.2. Suppose that
(i) M ∈ Rm×n, 0 < r ≤ min{m,n}, ε, β, β̄ ∈ (0, 1], and c̄ is a sufficiently large constant,
(ii) four integers k, k−, l, and l− satisfy the bounds

0 < l− = 3200r2/(ε2β) ≤ l ≤ n and 0 < k− = 3200l2/(ε2β̄) ≤ k ≤ m (8.11)

or
l− = c̄ r log(r)/(ε2β) ≤ l ≤ n and k− = c̄ l log(l)/(ε2β̄) ≤ k ≤ m, (8.12)

(iii) we apply Algorithm 8.1 invoking at stages 2 and 4 either Algorithm D.1 under (8.11) or
Algorithm D.2 under (8.12).

Then bound (8.9) holds with a probability at least 0.7.

Remark 8.3. The bounds k− ≤ m and l− ≤ n imply that either ε6 ≥ 32003r4/(mβ2β̄) and
ε2 ≥ 3200r/(nβ) if Algorithm D.1 is applied or ε4 ≥ c̄2r log(r) log(c̄r log(r)/(ε2β))/(mβ2β̄) and
ε2 ≥ c̄r log(r)/(nβ) if Algorithm D.2 is applied for a sufficiently large constant c̄.

Remark 8.4. The estimates k− and l− of (8.11) and (8.12) are minimized for β = β̄ = 1 and a
fixed ε. These estimates are proportional to 1/β and 1/(β2β̄), respectively, and for any fixed numbers
k and l of sampled rows/columns in the ranges (8.11) and (8.12) we can ensure randomized error
bound (8.9).

The following result implies that the r-top singular space and hence the leverages scores are
stable if the perturbation of a matrix M is relatively small.

Theorem 8.3. (Adapted from [28, Theorem 1].) Suppose that

g =: σr(M)− σr+1(M)− 2 ||E|| > 0 and ||E||F ≤
g

2
.
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Let U (r), V (r), U⊥, and V⊥ be matrices of the singular vectors of M , defined in equation (8.1).
Then there exist matrices P ∈ R(m−r)×r and Q ∈ R(n−r)×r satisfying

||[P T , QT ]||F < 2
||E||F
g

< 1

and such that the columns of the matrices U (r) +U⊥P and V (r) +V⊥Q span the r-top left and right
singular spaces of M + E.

Remark 8.5. The matrices U (r) +U⊥P and V (r) + V⊥Q may have non-orthonormal columns, but
it can be readily shown that the matrices

Ũ (r) = (U (r) + U⊥P )(Ir + P TP )−
1
2 and Ṽ (r) = (V (r) + V⊥Q)(Ir +QTQ)−

1
2

have orthonormal columns. Let γi and γ̃i denote the rank-r leverage scores of the i-th row of M

and M +E, respectively, and recall that they correspond to the squared row norms of U (r) and Ũ (r),
respectively. Therefore

1

1 + ||P ||2
(

1− ||P ||√
γi

)2
≤ γ̃i/γi ≤

(
1 +
||P ||
√
γi

)2
for γi 6= 0, i = 1, 2, 3, . . . ,m,

and ||P || = O(||E||F ) if the perturbation E satisfies the assumption of Theorem 8.3. The bound for
the ratio of column leverage scores can be obtained similarly.

Leverage scores are expressed through the singular vectors, and in Section 11.2 we display the
results of our tests that show the impact of input perturbation on the leverage scores.

Remark 8.6. By choosing parameter β < 1 in (8.4) we can expand the range of perturbations of
an input of LRA that can be covered by our study of LRA directed by the leverage scores.

Remark 8.7. At stage 6 of Algorithm 8.1 we can alternatively apply the simpler expressions U :=
(S̄TMS)+ = (STC)+ = (RS)+, although this would a little weaken numerical stability of the
computation of a nucleus of a perturbed input matrix M .

9 Superfast randomized iterative refinement of LRA by means of
refinement of leverage scores

Given a low rank matrix (e.g., a crude LRA of an input matrix output by the algorithms of [52],
[53], or our Section 10, or by a fixed iteration of C-A algorithm applied to that input matrix),
let us try to refine it. We observe that we can readily compute top SVD of LRA at a dominated
cost; then we can compute leverage scores, again at a dominated cost. By using these scores we
can compute new LRA of an input matrix with the hope to obtain a desired refinement, and if we
do obtain it, we can reapply these computations recursively. Of course, this is only valuable if we
compute a new LRA that refines the original one, and this is our next goal.

We first observe that it is sufficient to refine just one of the two factors A and B that form an
LRA AB (hereafter let it be A) because we can compute the second factor superfast by solving a
generalized LLSP. Now, given a matrix A0 ∈ Rm×r we first compute a matrix B0 ∈ Rr×n such that
A0B0 is a crude but reasonably close approximation of an input matrix M ∈ Rm×n (we assume
that there exists such a matrix B0); then we successively compute the matrices A1, B1, A2, B2,
. . . such that the values Dist(At, U

(r)) and Dist(Bt, V
(r)) converge with a controllable error bound

16



as t → ∞, where U (r) and V (r) denote two orthogonal matrices whose range (the column span)
defines the r-top left and right singular spaces of M , respectively.

There seems to be some similarity of this approach to the algorithm of [34], which recursively
decreases the principal angle distance by means of alternating computation of the factors A and
B, but that algorithm is restricted to the case of a coherent10 input matrix with exact rank r and
relies on the strategy with uniform element-wise sampling. This is very much different from our
approach, which we specify next.

Algorithm 9.1. [Alternating Refinement Using Leverage Scores.]

Input: A matrix M ∈ Rm×n, an integer τ , a target rank r, positive real numbers ε and ξ < 1, and
a matrix A0 ∈ Rm×r.

Computations:
FOR t = 0, 1, ..., T DO:

1. Compute the row leverage scores γ̃j of At, find an appropriate 0 < β ≤ 1, and compute
distributions p̃j satisfying (8.5) for j = 1, ...,m.

2. Compute sampling and re-scaling matrices S and D by applying Algorithm D.1 with
l = 1296β−1r2ε−2ξ−4.

3. Compute Bt = (DTSTAt)
+DTSTM .

4. Compute the column leverage scores γj of Bt, find an appropriate 0 < β ≤ 1, and
compute distributions pj satisfying (8.4) for j = 1, ..., n.

5. Compute sampling and re-scaling matrices S and D by applying Algorithm D.1 with
l = 1296β−1r2ε−2ξ−4.

6. Compute At+1 = MSD(BtSD)+.

END FOR

Output: At+1.

Theorem 9.1. Let M be an m×n matrix of (8.1) such that σr(M) > σr+1(M). Let A be an m×r
orthogonal matrix with r ≤ min{m,n} such that

Dist(A,U (r)) = δ < 1. (9.1)

Fix positive numbers ε < 1, ξ < 1, and β ≤ 1 and compute the rank-r row leverage scores
{γi|i = 1, ...,m} of A and a sampling distribution {pi|i = 1, ...,m} satisfying (8.5). Suppose
that Algorithm D.1, applied for l = 1296β−1r2ε−2ξ−4, outputs two matrices S and D. Write
B := (DTSTA)+DTSTM . Then

Dist(B, V (r)) ≤ δ√
1− δ2

· σr+1(M)

σr(M)
+

2ε√
1− δ2

· ||M −Mr||F
σr(M)

(9.2)

with a probability no less than 1− ξ.

10A matrix is coherent if its maximum row and column leverages scores are small in context.
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Proof. For simplicity, let S′ = DTST and hence B = (S′A)+S′M . Assume that B has full rank.
Then there exists a QR factorization of B such that

B = RQT and QT = R−1B ∈ Rk×n.

Therefore

Dist(B, V (r)) = ||QTV⊥||
= ||R−1(S′A)+S′MV⊥||
= ||R−1(S′A)+S′U⊥Σ⊥||

≤ ||R−1|| ||(C1A
T + C2A

T
⊥)U⊥Σ⊥||

≤ 1
σr(B)

(
||C1A

TU⊥Σ⊥||+ ||C2A
T
⊥U⊥Σ⊥||

)
.

The former inequality above holds because
[
A A⊥

]
is an orthogonal matrix and because there

exists a unique pair of matrices C1 and C2 such that the rows of (S′A)+S′ are expressed as linear
combinations of the rows of AT and AT⊥ as follows:

(S′A)+S′ =
[
C1 C2

]
·
[
AT

AT⊥

]
. (9.3)

Given that
(1) C1 = Ir,
(2) ||C2A

T
⊥U⊥Σ⊥|| ≤ 2ε||Σ⊥||F , and

(3) σr(B) ≥
√

1− δ2σr(M), obtain

Dist(B, V (r)) ≤ δ√
1− δ2

· σr+1(M)

σr(M)
+

2ε√
1− δ2

· ||Σ⊥||F
σr(M)

.

Next we prove that assumptions (1) – (3) above hold provided that the matrix S′ = DTST for
the matrices D and S from Algorithm D.1 satisfies Equation (8.6) with a probability no less than
1− ξ.
Claim (1): Equation (8.6) implies that the matrix S′A has full rank k, and hence

C1 = (S′A)+S′A = C1A
TA = Ir.

Claim (2): Consider the following generalized LLSP,

min
X
||Y −AX||F

where Y = A⊥A
T
⊥U⊥Σ⊥ denotes an m×(n−r) matrix. Clearly, minX ||Y −AX||F = ||Y ||F because

the column space of Y is orthogonal to the column space of AX.
Furthermore recall that the column spaces of the matrices Y and A are orthogonal to one

another. Combine this observation with Equation (9.3) and deduce that

||Y −A(S′A)+S′Y ||2F
= ||Y −A(C1A

T + C2A
T
⊥)Y ||2F

= ||Y −AATY −AC2A
T
⊥Y ||2F

= ||Y ||2F + ||AC2A
T
⊥Y ||2F .
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Recall from Equation (8.6) that

||Y −A(S′A)+S′Y ||2F ≤ (1 + ε)2||Y ||2F

and conclude that
||C2A

T
⊥Y ||F < 2ε||Y ||F = 2ε||Σ⊥||F .

Claim (3): Recall that B = (S′A)+S′M , and therefore

σr(B) = σr
(
(AT + C2A

T
⊥)M

)
≥ σr(ATM)

≥ σr(ATU (r)Σ(r))

≥ σr(ATU (r)) · σr(M).

Notice that (
σr(A

TU (r)))2 = σr(A
TU (r)U (r)TA)

= σr
(
AT (Im − U⊥UT⊥)A

)
= σr

(
Ir − (ATU⊥)(ATU⊥)T

)
≤ 1− δ2 ,

where the last inequality holds because the matrix (ATU⊥)(ATU⊥)T is Symmetric Positive Semi-
Definite and has spectral norm Dist(A,U (r))2. Conclude that σr(B) ≥

√
1− δ2σr(M), and this

also implies that rank(B) = r.

Simplify notation by writing σj := σj(M) for j = r and σ̄r+1 := ||M −Mr||F .

Lemma 9.1. Let m,n, r, ε, δ, M , U (r), V (r), A and B be defined as in Theorem 9.1 such that A
and B satisfy Equations (9.1) and (9.2). Then

Dist(B, V (r)) ≤ c ·Dist(A,U (r)),

where

c =
σr+1

σr
· 1√

1− δ2
· (1 + 2ε · σ̄r+1

δσr+1
).

Furthermore, if σr+1

σr
· 1√

1−δ2
< 1 and ε · σ̄r+1

σr+1
< δ

2

(√
1− δ2 σr

σr+1
− 1
)
, then c < 1.

If Dist(Bt, V
(r)) < c · Dist(At, U

(r)) and Dist(At+1, U
(r)) < c · Dist(Bt, V

(r)) for t ≤ T and if
0 < c < 1, then the principal angle distance is reduced by a constant factor 1/c > 1 each time
when for a given A0 we recursively compute B0, A1, B1, A2, . . . . In order to ensure that 1/c > 1,
we must have a gap between σr and σr+1; furthermore the initial factor A should be relatively
close to U (r) in terms of the principal angle distance. Moreover the second term of the bound (9.2)
comes from the error contributed by the perturbation M−Mr and does not converge to zero even if
we perform our recursive refinement indefinitely. We, however, are going to decrease the principal
angle distance to a value of the order of ε · σ̄r+1

σr+1
, and we can control this by controlling ε provided

that σ̄r+1

σr+1
is a reasonably small constant.

In the following, we also make some other reasonable assumptions about an input matrix M
and a starting factor A0 and then show that after a small number of iterations of Algorithm 9.1,
the principal angle distance of the output and U (r) converges to a small value whp.
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Theorem 9.2. Suppose that m,n, r, M , U (r), V (r) are defined as in Theorem 9.1,

σr+1(M)

σr(M)
≤ 1

2
,
σ̄r+1

σr+1
= θ, A0 ∈ Rm×r, and Dist(A0, U

(r)) ≤ 1

2
.

Fix two sufficiently small positive numbers ξ and ε such that

ξ < 1 and ε ≤ (8θ)−1 ≤ 1/2,

and let A denote the matrix output by Algorithm 9.1 applied for τ = d1
2 log0.87(8θ · ε)e. Then

Dist(A,U (r)) ≤ 4θ · ε (9.4)

with a probability no less than 1− 2τ · ξ.

Proof. If δ = δt := Dist(At, U
(r)) ≤ 1/2, then

1√
1− δ2

σr+1

σr
≤ 1√

3
.

Furthermore (9.2) implies that

Dist(Bt, V
(r)) ≤ δ√

1−δ2
· σr+1

σr
+ 2ε√

1−δ2
· σr+1

σr
· σ̄r+1

σr+1

≤ 1√
3
· δ + 2θ√

3
· ε.

Thus it can be easily verified that

Dist(Bt, V
(r)) ≤ 3δ/2

√
3 < 0.87 ·Dist(At, U

(r)) if δ ≥ 4θ · ε,

and that
Dist(Bt, V

(r)) ≤ 6θ · ε/
√

3 < 4θ · ε if δ < 4θ · ε.

Therefore, starting with A0 such that by assumption Dist(A0, U
(r)) ≤ 1/2, every time when we

compute Bt from At, the distance Dist(Bt, V
(r)) stays small or at least does not exceed 0.87 ·

Dist(At, U
(r)) whp. Likewise when we compute At+1 from Bt, the distance Dist(At+1, U

(r)) stays
small or decreases by a fixed constant factor compared to Dist(Bt, V

(r)) whp, and in both cases we
maintain the bound Dist(At, U

(r)) ≤ 1/2. We prove this claim by applying Theorem 9.1 for BT
t

and MT .
By combining the latter results, we obtain for all t such that Dist(At, U

(r)) ≤ 1/2 that

Dist(At+1, U
(r)) ≤ max

{
(0.87)2 Dist(At, U

(r)), 4θ · ε
}

(9.5)

with a probability no less than 1−2ξ. Complete the proof of the theorem by combining this bound
for t = 0, ..., τ − 1.

10 LRA with leverage scores for random inputs

The computation of leverage scores is the bottleneck stage of the algorithms of [19], and in this
section we bypass that stage simply by assigning the uniform sampling distribution. Then we prove
that whp the resulting algorithms still compute accurate CUR LRA of a perturbed factor-Gaussian
matrix (see its definition in Appendix C.1), to which we can quite readily transform any matrix
that admits LRA (see Theorem C.6 and Remark C.1).

We recall that Theorem 8.3 reduces our task to the case of a factor-Gaussian matrix M . The
following theorem further reduces it to the case of a Gaussian matrix.
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Theorem 10.1. Let M = GH for G ∈ Rm×r and H ∈ Rr×n and let r = rank(G) = rank(H).
Then the matrices MT and M share their rank-r leverage scores with the matrices GT and H,
respectively.

Proof. Let G = SGΣGT
∗
G ∈ Cm×r and H = SHΣHT

∗
H be SVDs.

Write W := ΣGT
∗
GSHΣH and let W = SWΣWT

∗
W be SVD.

Notice that ΣG, T ∗G, SH , and ΣH are r × r matrices.
Consequently so are the matrices W , SW , ΣW , and T ∗W .
Hence M = S̄GΣW T̄

∗
H where S̄G = SGSW and T̄ ∗H = T ∗WT

∗
H are orthogonal matrices.

Therefore M = S̄GΣW T̄
∗
H is SVD.

It follows that the columns of the orthogonal matrices S̄G and T̄ ∗TH span the r top right singular
spaces of the matrices MT and M , respectively, and so do the columns of the matrices SG and T ∗TH
as well because S̄G = SGSW and T̄ ∗H = T ∗WT

∗
H where SW and T ∗W are r × r orthogonal matrices.

This proves the theorem.

If M = GH (resp. MT = HTGT ) is a right or diagonally scaled factor-Gaussian matrix, then
with probability 1 the matrices M and H (resp. MT and GT ) share their leverage scores by virtue
of Theorem 10.1. If we only know that the matrix M is either a left or a right factor-Gaussian
matrix, apply Algorithm 8.1 to both matrices M and MT and in at least one case reduce the
computation of the leverage scores to the case of Gaussian matrix.

Now let r � n and outline our further steps of the estimation of the leverage scores.

Outline 10.1. Recall from [22, Theorem 7.3] or [62] that κ(G) → 1 as r/n → 0 for an r × n
Gaussian matrix G. It follows that for r � n the matrix G is close to a scaled orthogonal matrix
whp; hence within a factor 1√

n
it is close to the orthogonal matrix T TG of its right singular space

whp. Therefore the leverage scores pj of a Gaussian matrix G = (gj)
n
j=1 are close to the values

1
rn ||gj ||

2, j = 1, . . . , n. They, however, are independent in j and close to 1/n for all j whp. This
choice trivializes the approximation of the leverage scores of a Gaussian matrix and hence of a
factor-Gaussian matrix. Since this bottleneck stage of Algorithm 8.1 has been made trivial, the
entire algorithm becomes superfast, while it still outputs accurate CUR LRA whp in the case of a
factor-Gaussian input. Theorem 8.3 implies extension to a perturbed factor-Gaussian input.

Next we elaborate upon this outline.

Lemma 10.1. Suppose that G is an n× r Gaussian matrix, u ∈ Rr, v = 1√
n
Gu, and r ≤ n. Fix

ε̄ > 0. Then

Probability{(1− ε̄)||u||2 ≤ ||v||2 ≤ (1 + ε̄)||u||2} ≥ 1− 2e−(ε̄2−ε̄3)n
4 .

Proof. See [2, Lemma 2].

Lemma 10.2. Fix the spectral or Frobenius norm ||| · ||| and let M = SMΣMT
T
M be SVD. Then

SMT
T
M is an orthogonal matrix and

|||M − SMT TM |||2 ≤ |||MMT − I|||.

Proof. SMT
T
M is an orthogonal matrix because both matrices SM and T TM are orthogonal and at

least one of them is a square matrix.
Next observe that M − SMT TM = SMΣMT

T
M − SMT TM = SM (ΣM − I)T TM , and so

|||M − SMT TM ||| = |||ΣM − I|||.
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Likewise MMT − I = SMΣ2
MS

T
M − I = SM (Σ2

M − I)STM , and so

|||MMT − I||| = |||Σ2
M − I|||.

Complement these equations for the norms with the inequality

|||Σ2
M − I||| = |||ΣM − I||| |||ΣM + I||| ≥ |||ΣM − I|||,

which holds because ΣM is a diagonal matrix having only nonnegative entries.

Lemma 10.3. Suppose that n and r < n are two integers and that 0 < ε < 3r2

4 such that n >
1296r8ε−4 is sufficiently large. Furthermore let G = (gj)

n
j=1 be an r × n Gaussian matrix. Then∣∣∣∣∣∣ 1

n
GGT − Ir

∣∣∣∣∣∣2
F
< ε

with a probability no less than 1− 2e−( ε
2

2
− 2ε3

3r2
) n

9r4 .

Proof. Let ej denote the jth column of the identity matrix Ir. Apply Lemma 10.1 for u equal to
the vectors ej and ei − ej , for v = 1√

n
gj , and for i, j = 1, . . . , r where i 6= j. For all i and j in this

range substitute ||ej || = 1 and ||ei − ej ||2 = 2 and deduce that

1− ε̄ < 1

n
||gj ||2 < 1 + ε̄ and 2− ε̄ < 1

n
||gi − gj ||2 < 2 + ε̄ (10.1)

with a probability no less than 1−2n2e−(ε̄2−ε̄3)n
4 = 1−2e−(ε̄2−ε̄3− 8 lnn

n
)n

4 . If ε̄ < 1/2 and n > 256ε̄ −4,

then bounds (10.1) hold with a positive probability no less than 1− 2e−( ε̄
2

2
−ε̄3)n

4 .

Now, write ε = 3r2

2 ε̄, and since the (i, j)th entry of the matrix GGT is given by gTi gj , deduce
that ∣∣∣∣∣∣ 1

n
GGT − Ir

∣∣∣∣∣∣2
F
≤
(3

2
r2 − r

2

)
ε̄ <

3

2
r2ε̄ = ε.

In Lemma 10.3, we proved that an r×n Gaussian matrix is close to a scaled orthogonal matrix
whp if n > 1296r8ε−4. Furthermore, it is clear that if a matrix G ∈ Rr×n is “close” to a scaled
orthogonal matrix, then the ratios of the squares of column norms and the corresponding leverage
scores are “close” to r. In the following lemma, we formalize this observation and provide further
details.

Lemma 10.4. Let G = (gj)
n
j=1 be a r × n matrix such that r ≤ n and rank(G) = r. Let γi be the

i-th column leverage score and ||gi|| be the i-th column norm. Then

σ2
r (G) ≤ ||gi||

2

γi
≤ σ2

1(G) for i = 1, 2, ..., n. (10.2)

Proof. Let G = UΣV T be SVD such that U ∈ Rr×r, Σ ∈ Rr×r, and V ∈ Rn×r. Then

γi :=

r∑
j=1

(
V (i, r)

)2
,
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||gi||2 = ||UΣV T
i,: ||2 = ||ΣV T

i,: ||2

=
r∑
j=1

σ2
j (G)

(
V (i, r)

)2
for Vi,; denoting the i-th row vector of matrix V and the i-th column vector of V T and for i =
1, 2, 3, ..., n.

Corollary 10.1. Let r, n, G, ε be defined as in Lemma 10.3. Then

(1−
√
ε) ≤ ||gi||

2/n

γi
≤ (1 +

√
ε) for i = 1, 2, 3, ..., n

with a probability no less than 1− 2e−( ε
2

2
− 2ε3

3r2
) n

9r4 .

Proof. Combine Lemmas 10.3 and 10.4.

Remark 10.1. In Corollary 10.1 we proved that whp the leverage scores of a tall skinny Gaussian
matrix or its transpose are nearly proportional to the corresponding row or column norms. Next
we are going to extend this result to the much more general class of r×n Gaussian matrices where
we allow a moderate increase of the number of row or column samples and then only require that
r < n/2.

Observe that the squared norms ||gj ||2 are i.i.d. chi-square random variables χ2(r) and therefore
are quite strongly concentrated in a reasonable range about their expected values.

Now suppose that r < n/2 for a r × n Gaussian matrix G and simply choose the uniform
sampling probability distribution, pj = 1

n for all j. Then we satisfy bounds (8.4) and consequently
(8.9) by choosing a reasonably small positive value β.

Let us supply further details.

Lemma 10.5. Let Z =
∑r

i=1X
2
i for i.i.d. standard Gaussian variables X1, . . . , Xr. Then

Probability{Z − r ≥ 2
√
rx+ 2rx} ≤ e−x for any x > 0.

Proof. See [37, Lemma 1].

Corollary 10.2. Given two integers n and r such that r < n/2, an r × n Gaussian matrix G =
(gj)

n
j=1, denote its rank-r column leverage scores by γj for j = 1, ..., n and fix x > lnn and

0 < β < 1
16e2(1+4x)

. Then

1

n
> βγj/r for j = 1, ..., n (10.3)

with a probability no less than 1− e−n ln 2/2 − e−(x−lnn).

Proof. Apply Theorem C.5 (ii) with t = 2 and obtain that

Probability
{
σr(G) ≤ 1

2e
(
√
n− r√

n
)
}
≤ 2−(

√
n−r).

Substitute r < n/2 and obtain

Probability
{
σr(G) ≤ 1

4e

√
n
}
≤ 2−n/2 = e−n ln 2/2.
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Recall that ||gi||2 are i.i.d. chi-square random variables with r degrees of freedom and deduce from
Lemma 10.5 that

Probability
{
||gi||2 ≥ (1 + 4x)r

}
≤ e−x

for x > 1 and fixed i. Therefore, by using union bound, we obtain that

Probability
{
||gi||2 ≤ (1 + 4x)r for all i = 1, 2, 3, ..., n

}
≥ 1− e−(x−lnn)

Let γi denote the i-th column leverage scores of G, assume that ||gi||2 ≤ (1 + 4x)r for all 1 ≤ i ≤ n
and σ2

r (G) ≥ n
16e2

, and deduce from the first bound of (10.2) that

γi ≤
16e2(1 + 4x)r

n
for all i = 1, 2, 3, ..., n

and consequently

1

n
≥ 1

16e2(1 + 4x)
· γi
r
≥ βγi/r for all i = 1, 2, 3, ..., n.

Remark 10.2. The number of samples l = 1296r2β−1ε−2ξ−4 in Theorem 8.1 and l = 3200r2β−1ε−2

in Theorem 8.2 contains a factor of β−1. When the sampling probability distribution {pi} are
computed approximately or pre-defined, we try to choose β ≤ 1 large enough such that the number
of samples does not grow too much, and at the same time is small enough such that relationships
(8.4) hold. In Corollary 10.2, we use a parameter x rather than β in order to control the number
of required samples and to ensure a specified probability bound that inequality (10.3) holds. For
example, let x = 3 + lnn; then β−1 ≤ 16e2(4 + lnn) and (10.3) holds with a probability at least
0.95 − e−n ln 2/2. Both of these bounds are rather desired; moreover l = O(r2ε−2 lnn), and so l is
dramatically less than n and even than

√
n for large n.

We have completed our formal support for Outline 10.1 and arrived at the following result,
where one can specify error bounds by using Theorem 8.3 and Corollary 10.2.

Corollary 10.3. Suppose that the algorithms of [19] have been applied to the computation of CUR
LRA of a perturbed factor-Gaussian matrix by using the uniform sampling distribution. Then this
computation is superfast and whp outputs reasonably close CUR LRA.

11 Numerical Tests

11.1 Iterative refinement directed by leverage scores

In this subsection, we present the test results for Algorithm 9.1 on iterative refinement directed by
leverage scores. The algorithms are implemented in Python with Numpy and Scipy packages, and
for solving generalized LLSP we call lstsq, which relies on Lapack function gelsd. All tests in
this subsection are performed on a machine running Mac OS 10.15.7 with 2.6 GHz Intel Core i7
CPU and 16GB of Memory.

For our input, we used three classes of matrices having low numerical rank; we call them single-
layer potential, Cauchy, and shaw.

We generated a 3000×3000 single-layer potential matrix by discretizing a single-layer potential
operator of [32, Section 7.1].
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We generated a 2000× 2000 Cauchy matrix ( 1
Xi−Yj )2000

i,j=1 for independent random variables Xi

and Yj uniformly distributed on the intervals (0, 100) and (100, 200) respectively. This matrix has
fast decaying singular values (cf. [10]).

We defined a 1000 × 1000 shaw matrix by means of discretization of a one-dimensional image
restoration model; see further comments on this class of matrices in the next subsection.

For a factor A0 initializing iterative refinement we computed a matrix from SVD of the initial
approximation M̃ , defining its top-r left singular space. For this computation we applied Algorithm
8.1 with k = l = r, β = β̄ = 1, and the uniform probability distribution at step 1 (in which case
the algorithm remains superfast); here r denotes the target rank of the input matrix; r = 11 for
the single-layer potential input, and r = 10 for the two other input classes.

At the refinement stage of our tests, we sampled d columns and d rows, for d = 15r, which
turned out to be sufficiently large in our tests, even though support for our proofs required much
larger samples of order r2ε−2.

For comparison, we also included the results of testing two other approaches to solving the
generalized LLSP.

One approach is the well-known approximation through subspace embedding with a Gaus-
sian multiplier, where in each iteration we compute Bi = arg minX ||GAiX − GM ||F and Ai+1 =
arg minX ||XBiH −MH||F and where G and H are Gaussian matrices of size d ×m and n × d,
respectively, generated independently in each iteration.

The other approach is the standard Linear Least Squares Solving, where one computes

Bi = arg min
X

||AiX −M ||F and Ai+1 = arg min
X

||XBi −M ||F ;

this quite costly algorithm outputs an optimal solution.
We repeat each test 10 times; each time we compute the average principal angle distance, the

residual error ratio ||M−AiBi||F||M−Mr||F , and the run time in each iteration.
We plot our tests results in Figure 5. They show that the low rank approximation improves

dramatically in the first few iterations in terms of the Principal Angle Distance and Residual Error
Ratio and is stabilized in the subsequent iterations.

While the approach with the standard algorithms for generalized LLSP has lead us to the best
results, as one should have expected, the other approach still enabled us to compute approximations
that are close to optimal.

For the Single Layer Potentials input, the principal Angle Distance of the refinement with
Gaussian Embedding and the refinement with Leverage Scores are slightly worse than the approxi-
mations of other inputs. This could be caused by the “heavier” tail singular values. However, the
approximation remains rather close to the optimal in terms of Residual Error Ratio regardless.

In terms of run time, the two approaches provide significant improvement over the standard
LLSP-based Approach. Moreover the leverage scores approach uses considerably less time at each
iteration than the Gaussian Embedding approach, and the run time decreases more substantially
as the size of the input matrix grows. Even more importantly, in our tests this improvement comes
at almost no cost in terms of the precision growth.

11.2 Testing perturbation of leverage scores

Table 11.1 shows the mean and standard deviation of the norms of the relative errors of approx-
imation of the input matrix M and of its LRA AB and similar data for the maximum difference
between the leverage scores of the pairs of these matrices. We have computed a close approxima-
tion to the leverage scores of an input matrix M superfast by using its LRA AB. The table also
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Figure 5: Iterative Refinement directed by Leverage Scores
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displays numerical ranks of input matrices M defined up to tolerance 10−6. Our statistics were
gathered from 100 runs for each input matrix under 100 runs of sampling and re-scaling algorithm
of Appendix D, reproduced from [19].

Input matrices. The dense matrices with smaller ratios of “numerical rank/n” from the
built-in test problems in Regularization Tools, which came from discretization (based on Galerkin
or quadrature methods) of the Fredholm Integral Equations of the first kind,11 namely to the
following six input classes from the Database:

baart: Fredholm Integral Equation of the first kind,
shaw: one-dimensional image restoration model,
gravity: 1-D gravity surveying model problem,
wing: problem with a discontinuous solution,
foxgood: severely ill-posed problem,
laplace: inverse Laplace transformation.

We computed the LRA approximations AB by using [58, Algorithm 1.1] with multipliers of
Class 5 of [58, Section 5.3].

Our goal was to compare the approximate leverage scores with their true values. The columns
“mean(Leverage Score Error)” and “std(Leverage Score Error)” of the table show that these ap-
proximations become more accurate as r increases.

In addition, the last three lines of Table 11.1 show similar results for perturbed two-sided
factor-Gaussian matrices GH of rank r approximating an input matrix M up to perturbations.

PART III. Conclusions

We studied dual superfast algorithms for LLSP and LRA and proved that they output mean-
ingful or even nearly optimal solutions whp under some natural randomization models in the spaces
of input matrices. Next we list some natural further challenges.

1. Recall the known algorithms for LLSP, LRA, and possibly other challenging tasks of matrix
computations based on the JL transforms, consider their modifications that are superfast or at-
tractive in another sense, e.g., consider sampling for LLSP and LRA based on leverage scores that
use fewer rows and columns, that is, decrease the parameter l of Theorem 8.1, and then prove that
the algorithms still output valuable solutions for a large class of input matrices.

2. Define superfast (sublinear cost) algorithms relative to the number of NONZERO entries of
an input matrix rather than to all its entries and then devise such algorithms for LLSP, LRA, and
possibly other challenging tasks of matrix computations (cf. [1]).

3. In our study we have ad hoc combined randomization of the JL transforms and of the space
of input matrices. Can we yield superfast solution for a wider input class based on more judicious
combinations of this kind? Can this goal be achieved by means of recursive application of various
superfast JL-like transforms and/or various pre-processing algorithms for input matrices?

4. Among the three known algorithms for iterative refinement of LRA – of [49], our Section
9, and by means of C-A iterations, the latter algorithm is apparently most efficient, but besides
comparing the algorithms it may be interesting to combine their power, possibly just by properly
intertwining the iterations of two or three kinds.

Appendix
11See http://www.math.sjsu.edu/singular/matrices and http://www2.imm.dtu.dk/∼pch/Regutools
For more details see Chapter 4 of the Regularization Tools Manual at

http://www.imm.dtu.dk/∼pcha/Regutools/RTv4manual.pdf
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LRA Rel Error Leverage Score Error

Input Matrix r rank mean std mean std

baart 4 6 6.57e-04 1.17e-03 1.57e-05 5.81e-05

baart 6 6 7.25e-07 9.32e-07 5.10e-06 3.32e-05

baart 8 6 7.74e-10 2.05e-09 1.15e-06 3.70e-06

foxgood 8 10 5.48e-05 5.70e-05 7.89e-03 7.04e-03

foxgood 10 10 9.09e-06 8.45e-06 1.06e-02 6.71e-03

foxgood 12 10 1.85e-06 1.68e-06 5.60e-03 3.42e-03

gravity 23 25 3.27e-06 1.82e-06 4.02e-04 3.30e-04

gravity 25 25 8.69e-07 7.03e-07 4.49e-04 3.24e-04

gravity 27 25 2.59e-07 2.88e-07 4.64e-04 3.61e-04

laplace 23 25 2.45e-05 9.40e-05 4.85e-04 3.03e-04

laplace 25 25 3.73e-06 1.30e-05 4.47e-04 2.78e-04

laplace 27 25 1.30e-06 4.67e-06 3.57e-04 2.24e-04

shaw 10 12 6.40e-05 1.16e-04 2.80e-04 5.17e-04

shaw 12 12 1.61e-06 1.60e-06 2.10e-04 2.70e-04

shaw 14 12 4.11e-08 1.00e-07 9.24e-05 2.01e-04

wing 2 4 1.99e-02 3.25e-02 5.17e-05 2.07e-04

wing 4 4 7.75e-06 1.59e-05 7.17e-06 2.30e-05

wing 6 4 2.57e-09 1.15e-08 9.84e-06 5.52e-05

factor-Gaussian 25 25 1.61e-05 3.19e-05 4.05e-08 8.34e-08

factor-Gaussian 50 50 2.29e-05 7.56e-05 2.88e-08 6.82e-08

factor-Gaussian 75 75 4.55e-05 1.90e-04 1.97e-08 2.67e-08

Table 11.1: Test results for the perturbation of leverage scores

A ASPH matrices

A k×n matrix of Subsampled Randomized Hadamard Transform (SRHT), for n = 2s being the sth
power of 2, is defined as the product PHD where P is a k × n random column sampling matrix;
H is the n× n Hadamard matrix, and D is an n× n diagonal matrix with ±1 on the diagonal and
where one can assign signs + and − independently for every entry with a probability 0.5.

The Hadamard matrix H = Hn is defined recursively:

H0 = 1, Hi+1 =

(
Hi Hi

Hi −Hi,

)
i = 0, 1, . . . , s− 1.

For any integer d, not exceeding s, define the d–Abridged n× n Hadamard matrix Hd,d as follows:

Hd,0 = In/2d , Hd,i+1 =

(
Hd,i Hd,i

Hd,i −Hd,i,

)
i = 0, 1, . . . , d− 1.

The matrix Hd,d is orthogonal up to scaling and is filled with 0s, except that it has exactly 2d

nonzero entries 1 or −1 in every row and every column. Thus it is very sparse for small integers
d� s and can be multiplied by a vector by using exactly (2d−1)n additions and subtractions. For
d = s we arrive at the Hadamard matrix Hd,d = H = Hn.

Finally define the d–Abridged k×n Scaled and Permuted Hadamard (ASPH) matrices as PHd,dD
for the matrices P , Hd,d, and D defined above.
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B Small families of hard inputs for superfast LRA

Any superfast LRA algorithm fails on the following small input families.

Example B.1. Define a family of m× n matrices of rank 1 (we call them δ-matrices):

{∆i,j , i = 1, . . . ,m; j = 1, . . . , n}.

Also include the m× n null matrix Om,n into this family. Now fix any superfast algorithm; it does
not access the (i, j)th entry of its input matrices for some pair of i and j. Therefore it outputs the
same approximation of the matrices ∆i,j and Om,n, with an undetected error at least 1/2. Apply the
same argument to the set of mn + 1 small-norm perturbations of the matrices of the above family
and to the mn + 1 sums of the latter matrices with any fixed m × n matrix of low rank. Finally,
the same argument shows that a posteriori estimation of the output errors of an LRA algorithm
applied to the same input families cannot run superfast.

This example actually covers randomized LRA algorithms as well. Indeed suppose that an
LRA algorithm does not access a constant fraction of the entries of an input matrix with a positive
constant probability. Then for some pair i, j with a positive constant probability the algorithm
misses an (i, j)th entry of an input matrix ∆i,j and outputs the same approximation to it and the
matrix Om,n. Therefore whp the algorithm fails to approximate that entry closely for at least one
of these two matrices of the first family of input matrices of the above example, and similarly for
its other input families. This, however, is a special case of input degeneration; this paper, [52], [53],
and [47] show that apart from such cases various superfast algorithms tend to output reasonably
close LRA of a matrix that admits LRA.

C Background on random matrix computations

C.1 Gaussian and factor-Gaussian matrices of low rank and low numerical rank

Theorem C.1. [Nondegeneration of a Gaussian Matrix.] Suppose that F ∈ Rr×m, H ∈ Rn×r,
M ∈ Rm×n, F and H are Gaussian matrices, and r ≤ rank(M). Then the matrices F , H, FM ,
and MH have full rank r with probability 1.

Proof. Fix any of the matrices F , H, FM , and MH and its r× r submatrix B. Then the equation
det(B) = 0 defines an algebraic variety of a lower dimension in the linear space of the entries of
the matrix because in this case det(B) is a polynomial of degree r in the entries of the matrix F or
H (cf. [11, Proposition 1]). Clearly, such a variety has Lebesgue and Gaussian measures 0, both
being absolutely continuous with respect to one another. This implies the theorem.

Assumption C.1. [Nondegeneration of a Gaussian matrix.] Hereafter we simplify the statements
of our results by assuming that a Gaussian matrix has full rank and ignoring the probability 0 of
its degeneration.

Definition C.1. [Factor-Gaussian matrices.] Let ρ ≤ min{m,n} and define the classes of left,
right, and two-sided factor-Gaussian matrices of rank ρ, Gm,ρB, AGρ,n, and Gm,ρΣGρ,n, respec-
tively, where Gp,q denotes a p× q Gaussian matrix, A ∈ Rm×ρ, B ∈ Rρ×n, Σ ∈ Rρ×ρ, A, B, and Σ
are well-conditioned matrices of full rank ρ, and Σ = (σj)

ρ
j=1 such that σ1 ≥ σ2 ≥ · · · ≥ σρ > 0.

Theorem C.2. The class of two-sided m× n factor-Gaussian matrices Gm,ρΣGρ,n of rank ρ does
not change in the transition to the matrices Gm,rCGr,n for a well-conditioned nonsingular ρ × ρ
matrix C.
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Proof. Let C = UCΣCV
∗
C be SVD. Then the m× r matrix A = Gm,rUC and the r× n matrix B =

V ∗CGr,n are Gaussian by virtue of orthogonal invariance of Gaussian matrices, and so Gm,rCGr,n =
AΣCB for two Gaussian matrices A of size m× r and B of size r × n.

Definition C.2. The relative norm of a perturbation of a Gaussian matrix is the ratio of the
perturbation norm and the expected value of the norm of the matrix (estimated in Theorem C.4).

We refer to all three matrix classes above as factor-Gaussian matrices of rank r, to their per-
turbations within a relative norm bound ε as factor-Gaussian matrices of ε-rank r, and to their
perturbations within a small relative norm as factor-Gaussian matrices of numerical rank r, to
which we also refer as perturbations of factor-Gaussian matrices.

Clearly ||(AΣ)+|| ≤ ||Σ−1|| ||A+|| and ||(ΣB)+|| ≤ ||Σ−1|| ||B+|| for a two-sided factor-Gaussian
matrix M = AΣB of rank r of Definition C.1, and so whp such a matrix is both left and right
factor-Gaussian of rank r.

We readily verify the following result.

Theorem C.3. (i) A submatrix of a two-sided (resp. scaled) factor-Gaussian matrix of rank ρ is
a two-sided (resp. scaled) factor-Gaussian matrix of rank ρ, (ii) a k×n (resp. m× l) submatrix of
an m× n left (resp. right) factor-Gaussian matrix of rank ρ is a left (resp. right) factor-Gaussian
matrix of rank ρ.

C.2 Norms of a Gaussian matrix and its pseudo inverse

Hereafter Γ(x) =
∫∞

0 exp(−t)tx−1dt denotes the Gamma function, E(v) denotes the expected value
of a random variable v, and e := 2.71828 . . . .

Definition C.3. [Norms of a Gaussian matrix and its pseudo inverse.] Write νm,n = ||G|| and
ν+
m,n = ||G+||, for a Gaussian m × n matrix G. (νm,n = νn,m and ν+

m,n = ν+
n,m, for all pairs of m

and n.)

Theorem C.4. [Norm of a Gaussian matrix, see [21, Theorem II.7].]
Probability{νm,n > t+

√
m+

√
n} ≤ exp(−t2/2) for t ≥ 0, E(νm,n) ≤

√
m+

√
n.

Theorem C.5. [Norms of the pseudo inverse of a Gaussian matrix.]

(i) Probability {ν+
m,n ≥ m/x2} < xm−n+1

Γ(m−n+2) for m ≥ n ≥ 2 and all positive x,

(ii) Probability {ν+
m,n ≥ t

e
√
m

m−n+1} ≤ t
n−m for all t ≥ 1 provided that m ≥ 4,

(iii) E(ν+
m,n) ≤ e

√
m

m−n provided that m ≥ n+ 2 ≥ 4,

(iv) Probability {ν+
n,n ≥ x} ≤ 2.35

√
n

x for n ≥ 2 and all positive x, and furthermore ||Mn,n +
Gn,n||+ ≤ νn,n for any n× n matrix Mn,n and an n× n Gaussian matrix Gn,n.

Proof. See [13, Proof of Lemma 4.1] for claim (i), [32, Proposition 10.4 and equations (10.3) and
(10.4)] for claims (ii) and (iii), and [64, Theorem 3.3] for claim (iv).

Theorem C.5 implies reasonable probabilistic upper bounds on the norm ν+
m,n even where the

integer |m−n| is close to 0; whp the upper bounds of Theorem C.5 on the norm ν+
m,n decrease very

fast as the difference |m− n| grows from 1.
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C.3 Randomized pre-processing of lower rank matrices

The following simple results, (cf. [53, Section 8.2]), where A � B means that A is statistically less
than B, show that pre-processing with Gaussian multipliers X and Y transforms any matrix that
admits LRA into a perturbation of a factor-Gaussian matrix.

Theorem C.6. Consider five integers k, l, m, n, and ρ satisfying (7.3), an m×n well-conditioned
matrix M of rank ρ, k×m and n× l Gaussian matrices G and H, respectively, and the norms νp,q
and ν+

p,q of Definition C.3. Then
(i) GM is a left factor-Gaussian matrix of rank ρ such that

||GM || � ||M || νk,ρ and ||(GM)+|| � ||M+|| ν+
k,ρ,

(ii) MH is a right factor-Gaussian matrix of rank ρ such that

||MH|| � ||M || νρ,l and ||(MH)+|| � ||M+|| ν+
ρ,l,

(iii) GMH is a two-sided factor-Gaussian matrix of rank ρ such that

||GMH|| � ||M || νk,ρνρ,l and ||(GMH)+|| � ||M+|| ν+
k,ρν

+
ρ,l.

Remark C.1. Based on this theorem we can readily extend our results on LRA of perturbed factor-
Gaussian matrices to all matrices that admit LRA and are pre-processed with Gaussian multipliers.
We cannot perform such pre-processing superfast, but empirically superfast pre-processing with var-
ious sparse orthogonal multipliers works as efficiently [50], [51], [52].

D Computation of Sampling and Re-scaling Matrices

We begin with the following simple computations. Given an n vectors v1, . . . ,vn of dimension l,
such that V = (vi)

n
i=1 is orthogonal, and compute n leverage scores

γi = vTi vi/||V ||2F , i = 1, . . . , n. (D.1)

Notice that γi ≥ 0 for all i and
∑n

i=1 γi = 1.
Now assume that some sampling distribution p1, . . . , pn satisfying Equation (8.4) are given to

us and next recall [19, Algorithms 4 and 5]. For a fixed positive integer l they sample either exactly
l columns of an input matrix W (the ith column with a probability pi) or at most l its columns in
expectation (the ith column with a probability min{1, lpi}), respectively.

Algorithm D.1. (The Exactly(l) Sampling and Re-scaling. [19, Algorithm 4]).

Input: Two integers l and n such that 1 ≤ l ≤ n and n positive scalars p1, . . . , pn such that∑n
i=1 pi = 1.

Initialization: Write S := On,l and D := Ol,l.

Computations: (1) For t = 1, . . . , l do

Pick it ∈ {1, . . . , n} such that Probability(it = i) = pi;

sit,t := 1;

dt,t = 1/
√
lpit;

end

(2) Write si,t = 0 for all pairs of i and t unless i = it.
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Output: n× l sampling matrix S = (si, t)
n,l
i,t=1 and l × l re-scaling matrix D = diag(dt,t)

l
t=1.

The algorithm performs l searches in the set {1, . . . , n}, l multiplications, l divisions, and the
computation of l square roots.

Algorithm D.2. (The Expected(l) Sampling and Re-scaling. [19, Algorithm 5]).

Input, Output and Initialization are as in Algorithm D.1.

Computations: Write t := 1;

for t = 1, . . . , l − 1 do

for j = 1, . . . , n do

Pick j with the probability min{1, lpj};
if j is picked, then

sj,t := 1;

dt,t := 1/min{1,
√
lpj};

t := t+ 1;

end

end

Algorithm D.2 involves nl memory cells. O((l + 1)n) flops, and the computation of l square
roots.
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