Efficient Hardware-assisted Out-place Update for
Persistent Memory

Yifu Deng*, Jianhui Yue*, Zhiyuan Lu*, Yifeng Zhu
*Computer Science, Michigan Technological University, Houghton, Michigan, USA
TElectrical & Computer Engineering, University of Maine, Orono, Maine, USA
{yifud, jyue, zhlu}@mtu.edu, yifeng.zhu@maine.edu

Abstract—Shadow paging can guarantee crash consistency for
Persistent Memory (PM). However, shadow paging requires the
use of an address mapping table to track shadow pages, and
frequent accesses to this table introduce significant performance
overhead. In addition, maintaining crash consistency at the gran-
ularity level of a page causes a large amount of unnecessary write
traffic. This paper proposes a novel hardware-assisted fine-grained
out-place-update scheme at the granularity level of a cacheline
to efficiently support crash consistency for PM. Our design
fully leverages the Address Indirection Table (AIT) available in
commodity PM to implement remapping. To ensure the atomicity
and durability of AIT updates, we propose two policies: eager
persisting and lazy persisting. We also employ overflow log to
handle the eviction of speculative AIT cache entries upon an
overflow in the AIT cache. Evaluation results based on multicore
workloads demonstrate that our proposed scheme can improve the
transaction throughput over the state-of-the-art design by 24.0%
on average.

Index Terms—Computer Architecture, Persistent Memory,
Crash Consistency, Logging, Shadow Paging

I. INTRODUCTION

Persistent memory (PM) is promising to bridge the gap
between memory and traditional storage due to its large capac-
ity, fast speed, non-volatility, and byte addressability. One of
the most fundamental challenges of using persistent memory
as legacy storage is the support of crash consistency. Crash
consistency is to ensure that all data can be recovered to a
consistent state in the event of a system crash or power loss.

Crash consistency requires that all updates within a transac-
tion are persisted to PM always in a nothing-or-all manner, even
upon a crash. Traditional systems adopt write-ahead logging,
such as undo log, redo log, or a combination of both, to
guarantee crash consistency. With logging, a transaction update
is applied to in-place data only after the log of modification is
stored in PM. The logging method suffers from inferior perfor-
mance due to ordering constraints between logging and in-place
update, which places the logging execution in the I/O critical
path. To reduce the logging overhead, hardware/hardware-
assisted logging methods [1]-[6] have been proposed to move
the logging out of the critical path. However, no logging opera-
tions are eliminated in both software and hardware approaches.

Shadow paging [7] is another technique to ensure crash
consistency. It takes a copy-on-write approach for avoiding
in-place updates. Instead, when a data block is modified,

This research is supported by the NSF grant SHF-1745748 and SHF-
1618536. Corresponding author is Jianhui Yue.

another free block in PM is allocated to store the new data.
A persistent mapping between physical and device addresses is
maintained to track out-place updated data. When a transaction
commits, the address mapping table is atomically updated to
achieve crash consistency. Conventional shadow schemes often
maintain the address mapping at the granularity of a page [8],
and have an inferior performance for small writes due to
the need of writing unnecessary data. To mitigate this issue,
the Shadow Sub-Paging (SSP) [9] reduces the granularity of
address mapping to a cacheline. SSP extends TLB by adding
the current bitmap and the committed bitmap in a TLB entry
to facilitate update atomicity. However, SSP suffers from the
overhead of page consolidation when TLB entries are evicted.
Moreover, it falls back to the conventional log if the transaction
write set is larger than the capacity of TLB. Additionally, due to
limited resources of TLB, SSP cannot efficiently support super-
page, which is important for emerging big data applications.

In this paper, we introduce a novel hardware-based out-place-
update scheme that fully leverages the Address Indirection
Table (AIT) available in modern PM to efficiently achieve crash
consistency for PM. Our design efficiently supports fine-grained
writes and persistence. AIT is designed originally for wear-
leveling and bad-block management. We propose to slightly
modify AIT to incorporate the address mappings required by
out-place updates. We tackle challenges in re-purposing AIT
for the address mapping of out-place updates to ensure the
crash consistency. After AIT cache entries are modified, the
AIT cache buffers both speculative AIT entries and committed
AIT entries. Without managing writing these modified cache
entries, AIT entries could violate transactions update atomicity
in case of a crash.

To address the AIT crash consistency issue, we propose an
eager persisting policy that prevents speculative AIT cache
entries from evictions and persists the committed AIT cache
entries upon committing a transaction. To further optimize
persisting performance, we design a lazy persisting policy that
delays the persistence of committed AIT cache entries until they
are over-written. Finally, we discuss the AIT cache overflow log
to handle the speculative AIT cache entries evictions caused
by the AIT cache overflow. We evaluate our design and state-
of-the-art designs REDU [5] and SSP [9] under multicore
workloads. Our evaluation shows that our design out-perform
REDU and SSP by 41.2% and 24.0% on average, respectively.

In sum, this paper makes the following contributions:

o« We present a new fine-grained hardware algorithm that
leverages AIT in modern PM to efficiently provide crash
consistency guaranty.

o We design two persistence schemes: eager persisting and
lazy persisting.

« We incorporate the overflow log to solve the crash incon-
sistency issue caused by the eviction of speculative AIT
cache entries due to the AIT cache overflow.

The rest of this paper is organized as follows. Section II
discusses crash consistency for PM, and AIT in modern PM.
We present our design and evaluation in Section IIT and IV.
Section V summarizes related work, and Section VI concludes
this paper.

II. BACKGROUND
A. PM Crash Consistency

Crash consistency ensures that data on PM can be recovered
into a consistent state after a system crash or power loss.
Prior studies [1]-[3], [5], [10] have proposed multiple logging
schemes to achieve crash consistency. Based on log content,
these logging schemes can be classified into undo log and
redo log. Hardware-assisted logging methods are proposed to
improve the crash consistency performance and reduce the
burden on programmers. However, these schemes still suffer
from (1) handling complicate constrains on ordering write-log
and write-data, and (2) generating significant log write traffic
and reducing PM’s lifetime.

Recently, SSP [9] proposes a shadow page to reduce log
operations with a cacheline level mapping, requiring modifica-
tions of TLB. SSP flushes a speculative write to an alternative
memory location, whose location is tracked by the current
bitmap. Upon transaction committing, SSP swaps the commit
bitmap with the current bitmap. However, SSP can not totally
remove data movements required to maintain transaction atom-
icity when SSP performs page consolidations, which involves
duplicated write operations similar to logging. In addition, the
SSP also incurs log operations for the metadata. SSP falls back
to logging when the number of updated pages of a transaction
exceeds the TLB. Due to its remapping metadata overhead, SSP
can not support super-page, which is widely used for the large
data set.

B. Hardware Supports in Commodity PM

Recently, Intel’s Optane DIMM provides Asynchronous
DRAM Refresh (ADR) [11] and Address Indirection Table
(AIT) [12] shown in Fig. 1, to efficiently support PM update
atomicity and wear-leveling. ADR leverages energy held in
supercapacitors to ensures that all pending write requests re-
ceived by the memory controller will be persisted to PM in
the event of a power failure or system crash. In the memory
controller, the queue that buffers all pending write requests
(WPQ) is called ADR buffer. With the adoption of ADR, it is
guaranteed that all write requests admitted in the ADR buffer
will be persisted to PM. Thus, the ADR buffer becomes a part
of persistence domain. To support wear-leveling, Optane DIMM
introduces AIT [12], which records the mapping between

Requests from CPU

Persistent-domain

ADR Buffer
A
Optane DIMM ’
DRAM |€ — Memory
AIT Cache ”| Controller

1)

PM
| A';II;A I [DATA AREA]

Fig. 1: Intel Optane PM

physical addresses and PM device addresses. While physical
addresses are associated with memory space exposed to ISA,
PM device addresses are used by the memory controller to
access storage media. The address mapping granularity is 256
bytes. When a block is moved to a different location in PM
for wear-leveling, the memory controller updates its address
mapping. AIT is stored in PM.

For each access, the physical address should be translated to
a device address. This is done by reading AIT in PM. Since
PM is slower than DRAM, Optane introduces AIT cache [12],
which is implemented with the DIMM DRAM shown in Fig. 1.
When wear-leveling maps a physical block to a new PM
location, its corresponding entry in the AIT cache is updated
to reflect the new mapping. To avoid losing remapped AIT
cache entries in case of a crash, Optane extends the persistence
domain to the AIT cache [12]. The super-capacitor in the
Optane DIMM has sufficient power budget to flush AIT cache
to PM upon a crash. In this paper, we extend the AIT to include
the address mapping required by the out-place-update, to more
efficiently support crash consistency.

III. DESIGN

We design a hardware-based algorithm to manage address
remapping that supports crash consistency of persistent memory
and also allows out-place-updates for data blocks with a fine
granularity. In the following, we will first introduce a baseline
design, and then present a new scheme called lazy persisting.
Finally, we propose overflow logging to solve the evictions of
speculative AIT entries caused by the lazy persist AIT entries.

A. Baseline Design

We exploit the AIT (Address Indirection Table) technology
widely available in modern PM to design a basic out-place-
update scheme to support crash consistency. AIT translates
an external physical address to an internal device address.
Conventionally, AIT is used for wear-leveling and bad-block
management in PM. We propose to slightly modify AIT entries
to implement the remapping for out-place-updates, as shown
in Fig. 2. An out-place-update does not directly overwrite
previously committed blocks; instead, new data will be written
to another new block in PM.

Requestslfrom CPU

ADR Buffer
vh
L, Memory Controller
DRAM AIT Cache = >
S/C| Physical Device Dirty K
Bit | Address | Address Bit Write Sets
1 PA DA'
0 PB DB l Bloom Filters I
vi
(PM
AIT LOG FREE
AREA AREA LIST DATA AREA
&
Fig. 2: Architecture
Requests AIT Cache AIT
sorePA || S| PA DA' PA DA
store PB S PB DB' PB DB
sorePE \['s | pE DE' PE DE
C PA DA' PA DA'
COMMIT (o} PB DB' PB DB'
(o} PE DE' PE DE'
Y

Fig. 3: Example of Eager Persisting

We propose to implement out-place-update via modifying
AIT cache entries to remap a physical address to a new device
address. When a transaction updates a previously committed
block with the physical address PA which is stored at the
device address DA, a free PM block, assuming its device
address is DA’, is allocated to store the new data. The AIT
cache should be updated to reflect the fact that P A is re-mapped
to DA’. Before the transaction is committed, there are two AIT
entries for P A. The new entry stored in the DRAM’s AIT cache
is called speculative entry, and the other existing entry stored in
the PM’s AIT is called committed entry. This AIT modification
is compatible with the wear-leveling. Because a write request,
which triggers the wear-leveling, updates its AIT entry, and our
modification also modifies the AIT entry for such a write write
request with the device address assigned by the wear-leveling.

The AIT cache may hold both speculative and committed
AIT entries. Each AIT cache entry has a flag bit, named S/C
bit, which indicates whether the corresponding AIT cache entry
is committed or speculative. If S/C' bit is 1, the entry is a
committed one. S/C' bit is valid only when the entry’s dirty
bit is set. For an on-going transaction, a update request’s AIT
cache entries is marked as speculative. When the transaction
ends, all of these speculative AIT cache entries are changed to
committed, and the corresponding S/C' bits are set to 1.

When the AIT cache runs out of space, we cannot evict
out a speculative entry and persist it to AIT. Otherwise, the

Requests AIT Cache AIT
store PA c PA DA' PA DA
strePB | "o pg DB’ PB DB
store PE
coMmIT C PE DE' PE DE

S PA DA" PA DA'
store PA s PB DB" PB DB'
store PB
store PC S PC DC' PC DC

[} PE DE' PE DE

C PA DA" PA DA'

C PB DB" PB DB'
COMMIT

C PC DC' PC DC

v [} PE DE' PE DE

Fig. 4: Example of Lazy Persisting

atomicity of transactions is violated and the crash consistency
cannot be guaranteed. If a speculative entry is flushed to PM,
the corresponding transaction is partially completed. If a crash
or power failure takes at this moment, the system cannot be
recovered to a consistent state. Therefore, we modify the AIT
cache replacement algorithm so that no speculative entries can
be chosen as victims.

To track a transaction’s transient speculative writes, the mem-
ory controller maintains a write set for an active transaction,
which the set of write requests issued by a transaction, so that
we can correctly transition the speculative AIT entry to be
committed and then empty the set after the committing. For
multi-core, the memory controller sets up a dedicated write set
for each core.

When a transaction ends, the basic design not only marks its
speculative entries as committed but also flushed them to AIT.
This is to avoid the scenarios that speculative entries take all
AIT cache space. We call this basic design eager persisting.
We will discuss how to handle rare situations in which AIT
cache fails to find a non-speculative victim later.

Fig. 3 uses a simple example to illustrates eager persisting.
Assume a transaction updates three data blocks with physical
address PA, PB, and PE. To perform out-place-update, three
free blocks with device address DA’, DB’, and DE’ are allo-
cated for them, respectively. Therefore, their AIT cache entries
hold new device addresses, and their AIT entries have old
device addresses committed previously. Before this transaction
commits, the AIT cache entries for these data blocks are marked
as speculative (denoted as S). When this transaction commits,
these three AIT cache entries are marked as committed (denoted
as C'). At the same time, the memory controller persists these
three AIT cache entries into AIT when the transaction ends.

B. Lazy Persisting

Eager persisting flushes committed AIT cache entries at the
transaction commit stage. These flushing operations are on
the transaction execution critical path, degrading the system
performance. To accelerate a transaction committing speed and
reduce flushing overhead, we propose a lazy persisting policy
that delays the flushing of committed AIT cache entries for any
transaction being committed. This effectively moves flushing

Requests AIT Cache AIT LOG AREA
sorepa || S| PA DA' PA DA
store PB S PB DB' PB DB
storePE | "5 pE DE' PE DE
s| pa | Da PA pA ||[p8 [oB |
sorepx || S] PX DX' PB DB
PX evicts PB S PE DEV PE DE
PX DX
c| pa DA' PA DA
c| px DX' PB DB'
commIT
c| pe DE' PE DE
PX DX
v

Fig. 5: Example of Overflow Log

operations out of the I/O critical path, without stalling the
current transaction. Specifically, we flush the committed AIT
cache entries when the committed cache entry is evicted by
the cache replacement. At the commit stage, the lazy persisting
policy only changes the speculative AIT cache entries, which
are indicated by the write set for the committing transaction
to be committed. This lazy persisting committed cache entries
can guarantee the crash consistency for the corresponding
committed transactions. Assume the AIT cache evicts some
committed AIT entries of the committed transaction tx to PM,
and the remaining committed AIT cache entries of transaction
tx still reside in the AIT cache. If a crash occurs, the ADR
can safely flush all committed AIT cache entries of tx to
PM, because the AIT cache is in the persistence domain, with
the help of supercapacitors. After ADR flushes the committed
AIT entries to PM, all committed AIT entries are persisted
to PM and the update-atomicity of all committed transactions
is ensured. This lazy persisting policy not only improves a
transaction commit speed but also guarantees crash consistency,
by exploiting the AIT cache protected by ADR.

Fig. 4 explains how the lazy persisting policy works under
two transactions. When the first transaction commits, we only
set the AIT cache entries in the write set to be committed,
marked as C, rather than flushing them to AIT. Thus, AIT
stores the previously committed device addresses for these three
entries. During the second transaction execution, the block
PA and PB are overwritten. These two speculative writes
are directed to the newly allocated device addresses DA’ and
DB, and their previously committed device addresses DA’
and DB’ are lazily persisted to AIT. Since the block PE is
not overwritten by the second transaction, its AIT cache entry
is not written to AIT, shown as C state. After the second
transaction commits, its write requests in AIT entries are set to
be committed.

C. AIT Cache Overflow Log

In lazy persisting, the AIT cache may evict speculative
entries due to cache overflow. Such evictions could compromise
the crash consistency, which is illustrated by an example
given in Fig. 5. The transaction tx has four write requests
for cachelines A, B, E, and X. After tz writes first three

cachelines and the memory controller updates their AIT cache
entries and marks them as speculative. Later on, tz issues
an request to write to E. Assume the AIT cache entry for
E is missed and loading E’s AIT entry to the cache leads
to the eviction of the speculative cache entry for B. This
eviction forces B’s speculative entry to be flushed to AIT.
If a crash happens immediately after the persistence of B’s
entry but before tx commits, AIT only reflects that tx’s B
update is persisted and its update to A and E are lost, which
are discarded by the memory controller as being speculative,
leading to inconsistency. Note that this cache overflow could
happen if a transaction write set is large and the conflict misses
of the AIT cache are severe.

To address the crash inconsistency issue caused by the
overflow of the AIT cache, we propose overflow log, which
writes a log for each evicted speculative cache entry, preventing
a speculative cache entry from being overwritten in AIT.
Specifically, we write log entries to a log region in the PM for
evicted speculative AIT cache entries. Each log entry includes
the physical address and its corresponding device address. Log
entries are organized as a FIFO stored in PM. To provide the
latest mapping entry, each AIT cache miss need to check the
active transaction’s overflow log before reading the AIT. If the
AIT request hits the overflow log, the AIT entry should be read
from the log. For each AIT cache miss, reading the overflow log
introduces extra latency, affecting the performance. To reduce
this overhead, we adopt the bloom filter [13] to record the
evicted speculative AIT entries’ physical address. In case of
hitting the bloom filter, we consult the overflow log for the
AIT request. Upon a speculative AIT entry eviction, this entry
is inserted to the bloom filer. In the previous example, we write
an overflow log for A’s AIT entry and insert its physical address
to the bloom filter. When a transaction commits, we apply its
overflow log entries to AIT table in PM, and then clear log
entries and its bloom filter. To further improve performance,
we set extra small ADR protected log buffer. To support multi-
core CPU, each CPU core has its dedicated log FIFO and a
bloom filter for its active transaction. The lazy persisting and
overflow log are collectively referred to as Efficient Hardware-
assisted Out-place-Update (EHOU) in this paper.

We use a simple example to illustrate the overflow log, as
shown in Fig. 5. Assume the AIT cache capacity is three entries
and this running transaction write set contains four requests,
including PA, PB, PE and PX. When the last write request
PX arrives, there is no free entry in the AIT cache and the
speculative entry P B is evicted. This speculative entry won’t be
written to AIT. Instead, it is written to the overflow log, shown
as the pair PB and PB’. During committing, we update PB’s
entry in the AIT, by applying the overflow log. The log entries
are removed after they are applied.

D. Crash and Recovery

Upon a crash, ADR only flushes all committed entries in
the AIT cache to AIT and discards all speculative entries. In
this way, we can guarantee update-atomicity for all committed
transactions. Discarding speculative AIT cache entries avoids
partial updates for the corresponding uncommitted transactions.

Essentially these uncommitted transactions are rolled back.
Due to the nature of out-place-updates, serving a write request
requires updating its address mapping from the physical address
to the device address, and we extend AIT to maintain address
mappings between physical addresses and device addresses.
When a crash occurs, data blocks for the speculative write
requests could be written to PM, while their speculative AIT
entries are still in the AIT cache. Discarding their speculative
AIT cache entries makes their corresponding data blocks inac-
cessible, leaking memory space.

To avoid memory space leakage, the allocated block ad-
dresses of all speculative AIT cache entries are kept in a reclaim
list. When a speculative entry is turned to committed, the corre-
sponding address is removed from the reclaim list. The reclaim
list resides in the ADR domain of the memory controller and
is atomically durable. A device address is removed from the
reclaim list after its AIT entry becomes persisted. If a crash
takes place, this reclaim list is appended to the free memory
list of the PM. Since the size of the reclaim list is smaller than
speculative AIT entries, ADR has a sufficient power budget to
flush the reclaim list to the free memory list in PM.

When the system restarts from a crash, the recovery is
performed as follows. If there are uncommitted overflow log
entries, they are discarded. If there are committed log entries,
they are replayed to update the AIT in the PM.

IV. EVALUATION

A. Experiment setup

Cores 4 000 core @2GHz,192 ROB entries, 48 STQ entries
TLB L1: 6 sets, 4 ways; L2: 128 sets, 12 ways

L1 I/D Cache private, 32KB, 2 cycles, 8 way

L2D Cache private, 256KB, 8 cycles, 8 way

LLC 8MB, 25 cycles, 16-way,

1 channel, 1 rank, 8 banks, 8GB PM

32 write queue entries, 32 read queue entries
300(48) ns write(read) [14], [15]

8192 sets, 16 ways, 100 cycles, 64MB

Memory Controller

PM Access Latency
AIT cache

TABLE I: System Parameters

The proposed design is implemented and evaluated by us-
ing ChampSim [16] with DRAMSim2 [17]. ChampSim is
an Intel PIN [18] based simulator that models out-of-order
micro-architecture at cycle level with detailed memory access
behaviors, including LSQ memory dependence, TLB, and cache
miss status holding registers (MSHR). To accurately model
PM accesses, the cycle-level DRAMSim?2 is incorporated with
ChampSim. We enhance ChampSim to support tx_begin, and
tx_end. The configurations of the processor and memory system
used in our experiments are listed in Table I. The workloads
used for evaluation include Array, Hash Table, Hash Map, B+
Tree, similar to ones used in Ref. [14]. We evaluate workloads
B tree and RB tree with keys following Zipfian distribution,
similar to SSP [9]. Real-world OLTP workload TATP [19] and
TPC-C [20] are evaluated. All workloads run four-copies at the
same time.

We evaluated the following designs.

« REDU: We implement the state-of-the-art hardware-

assisted redo log with the DRAM cache [5], with models

100%

- é' !l é
- a a é
- g g g

20%

F___

IIIIIIIIIIIIIIWWW_

o = = = = = =
0% Bree(zipf) RBtree(zipf) RBtree Array HashTable HashMap B+tree TPCC TATP _Average

EEE SSP: Journaling E=3 SSP: Consolidation B EHOU: AIT Flush S EHOU: Overflow Log

Fig. 6: PM-Write Overhead Reduction

the latency for DRAM cache accesses for each PM read
request.

o SSP: It implements the state-of-the-art shadow cacheline
SSP [9], modeling TLB consolidation, journaling, and SSP
cache.

« EHOU: We evaluate the proposed EHOU with lazy per-
sisting AIT entries and overflow log.

Since the Optane does not disclose its wear-leveling algorithm,
we do not model wear-leveling. In addition, each design models
the AIT cache and AIT stored in PM.

B. Memory Access Reduction

Fig. 6 compares PM write overhead introduced by SSP and
EHOU. The write overhead is defined as the total number of
PM write operations excluding those issued by CPU. While
the write overhead in SSP is caused by TLB consolidations
and metadata journaling, the write overhead in EHOU includes
flushing AIT entries and overflow-log. The write overhead of
EHOU is rated to SSP. Results show that EHOU can effectively
reduce the write overhead by 55.6% on average, compared with
SSP. This is because SSP suffers from frequent consolidations
when TLB entries are often evicted to free up some cache
space. In addition, SSP’s TLB consolidation also introduces the
same amount of PM read operations as PM write operations,
which is one of the major sources of performance overhead.
In our design, extra read operations are only caused by the
overflow log, which is much smaller than SSP’s read operations
caused by the TLB consolidations.

C. Transaction Throughput Improvement

Fig. 7 shows the transaction throughput improvement of SSP
and EHOU, compared with REDU. Throughput is number of
transaction committed in an unit time. First, EHOU achieves
the highest throughput improvement. For example, under the
workload ArrayStrm, the throughput of EHOU is 83.1% higher
than REDU, and 70.7% higher than SSP. Across all workloads
studied, the throughput of EHOU is 41.2% higher than REDU,
and 24.0% higher than SSP, on average. EHOU’s performance
gain is caused by the reduction of both PM write and read
operations, which is explained in the last paragraph. In addition,
both SSP and EHOU achieve higher throughput than REDU,
due to the elimination of frequent log operations.

180% BN SSP EHOU
160%
140%
120%
100%
80%
60%

40%

LTI 777
AN

720 7722 7 22 2777
SANMININNNINNNANRNNNNNNNY
772 T 77
AN
VLTI 27D

R T R YRR R AR
LTI T2
ANNANANNNANA NN
L7770 77770
ANNMANANINNNNY NN
L7077
SAANNANNNANASANNNNNNNRY
VLT 7270777720
SN
22277770772 72
AN
2772 77722

T T T R

20%

o
0% Biree(zipf) RBtree(zipf) RBtree Array HashTable HashMap B+tree TPCC TATP _Average

Fig. 7: Throughput Improvement Rated to REDU

V. RELATED WORK

Software log increases programmers’ burden and introduces
performance overhead caused by synchronizations between log
and update. Hardware logging approaches have been proposed
to address software log limitations. ATOM [1] proposes a
hardware undo-logging design, which moves the logging out
of the critical path, and reduces the undo logging metadata
overhead. In order to improve in-place update performance
of redo log, REDU [5] proposes the hardware redo-logging
which stores transaction updates in a large DRAM-cache, and
flushes them to PM, rather than reading from the log area in
the slow PM. In addition to ensure data crash consistency, PM
encryption requires maintaining recoverability of encryption
metadata [14], [21].

Shadow page is another approach to achieve crash consis-
tency. It adopts the copy-on-write (CoW) technique to make a
shadow page for an update write request. Updated data is writ-
ten to the shadow page, without overwriting the existing page
committed previously. Conventional shadow schemes maintain
address mapping at the granularity of a page [8], suffering
from fine-granularity writes. SSP [9] proposes a novel shadow
paging to reduce log operations with an interesting mapping at
the cacheline level, and it requires the modifications of TLB.
However, SSP cannot totally remove data movements required
to maintain transaction atomicity when SSP performs page con-
solidations, which involves duplicated write operations similar
to logging. In addition, SSP also incurs log operations for
metadata. Lastly, SSP falls back to logging when the number of
updated pages of a transaction exceeds the TLB capacity. Due
to limited resources of TLB, SSP fails to support super-page,
which is important for emerging persistent memory for big
data applications. The limited address mapping tables proposed
in prior research works poses challenges to efficiently support
crash consistency. This paper proposes a novel out-place-update
design that re-purposes AIT available in modern PM for address
mapping. This significantly reduces the performance overhead
caused by the limited address mapping table.

VI. CONCLUSION

Shadow paging is a copy-on-write technique that can support
crash consistency. However, for PM, shadow paging has two
key issues: (1) frequent accesses to the mapping table cause

significant overhead, and (2) page-level granularity causes un-
necessary writes. This paper proposes a new hardware-assisted
out-place update schedule to address the weaknesses of shadow
paging. Specifically, we leverage the Address Indirection Ta-
ble (AIT) available in modern PM to implement fine-grained
addresses remapping to support crash consistency. We also
designed two policies, including eager persisting and lazy per-
sisting, to better utilize the AIT cache to achieve performance
gain, without compromising crash consistency. We compare
our design with two state-of-the-art hardware-assisted schemes,
REDU and SSP. The evaluation results demonstrate that our
proposed scheme can improve the transaction throughput by
24.0% on average.

REFERENCES

[1] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: atomic
durability in non-volatile memory through hardware logging,” in HPCA,
2017, pp. 361-372.

[2] K. Doshi, E. Giles, and P. J. Varman, “Atomic persistence for SCM with
a non-intrusive backend controller,” in HPCA, 2016, pp. 77-89.

[3] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for NVM,” in
MICRO, 2017, pp. 178-190.

[4] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of persist
barriers using speculative execution,” in ISCA, 2017, pp. 175-186.

[5] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,” in
MICRO, 2018, pp. 520-532.

[6] Z. Lu, J. Yue, Y. Deng, and Y. Zhu, “Improving the performance of
nvm crash consistency under multicore,” in The 38th IEEE International
Conference on Computer Design(ICCD), 2020.

[71 M. M. Astrahan and etc., “System r: Relational approach to database
management,” ACM Trans. Database Syst., vol. 1, no. 2, p. 97-137, Jun.
1976.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent memory,” in
SOSP, 2009.

[9] Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. L. Miller, “SSP: Eliminating
redundant writes in failure-atomic NVRAMs via shadow sub-paging,” in
MICRO, 2019.

[10] T. Nguyen and D. Wentzlaff, “PiCL: A software-transparent, persistent
cache log for nonvolatile main memory,” in MICRO, 2018, pp. 507-519.

[11] D. Mulnixl. Intel Xeon processor D product family technical overview.
https://software.intel.com/en-us/articles/intel-xeon-processor-dproduct-
family-technical-overview/.

[12] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in FAST, 2020, pp. 169-182.

[13] B. H. Bloom, ‘“Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, pp. 422-426, 1970.

S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted

non-volatile main memory systems,” in HPCA, 2018, pp. 310-323.

S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan, “Janus:

Optimizing memory and storage support for non-volatile memory sys-

tems,” in ISCA, 2019.

[16] Champsim. https://github.com/ChampSim/.

[17] Dramsim. https://github.com/umd-memsys/DRAMSim2.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in PLDI, 2005.

[19] A. W. Markku manner Vilho Raatikka Simo Neuvonen. TATP telecom-
munication application transaction processing (benchmark description).
http://tatpbenchmark.sourceforge.net/TATP-Description.pdf.

[20] Transaction processing performance council (TPC),
http://www.tpc.org/tpcc/default.asp.

[21] Z. Zhang, J. Yue, X. Liao, and H. Jin, “Efficient hardware-assisted
crash consistency in encrypted persistent memory,” in Proceedings of
the Design, Automation Test in Europe Conference Exhibition (DATE),
2020.

[14]

[15]

TPC-C.

