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ABSTRACT 
Understanding individuals’ behavior during hurricane evacuation is of paramount importance for 
local, state, and government agencies hoping to be prepared for natural disasters. Complexities 
involved with human decision-making procedures and lack of data for such disasters are the main 
reasons that make hurricane evacuation studies challenging. In this paper, we utilized a large 
mobile phone Location-Based Services (LBS) data to construct the evacuation pattern during the 
landfall of Hurricane Irma. By employing our proposed framework on more than 11 billion mobile 
phone location sightings, we were able to capture the evacuation decision of 807,623 smartphone 
users who were living within the state of Florida. We studied users’ evacuation decisions, departure 
and reentry date distribution, and destination choice. In addition to these decisions, we empirically 
examined the influence of evacuation order and low-lying residential areas on individuals’ 
evacuation decisions. Our analysis revealed that 57.92% of people living in mandatory evacuation 
zones evacuated their residences while this ratio was 32.98% and 33.68% for people living in areas 
with no evacuation order and voluntary evacuation order, respectively. Moreover, our analysis 
revealed the importance of the individuals’ mobility behavior in modeling the evacuation decision 
choice. Historical mobility behavior information such as number of trips taken by each individual 
and the spatial area covered by individuals’ location trajectory estimated significant in our choice 
model and improve the overall accuracy of the model significantly.  
Keywords: Disaster Management, Hurricane Evacuation Behavior, Mobile Phone Location Data, 
Location-based Services Data, Evacuation Decision Model 
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1. INTRODUCTION 

Three of the top five costliest U.S. hurricanes occurred in 2017, making the 2017 Atlantic hurricane 
season the costliest on the record1,2. These three hurricanes, Hurricane Harvey, Maria, and Irma 
impacted the lives of millions of people in several states in the United States. The complexity of 
managing the evacuation, allocating accessible transportation for different society groups, and 
providing safe shelters for evacuees are among the key challenges that agencies face during such 
disasters. 
  In September 2017, Hurricane Irma prompted officials to issue one of the largest 
evacuation orders in U.S. history. Over six million people were ordered to evacuate their residences 
due to Irma’s landfall in Florida, Georgia, and South Carolina. Mandatory and voluntary 
evacuation orders were issued before the landfall of the storm, in both Atlantic and Gulf coasts. 84 
deaths were reported only in the state of Florida due to either direct effect of Hurricane Irma such 
as drowning or indirect causes such as vehicle accidents during the evacuation3. The immense 
scale of Irma hurricane and the dependence of the evacuation management on how people behave 
during these disasters highlighted the importance of studying the evacuation patterns of the people 
in such big disasters.  
 To study evacuees’ behavior, post-hurricane surveys are traditionally used to collect 
information regarding various evacuation decisions (i.e., evacuating or not, departure time of the 
evacuation, destination choice, primary travel mode used for the evacuation, route choice, and 
reentry time decision) 2,4,5. Although this type of survey is rich in terms of recording evacuees’ 
decisions and revealing their preferences during the disaster, such surveys are costly, implemented 
for a small number of respondents, time-consuming, and not capable of providing real-time 
information.  
 With the increasing availability and popularity of big-data, new approaches are now 
available to tackle old problems. Billions of location data points are being passively collected from 
mobile devices, producing a blueprint of people’s movement patterns. Mobile device location data 
sources include cell phone call detail record (CDR), GPS location data from in-vehicle GPS 
devices, and smartphone app location data, also known as Location-Based Services (LBS) data. 
Smartphone apps often record the phone’s location for various services, using GPS, Wi-Fi, 
Bluetooth, etc. Once privacy concerns are addressed, one can refer to passively-collected location 
data to observe the movement pattern of millions of people before, during, and after any event 
such as a hurricane. Robinson et al. (2017) identified two main challenges in modeling disaster 
evacuation; the first is the complexity of human behavior and the second is data deficiency for 
traffic conditions and household decisions 6. Both issues can be resolved to some extent by 
passively-collected location data. Such data does not include detailed individual-level information, 
but with its significant sample size, it can reveal valuable information and answer many critical 
questions. Besides the larger sample, passively-collected data has other advantages over traditional 
surveys. The first is related to a phenomenon known as the observer effect, which describes that 
individuals may modify their behavior when being observed or studied7. Passively collected data 
capture the normal behavior of subjects, free of any study-related observer error. The second is 
related to typical survey design errors such as sampling error, measurement error, and response 
error 8 and survey response biases 9. Even though passively collected data may have their own 
biases (such as bias toward higher income or younger individuals) and errors (such as inaccurate 
sightings), they record the actual behavior, not recalled or stated behavior. The third is related to 
their ease of availability. Even though passively-collected data may sometimes be costly, they can 
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be available almost in real-time without any major effort for collection. The fourth is specific to 
disaster-related surveys. Surveying individuals about a traumatic event such as a hurricane may 
sometimes be undesired for the respondents. Passive data collection does not put any emotional 
burden on the respondents. 
 Some previous studies attempted to analyze evacuee’s behavior using big-data from social 
media platforms (e.g. Twitter, Facebook) 10,11. The social media data such as the data from tweets 
are usually geo-coded, which provides low-frequent data with some contexts. The higher 
frequency of location sighting, higher penetration rate, and smaller demographic bias are the key 
advantages of the passively-collected location data over the social media data. Among the mobile 
device location data sources, LBS is becoming more popular because of its high penetration rate, 
frequent and precise sightings (in comparison with CDR), and multi-modality (in comparison with 
in-vehicle GPS). LBS dataset has been recently used for studying behavior before, during, and 
after disasters 12-14. The recent studies highlight the value of LBS data in studying community-
level evacuation behavior. 
  This study is the first to take advantage of mobile location big-data in modeling individual-
level evacuation behavior during disasters. We employed LBS data collected from smartphone 
apps to understand the evacuation patterns and individual-level evacuation decisions during 
Hurricane Irma. Our LBS dataset consists of anonymized location data for more than 25% of the 
entire U.S. smartphone users.  In this paper, we analyzed two months of LBS data for devices 
within the state of Florida to capture the actual evacuation pattern of a sample of Florida residents. 
By identifying the home location of each anonymized user and analyzing their movement 
trajectory, we were able to analyze the evacuation behavior of 807,623 anonymized smartphone 
users in Florida. Using machine learning methods and computational algorithms, we were able to 
add more context to the passively collected location data by imputing home locations and 
identifying departure and reentry dates of evacuees. This study highlights the potential of passively 
collected location data in constructing travel behavior, especially evacuation-related behavior. Our 
findings show great accordance with results from previous studies, highlighting the validity of our 
efforts. The findings of this paper provide empirical evidence for decision-makers on how people 
evacuate during big disaster events such as Hurricane Irma.  
In addition to constructing the evacuation pattern, we further examined the importance of the 
individuals’ mobility behavior in their decision-making procedure. Our statistical model revealed 
that people who made more trips during the pre-disaster condition and covered a larger spatial area 
in their daily movements in pre-disaster time are more likely to evacuate their home location during 
the disaster. 
 The rest of this paper is organized as follows: the next section summarizes previous studies 
related to understanding evacuation behavior, followed by a description of the data used in this 
study. Next, the methodology is discussed in detail. Evacuation pattern was constructed in the next 
part followed by the statistical model for evacuation decision choice. The paper concludes with a 
summary of major findings. 

2. RELATED STUDIES 

There is a wide range of research studies focused on disasters such as hurricanes. Most related to 
our study are those focusing on evacuation behavior. Several studies reviewed the literature of 
evacuation behavior 15, evacuation modeling 16, and evacuation practices 17. 

Many of the studies are focused on a specific disaster or set of disasters to analyze the 
important factors in evacuation behavior, evaluate the disaster planning and preparation, or assess 
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disaster management and logistics. A recent example is Collier et al. (2019) studying major 
transportation and logistics issues and lessons learned for two major hurricanes in the U.S., 
Hurricane Katrina and Hurricane Harvey. They provided recommendations for future hurricanes 
in terms of evacuation planning, information provision, infrastructure management, and disaster 
preparation 18.  Several disaster planning and management studies relied on simulation models 19-

25. A recent example is Feng and Lin (2019), which used a hurricane-prediction demand generation 
model in a fast agent-based modeling framework calibrated with traffic observations to study the 
case of evacuation in Hurricane Irma 22.  
 The majority of evacuation behavior studies rely on surveys 2,26-30. These surveys ask the 
impacted individuals about their behavior their choices, and their opinions. For instance, Kontou 
et al. (2017) collected telephone survey data from commuters affected by Hurricane Sandy and 
estimated a hazard-based model to identify the parameters that affect the duration of commute 
behavior changes 29. Wong et al. (2018) collected an online survey from individuals impacted by 
Hurricane Irma and studied their evacuation behavior 2. They offered descriptive statistics and 
discrete choice models for various choices made during disaster and variables affecting the 
choices. Wong et al. (2019) used the same survey to study if sharing economy could improve the 
transportation and sheltering resources for the vulnerable population and improve the equity in 
evacuation resources 30. 

As discussed in the introduction, more recent studies are taking advantage of big-data for 
evacuation behavior, for its larger sample size, ease of collection, and empirically observed 
information. The dominant datasets in these studies are in the form of social media data. Kumar 
and Ukkusuri (2018) utilized geo-tagged tweets from New York City at the time of Hurricane 
Sandy to study the evacuation behavior of affected residents 31. Their study showed a strong 
relationship between social connectivity and the decision to evacuate. Roy and Hasan (2019) 
collected Twitter data related to Hurricane Irma and developed a hidden Markov framework to 
model dynamics of hurricane evacuation and infer evacuation decisions 11. Wang and Taylor (2014) 
also used Twitter data for Hurricane Sandy to study mobility patterns during hurricane and found 
that the movement patterns under steady-state and perturbed state are highly correlated 10. 

We believe the passively-collected mobile location data have the advantage of higher 
frequency of location sighting, higher penetration rate, and smaller demographic bias in 
comparison with the social media data; however, applications of such data in evacuation studies 
are very limited 12,13. Yabe et al. (2020) collected LBS data for five disastrous events (1.9 Million 
devices in total) to study recovery patterns at macroscopic population level and showed similarity 
in recovery patterns of these events despite differences in population characteristics 13.  Yabe et al 
(2020) used LBS data for 1.7 million devices in Florida to study the effect of income in evacuation 
and re-entry behavior related to Hurricane Irma and showed significant income inequality 12. This 
paper continues this line of research and utilizes LBS data for evacuation behavior. We use LBS 
data not only to understand the full picture of the behavior before, during, and after disastrous 
events but also to model individual-level evacuation decisions based on the historical mobility 
patterns and socio-demographic information. We believe an understanding of individual-level 
evacuation behavior can help design effective policies that can save lives and reduce the tolls.     
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3. DATA 

3.1. Location-Based Services Data 

The primary dataset used in this study is a location-based services dataset of anonymized 
smartphone devices for the entire United States gathered by a location intelligence and 
measurement company Cuebiq. Information in this dataset was recorded passively through mobile 
phone apps. Each observation includes timestamp of the observation in Unix epoch time format, 
an anonymized hashed identification number (ID), ID type that represents the device operating 
system (OS), latitude and longitude coordinates in decimal version, location accuracy associated 
with each data point in meters, and time zone offset of the position of the device. A synthetic 
sample of data is given in Table 1 to demonstrate the raw data. Data presented in Table 1 is 
modified in ordered to preserve privacy. 
  

Table 1. A synthetic sample of LBS data 
Timestamp Device ID Device 

Type Latitude Longitude Location 
Accuracy (m) 

Time Zone 
Offset 

1504068337 e07941996a2ffd303021914e0c12gcf 1 28.43023 -81.60654 5 -14400 
1504068342 e07941996a2ffd303021914e0c12gcf 1 28.43038 -81.60531 25 -14400 
1504068351 e07941996a2ffd303021914e0c12gcf 1 28.43029 -81.60427 5 -14400 
1504068360 e07941996a2ffd303021914e0c12gcf 1 28.43058 -81.60463 100 -14400 
1504068369 e07941996a2ffd303021914e0c12gcf 1 28.43139 -81.60374 5 -14400 

    
Based on the meteorological history, Irma developed from a tropical wave near Cape Verde 

on August 30 and quickly intensified into a Category 3 hurricane by August 31 due to the climate 
condition. On September 4, the storm kept intensifying, making it a Category 5 hurricane. 
Therefore, based on the timeline of Hurricane Irma’s evolution, we chose the month of August to 
identify the home location of the users within the state of Florida, as we assume that users’ behavior 
had not been impacted by the news of Hurricane Irma yet. Furthermore, to understand the 
evacuation pattern of the residents in Florida, the data from the entire month of September were 
employed. 

3.2. Evacuation Zone Data 

In addition to the location data, gathering information regarding evacuation order evolution was 
necessary to understand the evacuees’ behavior. The Florida Division of Emergency Management 
provided the spatial polygon of evacuation zones for the counties with defined evacuation zones 
32. However, for the information regarding evacuation orders by county and zones, no single source 
provided comprehensive details. The webpage of the former Florida governor, Rick Scott, had one 
of the most complete information regarding the issuance of evacuation orders as of 9/9/2017 33. 
However, several counties, particularly in the north of Florida, issued evacuation orders on 
9/10/2017. Also, many counties upgraded from voluntary to mandatory evacuation orders on or 
after 9/9/2017. Therefore, we looked at several various sources and compiled the data for each 
evacuation zone. The final Florida map by evacuation order and date during Hurricane Irma is 
shown in Figure 1. Besides the evacuation map, open-source parcel-level information for the 
entire state of Florida was obtained. The data were gathered by the Florida Department of Revenue, 
County Property Appraisers, and the University of Florida GeoPlan Center. This layer contains 
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residential home type information that has been used in the parameter selection process for the 
home location identification algorithm. 

Also, to measure the impact of living in low-lying residences on the evacuation decision, 
the elevation information was obtained from the digital elevation model (DEM) provided by the 
University of Florida GeoPlan Center for the entire state of Florida. 
 

 
Figure 1. Florida map by evacuation order and date during Hurricane Irma 

3.3. Socio-Demographic Data 

In addition to the passively collected location data and evacuation zone information, socio-
demographic information such as income, age, and race information was gathered for statistical 
modeling purposes. We have used the 2017 American Community Survey (ACS) 5-year estimates 
conducted by the United States Census Bureau to collect socio-demographic information at the 
census tract level. The census-tract level socio-demographic information was added to devices 
based on their residential location. 

4. METHODOLOGY 

We describe the three steps of our analysis to capture the evacuation pattern from the LBS data: 
(1) Identifying the home location of each anonymized users to filter out the devices that are not 



Darzi et al.  8 

living within the state of Florida; (2) Detecting devices that evacuated during the Hurricane Irma 
based on a proposed framework and constructing their evacuation behavior; (3) Calculating 
mobility metrics such as number of trips and convex hull area for each device daily to develop a 
descriptive model for evacuation decision based on both mobility and socio-demographic 
characteristics of the devices. Figure 2 displays the steps of our methodology. 

 
Figure 2. Methodology flowchart 

4.1. Home Location Identification 

Identifying the home location of each device was the first step of the analysis. Based on the 
assumption that people were not impacted by Hurricane Irma during August, thirty-one days of 
data in August were analyzed to achieve a robust estimation of the home location.  

2,132,776 devices were observed at least once in the study area within August. The next 
step was to identify the home location for all the extracted users by analyzing the 6,210,853,449 
sightings.  

Many studies in the literature discuss how to infer activity locations from the individual 
traces. Several clustering algorithms including distance-based, agglomerative, model-based, 
incremental, and density-based clustering have been implemented on various types of passively 
collected location data 34-36.  

To cluster the traces of each device, the Density-based spatial clustering of applications 
with noise (DBSCAN) clustering approach was used. DBSCAN is a clustering algorithm relying 
on a density-based notion of clusters, designed to discover clusters regardless of their shapes 37. 
For identifying the home location we implemented the DBSCAN algorithm on each device’s GPS 
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sightings in the time window of 7 PM to 7 AM for the entire month of August. Among all clusters 
determined by the algorithm, the home location was defined as the center of the cluster with the 
highest frequency of observation. 

4.2. Evacuation Detection 

After filtering the devices with the inferred home located within the state of Florida, the sighting 
data of these devices for the entire month of September were extracted to study the evacuation 
pattern of the residents of Florida during Hurricane Irma. 

First, we did some additional checking on the list of the devices to check the persistency 
of the device IDs and to make sure that devices are still active. To do so, devices with at least one 
observation in 1-mile radius of their home location during September were kept for further 
analysis. This condition can remove devices without any information in September as well as 
devices that changed their home location or were on a trip to Florida during August. After this 
check, the identified home location of each device was intersected with the augmented shapefile 
to specify the corresponding county, evacuation zone, elevation information, and socio-
demographic attributes of each device.  

The next step was to define evacuation based on the available traces of each device. 
Evacuation identification method was developed based on the distance of the users’ sightings to 
their inferred home location during Hurricane Irma. For this purpose, we calculated the daily 
minimum distance between each device’s sightings and their identified home from September 1st 
to 30th. A 1-mile threshold was selected as the evacuation criteria. If users were not observed within 
a 1-mile radius of their home location during the hurricane study period, we assumed that they 
evacuated their homes. The former Florida Governor, Rick Scott, declared a state of emergency on 
September 4, and within the next six days, 57 of the 67 counties issued evacuation orders. 
Eventually, Hurricane Irma made landfall on Cudjoe Key on September 10 as a Category 4 
hurricane and exited Florida into Georgia on September 11, after being significantly weakened. 
Thus, the period between September 4 and September 12 was chosen as our hurricane study period 
for determining the evacuation decision of the users. 

4.3. Mobility Behavior Pattern 

In addition to constructing the evacuation pattern, in this paper, we explored the relationship 
between individuals’ mobility behavior and its impact on their evacuation decisions. In particular, 
we extracted number of trips and convex hull set information for each device during August based 
on their location trajectories. As the mobile device location does not provide trip information, we 
applied our previously developed recursive trip identification algorithm to extract trip information. 
Figure 3 shows an overview of the trip identification algorithm. A more detailed description of our 
trip identification algorithm can be found in our previous work 38. 
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Figure 3. Recursive trip identification algorithm 

 
In addition to number of trips, we also calculated the convex hull characteristics of each device 
daily. Convex hull has been widely used for understanding human mobility behavior based on 
location trajectories in the literature39,40. In this paper, we computed the area and perimeter of the 
daily convex hull to investigate the relationship between individuals’ mobility measures and their 
evacuation decisions. 

5. CONSTRUCTING THE EVACUATION PATTERN 

In addition to analyzing the evacuation decision, departure date and reentry date are of paramount 
importance in disaster evacuation management. Therefore, we used the minimum daily distance 
measures to find out the distribution of the departure and reentry dates. For the devices who 
evacuated, the latest day before the evacuation in which they were seen in the 1-mile radius of 
their identified home was chosen as their departure date. Similarly, the earliest day after the 
evacuation, in which they were seen in the 1-mile radius of their identified home was selected as 
their re-entry date. Estimating the departure and reentry date enabled us to construct the picture of 
the evacuation pattern. Moreover, we studied the relationship between the evacuees’ departure date 
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and the date that the corresponding evacuation order was issued. Observing how individuals react 
to the evacuation order helps us better understand the individuals’ response to the evacuation orders 
and plans. 

Destination choice is another important decision component. While an increase in short-
distance evacuations increases the demand for sheltering resources, it reduces the stress on the 
transportation network as well as the cost of evacuation. As a result, agencies are becoming 
increasingly interested in short-distance evacuations. In this paper, we used the maximum value of 
individuals’ minimum distances from their inferred home locations during the evacuation period 
as the proxy for the distance between their home and the evacuation destination. Also, we 
empirically examined the impact of living in a low-lying residential area on individuals’ 
evacuation decisions. To have a better understanding of the effects of the low-lying area on the 
evacuation rate, we controlled for the type of evacuation order in our analysis.  

5.1. Stay or Evacuate 

Implementing the home location identification algorithm discussed above on the 6 billion 
observations for the devices that were observed in Florida during August, we were able to infer 
the home location of 1,050,472 devices. Among these devices, 1,002,858 of them resided within 
the state of Florida. Extracting the information of these devices for September, 5,677,549,347 
sightings were filtered from our LBS data and analyzed. The additional checks were conducted to 
remove inactive devices during September as well as eliminating devices that did not have enough 
sightings near their home locations. The final list of devices includes 807,623 active devices. The 
minimum distance from the identified home location was calculated daily for all users. Then the 
proposed framework for evacuation identification was employed to find out the evacuation 
decision, departure date, and reentry date of the evacuees. A summary of the rate of evacuation by 
each evacuation order type is shown in Table 2. Based on our results, 57.92% of the people who 
received mandatory evacuation orders evacuated their homes while this ratio was considerably 
lower for people who received voluntary evacuation or no evacuation order (33.68% and 32.98%, 
respectively). These results are in accordance with the results of a telephone poll conducted on 
October 17, 2017, that showed 57% of people followed the mandatory evacuation order and in 
general, 33% of the Floridians were evacuated their home 41. 
 

Table 2. Evacuation decision based on the evacuation order received 
 No Evacuation 

Order 
Voluntary 

Evacuation Order 
Mandatory Evacuation 

Order Entire State 
 Number Ratio Number Ratio Number Ratio Number Ratio 

Evacuated 187285 32.98 38524 33.68 72628 57.92 298437 36.95 
Not Evacuated 380547 67.02 75868 66.32 52771 42.08 509186 63.05 

Total 567832 100 114392 100 125399 100 807623 100 

5.2. Departure and Reentry Date Distribution 

Departure and reentry date choices are becoming increasingly important for the emergency and 
transportation practitioners as well as state and government agencies. We tried to estimate the 
departure and reentry date distribution by employing the method discussed previously on our LBS 
dataset. We acknowledge that this approach might have some deficiencies in capturing the actual 
departure and reentry date accurately for the devices that lost their connections to the network 
either due to power outage or losing cell network services during and after hurricane landfall. 
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However, comparing the results from our analysis using LBS data for Hurricane Irma with the 
conducted survey for the same regions shows consistent patterns between the two outcomes 2. A 
summary of the result can be seen in Figure 4. 

Based on our results, the majority of the evacuations occurred from September 8 to 
September 9, with September 9 being the peak with 26.27%. Although the majority of evacuations 
happened in the last three days before Irma’s landfall, our results showed that a considerable 
number of people in our data evacuated their home 5 days or earlier in advance, with 7.04% of 
people evacuated on September 5 and 10.28% evacuated before September 5. This high rate of 
early evacuation might be because some counties started to issue evacuation orders as early as 
September 5. Increased implementation of time-phased evacuation plans can be another reason for 
our observation. Finally, only 2.13% of the evacuees left their homes after September 10. 

On the other hand, reentry date distribution was smoother in comparison to the departure 
date, with a peak of 24.65% observed on September 11. This was expected since regions do not 
become livable at once after a disaster. Besides that, agencies do not provide returning plans for 
the impacted areas. Therefore, people usually decide to re-enter their residence in a way that 
minimizes any impedance such as traffic. Moreover, our results indicated that about 12.89% of the 
evacuees returned to their homes on September 10 or earlier. This observation might have 
happened because of the updates on the hurricane path. Individuals who evacuated earlier might 
have reached to the conclusion that their residences were no longer at risk. This behavior was 
observed in the conducted surveys as well 2.  
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(a) Departure date distribution 

 
(b) Reentry date distribution 

Figure 4. Departure and reentry date distribution 
 

To delve more into the departure date distribution, the effect of the corresponding date that 
evacuation order was issued on the departure date was investigated for all the regions with 
mandatory or voluntary evacuation orders. The majority of the individuals who received 
evacuation orders on September 6 departed their homes on September 7 and September 8 while 
people who received orders on September 7 mostly chose to leave their home between September 
7 to September 9. The same trend can be observed for the people who were ordered to evacuate 
their homes on September 8. 34.53% of them decided to leave their residences on the following 
day.  As it got closer to the landfall date, the impact of the evacuation order date on the individuals’ 
actual departure date decision decreased. The majority of the evacuees who were ordered to 
evacuate their homes on September 9 and September 10 had already left their home before 
receiving the evacuation order. Figure 5 is color-coded by the evacuation order date. 
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Figure 5. Relationship between departure date and the date that evacuation order was 

issued 
5.3. Destination Choice: Distance to Shelter 

The overall distribution of distance to shelter followed a similar trend among evacuees who 
received various evacuation orders. However, on average, evacuees who received mandatory 
evacuation order traveled to farther locations. The trend is shown in Figure 6.  While about 43% 
of the evacuees who received voluntary evacuation order or no order at all decided to choose 
shelters within 20 miles radius of their residential locations, 35.47% of evacuees who received 
mandatory evacuation order stayed within 20 miles radius of their home. A possible reason for this 
observation might be that people who received mandatory evacuation orders may have not felt 
safe remaining in their neighborhood regions. The distance distribution also showed that the 
greater number of evacuees decided either to select shelters within a 20-mile radius of their 
residential area or to travel to further locations with distances more than 100 miles. It implies that 
evacuees tend to either choose a close shelter within their neighborhood or travel farther away to 
get to their perceived safe places. 
 

 
Figure 6. Distribution of shelter distance to the home locations 
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As the overall trend of the evacuation distance was similar for different evacuation group, the 
spatial distribution of the evacuation distance is also depicted in Figure 7 for further analysis. 
Evacuees living near the shores tend to travel to farther destinations. This observation is in line 
with the expectations as those people perceive higher risk in comparison to the people living in the 
midland. 
 

 
Figure 7. Median distance to shelter at county level 

5.4. Evacuation Duration Distribution 

In terms of evacuation duration, as it is shown in Figure 8, evacuees who received mandatory 
evacuation orders had slightly longer evacuation duration. To better understand the spatial trend 
of evacuation duration, the average evacuation duration at county level is also presented in Figure 
9. People living in the southern counties of Florida had a longer evacuation duration which might 
be due to the fact that damages to the properties and infrastructures were more substantial than 
other regions in Florida. 
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Figure 8. Evacuation duration distribution among different order groups 

 

 
Figure 9. Average of evacuation duration at the county level 

5.5. Impact of Low-Lying Residential Area 

We investigated the impact of low-lying residential areas on individuals’ evacuation decisions. As 
there is no solid definition for low-lying areas, we categorized individuals into three classes based 
on the elevation of their residential area; elevation less than 10 meters, elevation between 10 meters 
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and 50 meters, and elevation more than 50 meters. Also, to control for the effect of evacuation 
orders on individuals’ decisions, we separated the dataset into three categories; individuals who 
received no evacuation order, individuals who received voluntary evacuation orders, and 
individuals who received mandatory evacuation orders. Evacuation rates for each group are 
presented in Figure 10. It can be seen that the elevation of residential area has a strong association 
with people’s decision to evacuate. 36.59% of people who had not received any evacuation order 
but were living in low-lying residential areas decided to leave their home, while this rate was 
28.43% for those in areas with elevation more than 50 meters. This observation is in accordance 
with the fact that people who live in areas with lower elevation are more concerned with the safety 
of their region during a hurricane. 
 

 
Figure 10. Elevation impacts on evacuation decision 

 

6. STATISTICAL MODEL 

After constructing the evacuation pattern and conducting overall validation against existing polls 
and surveys, we investigated the statistical linkage between mobility patterns of individuals and 
their evacuation decisions. The evacuation decision has been well studied in the literature and its 
importance and implications for agencies have been highlighted. Previous studies indicated the 
importance of socio-demographic variables such as age, income, and race as well as evacuation 
orders and the perceived worries and concerns in evacuation decisions. In this paper, in addition 
to those metrics, we explored the importance of individuals’ mobility behavior in their decision. 
We calculated individual level mobility measures such as the daily number of trips and the convex 
hull of each active device during August and incorporate these metrics to our logistic regression 
model to examine whether such observed mobility metrics can improve the evacuation decision 
model’s accuracy. Table 3 summarizes the list of variables considered in our models. To develop 
our statistical model, we removed 3,937 devices from our dataset who have missing values in some 
of their socio-demographic attributes.  
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Table 3. Data descriptive for evacuation decision choice model 
Metric Definition Descriptive Statistics 

Categorical Variable Count Percentage 

Evacuation Decision Evacuation decision 0 = did not evacuate, 507605 63.16 
1 = evacuate 296081 36.84 

Evacuation order Evacuation order 
received 

0 = none 565178 70.32 
1 = voluntary, 114038 14.19 
2 = mandatory 124470 15.49 

Continuous Variable  Min Median Max SD 
Elevation Residential location elevation -1 6 102 13.86 

Median age Median age of the residential census tract 11.9 41.4 83.3 9.71 
Median income Median income of the residential census tract 8804 54279 2500001 22951 

Vehicle availability Percentage of households with at least one 
vehicle in the census tract 28.4 96.1 100 5.82 

Race - white Percentage of white population in the census tract 0 0.83 1 0.17 
Average number of 

trip 
Average number of trips taken by the individual 

per day during August 1 5.5 51.4 3.82 

Average of convex 
hull area 

Average daily convex hull area of individuals 
during August 0 48.57 57274.8 510.31 

 
As no evacuation was the base choice in our decision variable, positive coefficients indicate that 
increase in variables’ value increases the likelihood of evacuation, while a negative sign denotes a 
decrease in the likelihood of evacuation. The summary of results is presented in Table 4. 
 

Table 4. Logistic regression models’ summary 

Variable 
Model#1 – logistic model without 

mobility behavior metrics 
Model#2 – logistic model with mobility 

behavior metrics 
Estimated coefficient p-value Estimated coefficient p-value 

Intercept 3.61E-01 <0.001 *** 4.45 E-01 <0.001 *** 
Evacuation order 4.06 E-01 <0.001 *** 4.08 E-01 <0.001 *** 

Elevation -8.60 E-05 <0.001 *** -8.55 E-05 <0.001 *** 
Median age 8.48 E-03 <0.001 *** 8.65 E-03 <0.001 *** 

Median income 3.62 E-08 0.766 2.68 E-07 0.028 * 
Vehicle availability -1.57 E-02 <0.001 *** -1.88 E-02 <0.001 *** 

Race - white 2.59 E-01 <0.001 *** 2.44 E-01 <0.001 *** 
Average number of 

trip - - 1.03E-02 <0.001 *** 

Average of convex 
hull area - - 4.28E-04 <0.001 *** 

Number of 
observation 803686 803686 

Log Likelihood -516912.5 (df=7) -513806.2 (df=9) 
AIC 1033839 1027630 

McFadden R2 0.025 0.031 
Models 

Comparison P-value (Chi) = <0.001 *** 

 
We developed two logistic regression models. Model#1 only includes socio-demographic 
information, elevation of residential location, and evacuation order attributes while model#2 
utilized mobility behavior metrics in addition to all variables in model#1. In both models, the sign 
of coefficients for common variables was in line and consistent with previous studies except for 
the vehicle availability metric. Higher vehicle availability was expected to increase the tendency 
to evacuate but in our model, the coefficient was estimated negative. One possible reason for this 
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observation might be due to the low variation in this metric (the first quantile of vehicle availability 
was 92.6% and the median was 96.1%).  As expected, both mobility metrics were statistically 
significant in model#2 and they improved the overall accuracy of the model significantly. The 
estimated sign of the coefficients was positive which shows that individuals with more trips per 
day and larger spatial trajectory area footprint are more likely to evacuate their residential location 
during a disaster.    

7. CONCLUSION 

The intensity and the frequency of weather-related disasters are expected to increase due to climate 
change, increase in sea surface temperature, and other related causes 42,43. In order to be prepared, 
it is crucial for the state and government agencies to understand individuals’ behavior before, 
during, and after a disaster. Most of the research in the literature studied individuals’ behavior on 
these extreme events based on post-disaster surveys. In addition to small sample size, these surveys 
are typically prone to several biases, such as observer effect bias and imperfect recall of the 
evolution of the evacuation process. In this study, we constructed several aspects of evacuation 
patterns by analyzing anonymized individuals’ traces using the mobile phone LBS data.  

To study the evacuation pattern, we analyzed two months of mobile LBS data for more 
than 2 million users. We were able to capture the evacuation behavior of 807,623 anonymized 
individuals by employing our proposed framework on more than 11 billion location sightings. Our 
study showed that type of evacuation order has a strong impact on individuals’ evacuation 
decisions. Results showed that 57.92% of individuals who received mandatory evacuation orders 
left their homes, while this ratio was 32.98% and 35.68% for smartphone users who received no 
evacuation order and voluntary evacuation order, respectively. 

Irma made its landfall on September 10. The Departure date and reentry date analysis 
conducted in this paper demonstrated that the majority of the evacuees left their residences in the 
last three days leading to the hurricane landfall, with the peak of evacuation observed on September 
9 when 26.27% of evacuees departed their home. However, the returning process was distributed 
more evenly among days after the landfall. We also empirically examined the effect of the 
evacuation order issue date on individuals’ departure date decisions. It was shown that late 
evacuation orders (ones that issued on September 9 and September 10) did not have strong 
influence on individuals’ departure decision; while for the regions that received evacuation orders 
earlier (from September 6 to September 8) an increase was observed in evacuation rate the day 
after the evacuation order was issued. These findings highlight the importance of issuing 
evacuation orders at least two days before hurricane landfall. 

The evacuation distance distribution revealed that the majority of people either selected to 
shelter in the vicinity of their residential area or decided to go to farther destinations rather than to 
choose destinations within 20 to 100 miles. We also showed that elevation of the residential area 
had strong effect on individuals’ evacuation decisions. People living in low-lying regions showed 
a higher evacuation rate in comparison to people living in mid and high elevation regions after 
controlling for the evacuation order type. 

By developing an evacuation decision choice model, we showed that the observed mobility 
pattern of individuals can play a significant role in improving the accuracy of evacuation decision 
models. Having access to historical mobile device location data provides unique information to 
the agencies and decision-makers to have a better understanding and estimate of the evacuation 
evolution in their region. 

Although analyzing the behavior of smartphone users provides a unique opportunity to 



Darzi et al.  20 

observe the actual behavior of millions of individuals, several limitations exist. While the sample 
size of the mobile traces data is enormous, it should still be noted that these type of data have their 
own biases. The other limitation is the fact that post-disaster surveys usually provide a rich set of 
socio-demographic information of responders while in mobile LBS data there is no such 
information provided. However, recently many studies have been trying to impute missing 
information such as users’ socio-demographics. Employing these developed approaches would be 
helpful to add new dimensions to our future analysis. 
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