Vacuum polarization is not a precursor for permanent pair creation
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The effect of an external charge distribution Q on the Dirac vacuum state has been widely
studied. For a small magnitude of Q, it can induce a polarization characterized by the displacement of
virtual electrons and positrons. If Q is further increased, the occurrence of real and permanent electron-
positron pairs is predicted. These well-known findings might suggest that these two phenomena are just
the weak- and strong-field limits of the same dynamical vacuum process. However, a direct comparison of
these "limits" for a charged capacitor configuration shows that this view is incorrect. The physical
mechanisms that lead to the formation of the vacuum's induced polarization charges are entirely different
from those that trigger the permanent creation of electron-positron pairs. In fact, computational quantum
field theory demonstrates that both phenomena can occur independent of each other; a vacuum decay
without any significant polarization is possible and vice versa. This finding allows us also to decompose
the total charge density at a given location into the respective contributions from the permanent and the

polarization charges.
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The quantum electrodynamical interaction of external static as well as electromagnetic fields of
various strengths with the vacuum state has received significant attention recently in the intense-laser
community [1, 2]. For weaker strengths, the polarization of the vacuum is predicted, as originally
discussed by Dirac [3], Heisenberg [4], Serber [5] and Uehling [6] in the mid-thirties. Here short-lived
virtual electron-positron pairs are reoriented and can act as temporary electric dipoles. In the presence of
an electric field, e.g., the electromagnetic field around a nucleus, these particle—antiparticle pairs reposition
themselves, thus partially counteracting and screening the field. The effective field is therefore weaker
than would be expected if the vacuum was completely structureless. This leads, for example, to corrections
to the well-understood Lamb energy shift or the anomalous magnetic dipole moment of the electron, all of
which have been observed experimentally [7].

If the external field (or equivalently the nuclear charge) is increased to become supercritical, it can
convert these vacuum bubbles into real physical electron-positron pairs. Historically, this vacuum break-
down process has been associated with the pioneering works by Sauter [8] in 1931, Heisenberg and Euler
in 1936 [9] and later by Schwinger [10], who gave it a more complete theoretical description in 1951. Here
the associated enormous forces inhibit charge re-combinations and separate the electrons and positrons
irreversibly. The possibility to experimentally observe this spontaneous breakdown of the vacuum has
attracted numerous theoretical studies and also many international laser consortia have invested significant
resources into the development of new electromagnetic radiation sources to observe this fascinating
relativistic light-matter conversion effect [11,12].

The discussions in the literature as well as similarities between the theoretical descriptions might
imply that the two vacuum response mechanisms to external charges with increasing magnitudes are just
the weak- and strong-field limit of the same process [13, 14, 15]. This could also suggest that a very strong
polarization is actually a required precursor for the consecutive occurrence of the pair creation associated
with the permanent vacuum decay process. However, in this communication, we present some data
obtained from computational quantum field theory that suggest that these illustrative conceptual ideas can
be misleading and that the occurrences of two phenomena are based on entirely different mechanisms.

We report here on two findings deduced from the characteristics of the computed densities for the
total charge. First, the vacuum polarization process can occur completely independently of creation of
electron-positron pairs associated with the vacuum breakdown. There are certain electric field
configurations that produce a significant flux of real pairs while the vacuum polarization is negligible.
Alternatively, for other configurations the polarization can be rather large, but not a single permanent

electron-positron pair is created.

2 5/15/21



Second, we suggest that the classical view of comparing the vacuum process to the usual polarization
mechanism of a dielectric optical medium [16-18] is inappropriate. In contrast to the polarization of
dielectrics, the vacuum's polarization is manifest by the occurrence of charges even in those spatial regions,
where the electric field vanishes. The conceptual picture, where a local electric field is solely responsible

for inducing the charges in the vacuum, is therefore potentially misleading.
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Figure 1 Sketch of the two capacitor plates with the charge densities +Q and the associated magnitude of
the electric field E. We also show the charges associated with the vacuum polarization and those real ones
associated with the permanent decay of the vacuum. Note that if there was only a single plate of charge +Q
(at z=—d), then its electric field would produce positrons that move to left for z < —d, which is opposite to
the current situation where electrons are ejected to the left. The positrons' potential energy decreases
linearly from z=d to d, which accelerates any positive (negative) charge to the right (left). The positive

total current density suggests a flow of positive charges to the right and negative charges moving to the left.

To illustrate these points, we have examined in our simulations both the vacuum polarization and the
pair-creation for a specific geometry associated with two oppositely charged capacitor plates of separation
2d as sketched in Figure 1. The same configuration of two parallel but uncharged plates was already
examined in numerous pioneering studies [19-24] in the context of the Casimir force. In contrast to this
work where the fermionic properties of the Dirac vacuum is of interest, there the focus was on the photonic
fluctuations associated with the electromagnetic vacuum. A capacitor geometry was also considered
recently by Gavrilov and Gitman [25]. Complementary to our studies, which are numerical and focus on
the spatial distribution of the charge density due to the vacuum polarization and pair creation, their work
employs fully analytically the traditional in- and out- formalism of QED to examine a different aspect.
Based on the existence of exact analytical Dirac equation solutions (Weber functions) for the equivalent
quantum mechanical particle scattering picture, they compute the vacuum-vacuum transition probabilities
and compare their findings to gravitational mechanisms in black holes.

As we will see below, this geometry was chosen as it permits us to study an alternative route to the

permanent pair creation than by simply increasing the charges. We assume that the two plates are infinitely

3 5/15/21



extended in the (X,y) plane and characterized by charge densities £Q. The resulting electric scalar potential
V(z) varies therefore only along the z-direction and can be obtained as a solution from the stationary
Maxwell equation - 6% V(z)/ ¢’z = 4r ke p(z), where the associated charge density is given by p(z) = Q
d(z+d) — Q d(z—d) and where Coulomb’s constant ke = 1/(4meo) is related to the vacuum’s permittivity €o.

The resulting single-step potential takes the form V(z) =—2n ke Q [|z+d| - |z—d|] - 4n ke Q d,
characterized by a linear decrease between the plates from V(z=-d) =0 to V(z=d) =—8n ke Q d. The
corresponding electric field follows as E(z) = - &V(z)/0z = 2n ke Q [(z+d)/|z+d| - (z—d)/|z—d]]. Its
magnitude between the plates (E = 4n ke Q) does not depend on the plate spacing 2d. As E is constant
between the plates, this region can be considered as a direct local realization of the Schwinger limit [10],
which also considers a spatially homogeneous (but infinitely extended) electric field. For our analysis
below, it is important to note that E vanishes identically outside the two plates, i.e. for |z| > d.

In order to compute the resulting total charge density induced by the two plates, we have employed
computational quantum field theory, where the dynamics is modelled by the electron-positron field
operator W(z,t). As in this approach the Dirac theory describes solely the fermionic dynamics and the
electromagnetic field is considered as an external given force, any photonic fluctuations are neglected
throughout this study. Due to the spatial symmetries, we can focus here on only 1+1 space-time
dimensions. The operator fulfills simultaneously [26] the time-dependent Dirac equation icW/ct=H V¥ or,
equivalently, the Heisenberg equation of motion i 0'V/ct = [h,'¥'], where h is the corresponding quantum

field theoretical Hamiltonian and the Dirac Hamiltonianis H=co1p + m ¢?

o3 + e V(zt). Here p is the
momentum operator and we assume the coupling to a positron with (positive) elementary charge e and
mass m. The two 2x2 Pauli-matrices are denoted by o1 and 3. We focus here on the case where the
initial quantum state is void of any matter, i.e., |CD(t=O)> = |vac). We can introduce a set of fermion

creation and annihilation operators, denoted by b(p) T d(p) I b(p) and d(p), which fulfill the usual
fermionic anticommutator relationships, [b(p),b(p')T]Jr = 0(p—p") and [b(p),b(p")]+= 0. When acting on the
vacuum state | vac), they excite the modes given by the corresponding single-particle states, i.e., pr | vac)

= u;p) and de | vac) =| d;p) with momentum p, where u and d denotes the states above or below the mass

gap between +mc?.
Using this (arbitrary) set of basis states for the mode expansion of the field operator ‘Y(z,t), we

obtain W(z,t) =Zp bp(t) dp(u;z) + Zp de(t) dp(d;z), where ¢p(u;z) and ¢p(d;z) are the spatial representations
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of the positive and negative energy eigenstates of the field-free Dirac Hamiltonian, given by Ho=c o1 p +

172

o3 mc?, fulfilling Ho |u;p> =ep |u;p> and Ho |d;p> =—ep |d;p> with ep= [mzc4+c2p2] . We can express the

time-evolved creation and annihilation operators in terms of the initial ones (at t=0) as bp(t) = Zp bp' (u;p
lu(t);p"y +Zpdp’ (usp [d(t);p") and dp(t) = Zp bp (dip [u(t);p") + Zp dp” (d;p |d(t);p'). The set of four
transition matrix elements (u;p |u(t);p"), (u;p |d(t);p"), (d;p [u(t);p') and (d;p |d(t);p') are the fundamental
building blocks of computational quantum field theory (CQFT) [27]. The time-evolution of the creation
and annihilation operators is valid for any sub- or supercritical dynamics. Once this set is known, the time-
evolution of any desired observable, such as the spatial, momentum or energy densities of the created pair
numbers, can be calculated from them. In order to determine all matrix elements, every single state of the
Hilbert space |u;p) and |d;p) has to be evolved in time (using i0|¢p)/ct =H |¢)), and then the corresponding
projections can be calculated for the corresponding expectation values. The time-dependent Dirac equation
was solved on a space-time grid with NzxN¢ points using a Fourier-transformation based split-operator
scheme [28, 29].

The fully-coupled electron-positron field operator W(z,t) itself can be uniquely defined and calculated
independently of the basis representation, even for the interesting supercritical field regime, where the
number of particles can change in time. As a result, also the total charge density as well as the total electric
current density can be obtained unambiguously [30] from the corresponding expectation values of the two

operators [31-35], givenby p=e¢ Y'Wandl=ec Yo,

p(zt) = (e/2) Zp[ |op(dizt) — [dp(uszt) ] (1.a)
izt = (ec/2)Zp[ op(diz,) o1 dp(dizt) — dp(wizt)' o1 dp(wsz,t) ] (1.b)

which are related to each other via the continuity equation, i.e., &p/ct+ &J/0z = 0. Here the summation for
dp(d;z,t) and ¢p(u;z,t) extends over all time-evolved states of the Dirac theory with initial negative and
positive energy, respectively. For simplicity, we focus on only one spin direction here. The total charge
density p(z,t) reflects the contributions due to both the virtual as well as real electron-positron pairs
associated with the polarization and vacuum breakdown processes.

For spatially localized electric field configurations such as ours, the threshold condition for the

occurrence of real electron-positron pairs is given by the condition that the total potential energy step

exceeds twice the mass gap of the Dirac theory, i.e., we require eV(z=-d)—eV(z=d)>2m c?. This
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leads to the threshold requirement 2 m ¢>< 8n kee Q d. This means that there are two independent

methods to make our capacitor plate configuration supercritical. We can approach the required field
energy between the two plates by increasing either the charge density Q or the plate spacing 2d. This
flexibility was the very reason why we examined this particular capacitor configuration in the first place. It
allows for a path towards supercriticality while keeping the charge densities Q minimal. As a side note, we
remark that both transitions to supercriticality are also accompanied with the diving of the lowest energy
from the mass gap into the lower energy continuum.

Let us examine first the vacuum polarization-only regime, i.e., Q < 2m cz/(8n kee d). There are
numerous analytical perturbative approaches to determine the resulting polarization charge density. For
example, using the perturbative Feynman diagram-based approach, one can compute how the generation of
virtual electron-positron pairs gives rise to a modification of the Coulomb potential [36, 37]. Using the
one-loop vacuum polarization tensor in 1+1 space-time dimensions, the charge density can be found (up to
first order of the fine structure constant o) analytically as ppol(z) = psingle(z+d) — psingle(z—d). For a single

(positively charged) plate we have

psingle(z) = — Q o im' ¢! [, dt v3 (t%—1) 2 exp(-2mcr|z)/h) (2)

such that Qpoi = - Q @ Am2¢c2[,” dt v (12-1) "2 is the total amount of the induced charge, which is the

spatial integral over the density Qpol = [ dz p(z). For a more detailed derivation of this standard approach,

one can see Ref. [30]. As a side remark, we note that the integral in Eq. (2) can be approximated such that

the single-plate density for z#0 is simply given by psingle(z) = - Q (1/4) ae Am™ ¢ ' exp(-2.35 m ¢ |z| /h).
For the following numerical analysis, we use the convenient atomic units, where ¢c=137.036 and 7 =

me = ¢ = 1. As the analytical Feynman-based expression Eq. (2) encapsulate the vacuum polarization
physics only on the lowest order contributions to ppol(z) in Q, it is necessary to establish its validity with
regard to our numerical parameter range for Q. In order to do so, we have compared its prediction with
three other theoretical approaches, which can compute the polarization density to all orders in Q. All of
these three techniques are related to a numerical evaluation of the vacuum expectation value of the charge
density operator as provided by the nonperturbative expression (1.a).

The first method evaluates this expression based on the energy eigenvectors of the Dirac Hamiltonian

associated given above with the fully dressed vacuum state [38]. For subcritical potentials V(z), these
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eigenvectors, defined by H Wp(d;z,) = wp(d) Wp(d;z,) and H Wp(u;z,) = wp(u) Wp(u;z,) with the dressed

2

energies wp(d) < —mc? and wp(u) = —mc*“, can be obtained by a straightforward diagonalization on a spatial

grid. In order to obtain ppol(z), Wp(d;z,) and Wp(u;z,) are inserted into the rhs of Eq. (1.a), where they
replace the time evolved states ¢p(d;z,t) and op(u;z,t).

The second numerical approach for ppol(z) is based on the fact that, for the spatial region where the
capacitor is located, the bare (force-free) vacuum state evolves in the long-time limit into the dressed
vacuum state. This means we can use the time evolved states ¢p(d;z,t) and ¢p(u;z,t) in the long-time limit
directly in Eq. (1.a). This limit is required to guarantee that some of particles, which were (unavoidably)
generated due to the turn-on of the potential V(z), had sufficient time to escape the capacitor. For our
geometry, t=0.005 a.u. was fully sufficient to accomplish this. We did not employ any absorption
mechanism such as a complex potential at the physical boundaries of our numerical box. The total
integration time had to be chosen sufficiently large for the steady state at the plates to be established, but
not so long that the created particles can reach the boundaries.

The third approach is computationally the most efficient one as the summation over the infinite many
states in Eq. (1.a) can be truncated. The introduction of an energy cut-off for the resulting polarization
density, however, requires a subsequent renormalization to recover the correct density. As discussed in
more detail Ref. [38,39], this particular procedure can be accomplished by subtracting from the density
(with the energy-cut) a different density that is based on the energy eigenvalues of the approximate Foldy-

Wouthuysen formulation of the same problem. Here the approximate Hamiltonian given by Hrw = &3

[m?%c* + czpz]l/ 2+ eV(z). Due to being diagonal in spinor-space, these states cannot take into account the

relativistic couplings between the positive and negative energy states. Therefore, it is ideally suited to

subtract out the unphysical contributions to the charge density associated with the energy cut-off [39].
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Figure 2 The vacuum polarization charge density induced by the two plates at z = + d with d=0.073
a.u. and Q =10 a.u. The four graphs for the charges were computed based on the lowest-order
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Feynman perturbative diagram, the eigenvectors associated with the sub-critical dressed vacuum
state, the long-time (t = 0.005 a.u.) evolved density according to Eq. (1a) with an energy cut (and the
required renormalization) and without an energy cut. The time-evolution of each Hilbert space state

was based on N¢= 5000 temporal steps using a split-operator scheme and for a numerical box of
length L = 2.6 a.u. with N, = 8192 spatial grid points.

In Figure 2 we show the (scaled) vacuum's polarization charge densities ppol(z)/Q obtained from all

four methods. All four graphs are numerically indistinguishable, giving credence to each approach. The
possibility to have several independent computational approaches also helps us to estimate that the
magnitude of the (numerically unavoidable) errors is negligible for our parameters. Furthermore, the
agreement is perfect for all charge densities Q less than about 100,000 a.u. For larger values, the Feynman
based method becomes inapplicable as it is linear in Q and therefore cannot represent the higher order
corrections in Q. While the approach based on CQFT and Eq. (1) permits us in principle to observe third
(and even higher) order corrections in Q to p(z), it shows that the lowest-order Feynman-based approach is
remarkably accurate for a wide range of capacitor charge densities Q.

We note that there is a significant charge built up also outside of the capacitor, despite the fact that
the electric field vanishes there, as discussed above. This observation is in direct contrast to the predicted
polarization density associated with a classical dielectric medium, which is zero in those regions where the
electric force field vanishes. This suggests that one has to be careful with comparing the response of the
quantum vacuum to an external field with that of a classical dielectric medium.

While we have focused so far on the long-time steady state limit, the computational access to p(z,t)
permits us also to follow the interesting temporal build-up of the induced polarization as well as permanent
real charges. In order to examine the temporal growth of the total charge density for a supercritical field

configuration, we have chosen d=0.073 a.u. and Q = 102443 a.u. such that the resulting potential step far

exceeds the threshold for supercriticality as we have here 8t ke Q d =10 mc?.
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Figure 3 Temporal growth of the total charge density in the supercritical field regime leading in the
short-time regime to the steady state density of the vacuum polarization charges and in the long time

limit to the steady state of the real pair creation. [Q = 102443 a.u., numerical parameters as in Fig. 2]
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In the top of Figure 3, the five temporal snapshots show how the positive vacuum polarization charge
grows around the (negatively charged) plate at z=d. While the front portion of the spatially oscillatory

density escapes with the speed of light to z=tco, we see a relatively fast occurrence of the steady state of

the vacuum polarization charge density. Note that the total area under ppol(z,t) close to the plate is not

conserved, as the charge conservation law is only a global quantity as [« dz ppol(z,t) vanishes only when
integrated over the entire domain. As expected, the transient portion of the curve is asymmetric reflecting
the different electric fields on each side of the plate. After a short-time scale of the order of ¢!, the
distribution of the vacuum's virtual charges associated with the polarization approaches its symmetric
steady state [given by the long-time limit of Eq. (1.a) and displayed in Fig. 2].

In the bottom graph of Fig. 3, we illustrate the formation of the steady state charge density associated
with the vacuum decay process. This process occurs on much longer time scale as the permanently created
electron-positron pairs have to travel between both plates before their steady state is created. This steady
state is characterized by a spatially constant (positive) density to the right of the right plate (z>d), which
reflect the constant flow of positrons to z=co. Similarly (and not shown in the figure), for z<—d, we would
find a constant flux of permanent electrons that escape to z=—co. The fact that the density is constant
outside the plates (denoted by * pout) is expected, as there is no electric force field that could accelerate the
generated charges. While this is not so important for our present analysis, we should mention that there are
numerous approaches that permit us to calculate (even semi-analytically) the precise value of the outgoing
density pout as well as the associated particle flux. Most of these techniques rely on Hund's formula [40],
which can relate the vacuum's pair creation rate in the steady state to the quantum mechanical transmission

coefficient for the associated scattering system [41].
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Figure 4 The top left graph shows the charge distribution ppol(z) solely associated with the vacuum
polarization density around the two plates, (similarly to Fig. 2, but for supercritical field parameter

Q=102443 a.u.). The bottom left graph shows the conjectured density preal(z) associated solely with
the permanent vacuum break down process. In the right Figure we compare the exact total charge

density p(z) obtained from quantum field theory with the sum ppol(z) + preal(z).

In Figure 4, we display on a larger spatial scale the resulting steady state distribution p(z) of the
vacuum polarization as well as the permanent electron-positron pairs. It turns out that this distribution can
be reproduced by the sum of the vacuum polarization charge ppol and the steady state charge preal
associated with the permanent creation of real electron-positron pairs. The spatial dependence of the
vacuum polarization portion ppol(z) was already discussed in Figs. 2 and 3. The steady state charge density
associated solely with the pair creation process can be approximated by the linear function preal(z) = — pout
for z < —d, preal(z) = pout [-1+(z+d)/d] for —d < z < d and finally preal(z) = pout for d < z.

The agreement between the exact density p(z) and ppol(z) + preal(z) 1s superb. This is a direct
indication that vacuum polarization and real pair creation are two rather independent entities. The
appearance of one does not mean at all the disappearance of the other. Alternatively, we could also have
established a supercritical plate configuration by keeping the plate separation 2d invariant and increasing
Q. However, in this scenario, we do not have a nice spatial separation between the regions of mainly
vacuum polarization close to z = £d, and those between the plates where most of the permanent electron-
positron pairs are being created.

In conclusion, we have examined the Dirac vacuum breakdown process triggered by a supercritical
field. Contrary to what one might expect, this process is not necessarily the second step following a strong
vacuum polarization process. We note that in an interesting recent article by Karbstein [42] the difference

between the physical mechanisms for the vacuum polarization and the real pair creation was also
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confirmed by their different scaling with the electric field. In fact, in each spatial region it is possible to
separate the individual contributions to the total charge density into those that are solely associated with the
vacuum polarization mechanism and those contributions associated with permanently created (and moving)
charges due to the vacuum breakdown process. The latter finding opens this research field to tackle

numerous new fundamental challenges, two of which we outline here briefly.
First, the possible separability to remove ppol from p in order to study preal permits to us to obtain

some first insight into the very birth process of particle pairs during the vacuum breakdown process. Here
we point out that presently almost all of our knowledge is obtained rather indirectly based on the electron-

positron field operator as a mathematical intermediate auxiliary quantity to compute observables such as

preal. Due to the indirect nature of this theoretical approach, direct equations of motion for preal have not
been discovered yet, but having now found a method to separate out preal, should be a valuable first step

towards constructing such a more direct equation for it. This direct equation of motion for preai(z,t) would
then be a direct analog to the well-known quantum Vlasov equation [43-45], which governs the
corresponding momentum density of the created particles for the special case of spatially homogeneous
time-dependent fields.

Second, while the charge density preal can now be unambiguously accessed inside the supercritical

pair creation zone, we still have not developed the corresponding theoretical tools to define an actual
particle probability density n(z), except those approximations that are based on projections of the field

operators on field-free or incompletely-dressed states [46]. Any proposal to map the supercritical potential

V(z) onto n(z), which can be decomposed into its electronic and positronic contributions, n(z) = ne(z)+
ne+(z), could then be tested for consistency with preal(z), i.e., we could check the validity of preal(z) =

—ne(z) + ne+(z), to gauge the accuracy of such a concept.

Acknowledgements
C.G. would like to thank ILP for the nice hospitality during his visit to Illinois State University and
acknowledges the China Scholarship Council program. This work has been supported by the NSF and

Research Corporation.

11 5/15/21



REFERENCES
[1] For a comprehensive review, see, e.g., A. Di Piazza, C. Miiller, K.Z. Hatsagortsyan and C.H. Keitel,
Rev. Mod. Phys. 84, 1177 (2012).
[2] For arecent review, see, B.S. Xie, Z.L. Li and S. Tang, Matter and Radiation at Extremes 2, 225
(2017).
[3] P.A.M. Dirac, Cambridge Phil. Soc. 30 (2), 150 (1934).
[4] W. Heisenberg, Z. Phys. 90, 209 (1934).
[5] R. Serber, Phys. Rev. 48, 49 (1935).
[6] E.A. Uehling, Phys. Rev. 48, 55 (1935).
[7] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben, J. a. M. R. Cardoso, D. S. Covita, A.
Dax, S. Dhawan, M. Diepold, et al., Science 339, 417 (2013).
[8] F. Sauter, Z. Phys. 69, 742 (1931).
[9] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
[10] J.S. Schwinger, Phys. Rev. 82, 664 (1951).
[11] For high power laser systems, see the web sites of the following labs
ELI program: http://www.extreme-light-infrastructure.eu
University of Nebraska-Lincoln: http://www.unl.edu/diocles/index.shtml
European x-ray laser project XFEL: http://xfel.desy.de/
GSI: http://www.gsi.de/fair/experiments/sparc
Vulcan petawatt project: http://www.clf.rl.ac.uk/Facilities/Vulcan/12248.aspx
University of Texas at Austin: http://www.ph.utexas.edu/~utlasers
Stanford: https://slacportal.slac.stanford.edu/sites/Icls_public/
Chinese Academy of Sciences: http://highfield.iphy.ac.cn/
Shanghai Jiaotong University: http://ips.sjtu.edu.cn/
[12] C.N. Danson, C. Haefner, J. Bromage et al, "Petawatt and exawatt lasers worldwide" (Cambridge
University Press, 2019).
[13] S. Weinberg, "The quantum theory of fields", Vol. 1, (Cambridge Press, 1995).
[14] M.E. Peskin and D.V. Schroeder, "An introduction to quantum field theory" (Perseus, 1995).
[15] V.B. Berestetskii, E.M. Lifshitz and L. Pitaevskii, "Quantum electrodynamics" (Butterworth-
Heinemann, 1980).
[16] R.W. Boyd, “Nonlinear optics” (Academic Press, 2008).
[17] P. Milonni and J.H. Eberly, "Lasers" (Wiley, New York, 1988).

12 5/15/21



[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]
[28]
[29]
[30]

[31]
[32]
[33]
[34]
[35]
[36]

[37]
[38]
[39]
[40]
[41]

[42]
[43]
[44]

C.C. Gerry and P.L. Knight, “Introductory quantum optics” (Cambridge, 2005).

P.W. Milonni, J.R. Ackerhalt, and W.A. Smith, Phys. Rev. Lett. 31, 958 (1973).

P.W. Milonni and M.-L. Shih, Phys. Rev. A 45, 4241 (1992).

P.W. Milonni, Phys. Rev. A 25, 1315 (1982).

P.W. Milonni, H. Fearn, and A. Zeilinger, Phys. Rev. A 53, 4556 (1996).

R.L. Jaffe, Phys. Rev. D 72, 021301(2005).

J. Schwinger, Lett. Math. Phys. 1, 43 (1975).

S.P. Gavrilov and D.M. Gitman, Phys. Rev. D 93, 045033 (2016).

W. Greiner, B. Miiller and J. Rafelski, “Quantum electrodynamics of strong fields” (Springer-Verlag,
Berlin, 1985).

T. Cheng, Q. Su and R. Grobe, Cont. Phys. 51, 315 (2010).

A.D. Bandrauk and H. Shen, J. Phys. A 27, 7147 (1994).

J.W. Braun, Q. Su and R. Grobe, Phys. Rev. A 59, 604 (1999).

I. Bialynicki-Birula and Z. Bialynickia-Birula, "Quantum electrodynamics" (Pergamon Press,
Oxford, 1975).

E.H. Wichmann and N.M. Kroll, Phys. Rev. 101, 843 (1956).

M. Gyulassy, Phys. Rev. Lett. 53, 921 (1974).

G.A. Rinker and L. Wilets, Phys. Rev. A 12, 748 (1975).

G. Soff and P.J. Mohr, Phys. Rev. A 38, 5066 (1988).

P. Indelicato, P.J. Mohr and J. Sapirstein, Phys. Rev. A 89, 042121 (2014).

For a review, see, e.g., M. D. Schwartz, "Quantum field theory and the standard model" (Cambridge
University Press, Cambridge, UK, 2013).

Q.Z. Lv, N.D. Christensen, Q. Su and R. Grobe, Phys. Rev. A 92, 052115 (2015).

Q.Z. Lv, J. Betke, Q. Su and R. Grobe, Phys. Rev. A 92, 032121 (2015).

A.T. Steinacher, J. Betke, S. Ahrens, Q. Su and R. Grobe, Phys. Rev. A 89, 062106 (2014).

F. Hund, Z. Phys. 117, 1 (1941).

Q.Z. Lv, S. Dong, C. Lisowski, R. Pelphrey, Y.T. Li, Q. Su and R. Grobe, Phys. Rev. A 97, 053416
(2018).

F. Karbstein, Phys. Rev. Lett. 122, 211602 (2019).

Y. Kluger, E. Mottola and J.M. Eisenberg, Phys. Rev. D 58, 125015 (1998).

S. Schmidt, D. Blaschke, G. Ropke, S.A. Smolyansky, A.V. Prozorkevich and V.D. Toneev, Int. J.
Mod. Phys. E 7, 709 (1998).

13 5/15/21



[45] F. Hebenstreit, R. Alkofer and H. Gies, Phys. Rev. D 82, 105026 (2010).
[46] C.C. Gerry, Q. Su and R. Grobe, Phys. Rev. A 74, 044103 (2006).

14 5/15/21



