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 The effect of an external charge distribution Q on the Dirac vacuum state has been widely 

studied.  For a small magnitude of Q, it can induce a polarization characterized by the displacement of 

virtual electrons and positrons.  If Q is further increased, the occurrence of real and permanent electron-

positron pairs is predicted.  These well-known findings might suggest that these two phenomena are just 

the weak- and strong-field limits of the same dynamical vacuum process.  However, a direct comparison of 

these "limits" for a charged capacitor configuration shows that this view is incorrect.  The physical 

mechanisms that lead to the formation of the vacuum's induced polarization charges are entirely different 

from those that trigger the permanent creation of electron-positron pairs.  In fact, computational quantum 

field theory demonstrates that both phenomena can occur independent of each other; a vacuum decay 

without any significant polarization is possible and vice versa.  This finding allows us also to decompose 

the total charge density at a given location into the respective contributions from the permanent and the 

polarization charges. 
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 The quantum electrodynamical interaction of external static as well as electromagnetic fields of 

various strengths with the vacuum state has received significant attention recently in the intense-laser 

community [1, 2].  For weaker strengths, the polarization of the vacuum is predicted, as originally 

discussed by Dirac [3], Heisenberg [4], Serber [5] and Uehling [6] in the mid-thirties.  Here short-lived 

virtual electron-positron pairs are reoriented and can act as temporary electric dipoles.  In the presence of 

an electric field, e.g., the electromagnetic field around a nucleus, these particle–antiparticle pairs reposition 

themselves, thus partially counteracting and screening the field.  The effective field is therefore weaker 

than would be expected if the vacuum was completely structureless.  This leads, for example, to corrections 

to the well-understood Lamb energy shift or the anomalous magnetic dipole moment of the electron, all of 

which have been observed experimentally [7]. 

 If the external field (or equivalently the nuclear charge) is increased to become supercritical, it can 

convert these vacuum bubbles into real physical electron-positron pairs.  Historically, this vacuum break-

down process has been associated with the pioneering works by Sauter [8] in 1931, Heisenberg and Euler 

in 1936 [9] and later by Schwinger [10], who gave it a more complete theoretical description in 1951.  Here 

the associated enormous forces inhibit charge re-combinations and separate the electrons and positrons 

irreversibly.  The possibility to experimentally observe this spontaneous breakdown of the vacuum has 

attracted numerous theoretical studies and also many international laser consortia have invested significant 

resources into the development of new electromagnetic radiation sources to observe this fascinating 

relativistic light-matter conversion effect [11,12]. 

 The discussions in the literature as well as similarities between the theoretical descriptions might 

imply that the two vacuum response mechanisms to external charges with increasing magnitudes are just 

the weak- and strong-field limit of the same process [13, 14, 15].  This could also suggest that a very strong 

polarization is actually a required precursor for the consecutive occurrence of the pair creation associated 

with the permanent vacuum decay process.  However, in this communication, we present some data 

obtained from computational quantum field theory that suggest that these illustrative conceptual ideas can 

be misleading and that the occurrences of two phenomena are based on entirely different mechanisms.  

 We report here on two findings deduced from the characteristics of the computed densities for the 

total charge.  First, the vacuum polarization process can occur completely independently of creation of 

electron-positron pairs associated with the vacuum breakdown.  There are certain electric field 

configurations that produce a significant flux of real pairs while the vacuum polarization is negligible.  

Alternatively, for other configurations the polarization can be rather large, but not a single permanent 

electron-positron pair is created.   
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 Second, we suggest that the classical view of comparing the vacuum process to the usual polarization 

mechanism of a dielectric optical medium [16-18] is inappropriate.  In contrast to the polarization of 

dielectrics, the vacuum's polarization is manifest by the occurrence of charges even in those spatial regions, 

where the electric field vanishes.  The conceptual picture, where a local electric field is solely responsible 

for inducing the charges in the vacuum, is therefore potentially misleading. 

 

Figure 1   Sketch of the two capacitor plates with the charge densities ±Q and the associated magnitude of 
the electric field E.  We also show the charges associated with the vacuum polarization and those real ones 
associated with the permanent decay of the vacuum.  Note that if there was only a single plate of charge +Q 
(at z = –d), then its electric field would produce positrons that move to left for z < –d, which is opposite to 
the current situation where electrons are ejected to the left.  The positrons' potential energy decreases 
linearly from z=–d to d, which accelerates any positive (negative) charge to the right (left).  The positive 
total current density suggests a flow of positive charges to the right and negative charges moving to the left.   

 

 To illustrate these points, we have examined in our simulations both the vacuum polarization and the 

pair-creation for a specific geometry associated with two oppositely charged capacitor plates of separation 

2d as sketched in Figure 1.  The same configuration of two parallel but uncharged plates was already 

examined in numerous pioneering studies [19–24] in the context of the Casimir force.  In contrast to this 

work where the fermionic properties of the Dirac vacuum is of interest, there the focus was on the photonic 

fluctuations associated with the electromagnetic vacuum.  A capacitor geometry was also considered 

recently by Gavrilov and Gitman [25].  Complementary to our studies, which are numerical and focus on 

the spatial distribution of the charge density due to the vacuum polarization and pair creation, their work 

employs fully analytically the traditional in- and out- formalism of QED to examine a different aspect.  

Based on the existence of exact analytical Dirac equation solutions (Weber functions) for the equivalent 

quantum mechanical particle scattering picture, they compute the vacuum-vacuum transition probabilities 

and compare their findings to gravitational mechanisms in black holes. 

 As we will see below, this geometry was chosen as it permits us to study an alternative route to the 

permanent pair creation than by simply increasing the charges.  We assume that the two plates are infinitely 
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extended in the (x,y) plane and characterized by charge densities ±Q.  The resulting electric scalar potential 

V(z) varies therefore only along the z-direction and can be obtained as a solution from the stationary 

Maxwell equation –¶2 V(z)/ ¶2z = 4p ke r(z), where the associated charge density is given by r(z) = Q 

d(z+d) – Q d(z–d) and where Coulomb’s constant ke º 1/(4pe0) is related to the vacuum’s permittivity e0. 

 The resulting single-step potential takes the form V(z) = – 2p ke Q [|z+d|–|z–d|] – 4p ke Q d, 

characterized by a linear decrease between the plates from V(z=–d) = 0  to V(z=d) = – 8p ke Q d.  The 

corresponding electric field follows as E(z) = –¶V(z)/¶z = 2p ke Q [(z+d)/|z+d|–(z–d)/|z–d|].  Its 

magnitude between the plates (E = 4p ke Q) does not depend on the plate spacing 2d.  As E is constant 

between the plates, this region can be considered as a direct local realization of the Schwinger limit [10], 

which also considers a spatially homogeneous (but infinitely extended) electric field.  For our analysis 

below, it is important to note that E vanishes identically outside the two plates, i.e. for |z| > d. 

 In order to compute the resulting total charge density induced by the two plates, we have employed 

computational quantum field theory, where the dynamics is modelled by the electron-positron field 

operator Y(z,t).  As in this approach the Dirac theory describes solely the fermionic dynamics and the 

electromagnetic field is considered as an external given force, any photonic fluctuations are neglected 

throughout this study.  Due to the spatial symmetries, we can focus here on only 1+1 space-time 

dimensions.  The operator fulfills simultaneously [26] the time-dependent Dirac equation  i¶Y/¶t =H Y or, 

equivalently, the Heisenberg equation of motion i ¶Y/¶t = [h,Y], where h is the corresponding quantum 

field theoretical Hamiltonian and the Dirac Hamiltonian is H = c s1 p  + m c2 s3  + e V(z,t).  Here p is the 

momentum operator and we assume the coupling to a positron with (positive) elementary charge e and 

mass m.  The two 2´2 Pauli-matrices are denoted by s1 and s3.  We focus here on the case where the 

initial quantum state is void of any matter, i.e., úF(t=0)ñ = úvacñ.  We can introduce a set of fermion 

creation and annihilation operators, denoted by b(p) †, d(p) †, b(p) and d(p), which fulfill the usual 

fermionic anticommutator relationships, [b(p),b(p¢)†]+ = d(p–p¢) and [b(p),b(p¢)]+ = 0.  When acting on the 

vacuum state çvacñ, they excite the modes given by the corresponding single-particle states, i.e., bp† çvacñ 

= çu;pñ and dp† çvacñ = çd;pñ with momentum p, where u and d denotes the states above or below the mass 

gap between ±mc2.   

 Using this (arbitrary) set of basis states for the mode expansion of the field operator Y(z,t), we 

obtain Y(z,t)  = Sp bp(t) fp(u;z) + Sp dp†(t) fp(d;z), where fp(u;z) and fp(d;z) are the spatial representations 
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of the positive and negative energy eigenstates of the field-free Dirac Hamiltonian, given by H0 º c s1 p + 

s3 mc2, fulfilling H0úu;pñ = epúu;pñ and H0úd;pñ = – epúd;pñ with ep º [m2c4+c2p2]1/2.  We can express the 

time-evolved creation and annihilation operators in terms of the initial ones (at t=0) as bp(t)   =  Sp' bp' áu;p 

|u(t);p'ñ  + Sp' dp'† áu;p |d(t);p'ñ and dp†(t)  =  Sp' bp' ád;p |u(t);p'ñ + Sp' dp'† ád;p |d(t);p'ñ.  The set of four 

transition matrix elements áu;p |u(t);p'ñ, áu;p |d(t);p'ñ, ád;p |u(t);p'ñ and ád;p |d(t);p'ñ are the fundamental 

building blocks of computational quantum field theory (CQFT) [27].  The time-evolution of the creation 

and annihilation operators is valid for any sub- or supercritical dynamics.  Once this set is known, the time-

evolution of any desired observable, such as the spatial, momentum or energy densities of the created pair 

numbers, can be calculated from them.  In order to determine all matrix elements, every single state of the 

Hilbert space |u;pñ and |d;pñ has to be evolved in time (using i¶|fñ/¶t =H |fñ), and then the corresponding 

projections can be calculated for the corresponding expectation values.  The time-dependent Dirac equation 

was solved on a space-time grid with Nz´Nt points using a Fourier-transformation based split-operator 

scheme [28, 29]. 

 The fully-coupled electron-positron field operator Y(z,t) itself can be uniquely defined and calculated 

independently of the basis representation, even for the interesting supercritical field regime, where the 

number of particles can change in time.  As a result, also the total charge density as well as the total electric 

current density can be obtained unambiguously [30] from the corresponding expectation values of the two 

operators [31-35], given by r º e Y†Y and J º e c Y†s1Y,  

 

  r(z,t)   º  (e/2) Sp [ |fp(d;z,t)|2 – |fp(u;z,t)|2] (1.a) 

  j(z,t)    º  (e c/2) Sp [ fp(d;z,t)† s1 fp(d;z,t)  – fp(u;z,t)† s1 fp(u;z,t)  ]              (1.b) 

 

which are related to each other via the continuity equation, i.e.,  ¶r/¶t + ¶J/¶z = 0.  Here the summation for 

fp(d;z,t) and fp(u;z,t) extends over all time-evolved states of the Dirac theory with initial negative and 

positive energy, respectively.  For simplicity, we focus on only one spin direction here.  The total charge 

density r(z,t) reflects the contributions due to both the virtual as well as real electron-positron pairs 

associated with the polarization and vacuum breakdown processes. 

 For spatially localized electric field configurations such as ours, the threshold condition for the 

occurrence of real electron-positron pairs is given by the condition that the total potential energy step 

exceeds twice the mass gap of the Dirac theory, i.e., we require  eV(z = –d) – eV(z = d) ³ 2 m c2.  This 
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leads to the threshold requirement 2 m c2 ≤ 8p ke e Q d.  This means that there are two independent 

methods to make our capacitor plate configuration supercritical.  We can approach the required field 

energy between the two plates by increasing either the charge density Q or the plate spacing 2d.  This 

flexibility was the very reason why we examined this particular capacitor configuration in the first place.  It 

allows for a path towards supercriticality while keeping the charge densities Q minimal.  As a side note, we 

remark that both transitions to supercriticality are also accompanied with the diving of the lowest energy 

from the mass gap into the lower energy continuum.   

 Let us examine first the vacuum polarization-only regime, i.e., Q £ 2m c2/(8p ke e d).  There are 

numerous analytical perturbative approaches to determine the resulting polarization charge density.  For 

example, using the perturbative Feynman diagram-based approach, one can compute how the generation of 

virtual electron-positron pairs gives rise to a modification of the Coulomb potential [36, 37].  Using the 

one-loop vacuum polarization tensor in 1+1 space-time dimensions, the charge density can be found (up to 

first order of the fine structure constant a) analytically as rpol(z) = rsingle(z+d) – rsingle(z–d).  For a single 

(positively charged) plate we have  

                       

                      rsingle(z) = – Q a ! m–1 c–1 ò1∞ dt t–3 (t2–1) –1/2 exp(–2mct|z|/!)                              (2) 

 
such that Qpol = –Q a ! m–2 c–2 ò1∞ dt t–4 (t2–1) –1/2 is the total amount of the induced charge, which is the 

spatial integral over the density Qpol = ò dz r(z).  For a more detailed derivation of this standard approach, 

one can see Ref. [30].  As a side remark, we note that the integral in Eq. (2) can be approximated such that 

the single-plate density for z¹0 is simply given by rsingle(z) = – Q (p/4) a ! m–1  c–1 exp(–2.35 m c |z| /!). 

 For the following numerical analysis, we use the convenient atomic units, where c=137.036 and ! = 

me = e = 1.  As the analytical Feynman-based expression Eq. (2) encapsulate the vacuum polarization 

physics only on the lowest order contributions to rpol(z) in Q, it is necessary to establish its validity with 

regard to our numerical parameter range for Q.  In order to do so, we have compared its prediction with 

three other theoretical approaches, which can compute the polarization density to all orders in Q.  All of 

these three techniques are related to a numerical evaluation of the vacuum expectation value of the charge 

density operator as provided by the nonperturbative expression (1.a).   

 The first method evaluates this expression based on the energy eigenvectors of the Dirac Hamiltonian 

associated given above with the fully dressed vacuum state [38].  For subcritical potentials V(z), these 
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eigenvectors, defined by H Wp(d;z,) = wp(d) Wp(d;z,) and H Wp(u;z,) = wp(u) Wp(u;z,) with the dressed 

energies wp(d) < –mc2 and wp(u) ³ –mc2, can be obtained by a straightforward diagonalization on a spatial 

grid.  In order to obtain rpol(z), Wp(d;z,) and Wp(u;z,) are inserted into the rhs of Eq. (1.a), where they 

replace the time evolved states fp(d;z,t) and fp(u;z,t).   

 The second numerical approach for rpol(z) is based on the fact that, for the spatial region where the 

capacitor is located, the bare (force-free) vacuum state evolves in the long-time limit into the dressed 

vacuum state.  This means we can use the time evolved states fp(d;z,t) and fp(u;z,t) in the long-time limit 

directly in Eq. (1.a).  This limit is required to guarantee that some of particles, which were (unavoidably) 

generated due to the turn-on of the potential V(z), had sufficient time to escape the capacitor.  For our 

geometry, t=0.005 a.u. was fully sufficient to accomplish this.  We did not employ any absorption 

mechanism such as a complex potential at the physical boundaries of our numerical box.  The total 

integration time had to be chosen sufficiently large for the steady state at the plates to be established, but 

not so long that the created particles can reach the boundaries. 

 The third approach is computationally the most efficient one as the summation over the infinite many 

states in Eq. (1.a) can be truncated.  The introduction of an energy cut-off for the resulting polarization 

density, however, requires a subsequent renormalization to recover the correct density.  As discussed in 

more detail Ref. [38,39], this particular procedure can be accomplished by subtracting from the density 

(with the energy-cut) a different density that is based on the energy eigenvalues of the approximate Foldy-

Wouthuysen formulation of the same problem.  Here the approximate Hamiltonian given by HFW º s3 

[m2c4 + c2p2]1/2 + eV(z).  Due to being diagonal in spinor-space, these states cannot take into account the 

relativistic couplings between the positive and negative energy states.  Therefore, it is ideally suited to 

subtract out the unphysical contributions to the charge density associated with the energy cut-off [39]. 

 
Figure 2   The vacuum polarization charge density induced by the two plates at z = ± d with d=0.073 
a.u. and Q = 10 a.u.  The four graphs for the charges were computed based on the lowest-order 

Dressed vacuum

Renormalized
Asymptotic

Feynman

-0.1 -0.05 0 0.05 0.1

ρ 
pol

(z) / Q

z (a.u.)
–5×10–5



                                                  8            5/15/21 

 

 

Feynman perturbative diagram, the eigenvectors associated with the sub-critical dressed vacuum 
state, the long-time (t = 0.005 a.u.) evolved density according to Eq. (1a) with an energy cut (and the 
required renormalization) and without an energy cut.  The time-evolution of each Hilbert space state 
was based on Nt = 5000 temporal steps using a split-operator scheme and for a numerical box of 
length L = 2.6 a.u. with Nz = 8192 spatial grid points.   

 In Figure 2 we show the (scaled) vacuum's polarization charge densities rpol(z)/Q obtained from all 

four methods.  All four graphs are numerically indistinguishable, giving credence to each approach.  The 

possibility to have several independent computational approaches also helps us to estimate that the 

magnitude of the (numerically unavoidable) errors is negligible for our parameters.  Furthermore, the 

agreement is perfect for all charge densities Q less than about 100,000 a.u.  For larger values, the Feynman 

based method becomes inapplicable as it is linear in Q and therefore cannot represent the higher order 

corrections in Q.  While the approach based on CQFT and Eq. (1) permits us in principle to observe third 

(and even higher) order corrections in Q to r(z), it shows that the lowest-order Feynman-based approach is 

remarkably accurate for a wide range of capacitor charge densities Q.   

 We note that there is a significant charge built up also outside of the capacitor, despite the fact that 

the electric field vanishes there, as discussed above.  This observation is in direct contrast to the predicted 

polarization density associated with a classical dielectric medium, which is zero in those regions where the 

electric force field vanishes.  This suggests that one has to be careful with comparing the response of the 

quantum vacuum to an external field with that of a classical dielectric medium.   

 While we have focused so far on the long-time steady state limit, the computational access to r(z,t) 

permits us also to follow the interesting temporal build-up of the induced polarization as well as permanent 

real charges.  In order to examine the temporal growth of the total charge density for a supercritical field 

configuration, we have chosen d= 0.073 a.u. and Q = 102443 a.u. such that the resulting potential step far 

exceeds the threshold for supercriticality as we have here 8p ke Q d = 10 mc2.  

                  
    Figure 3   Temporal growth of the total charge density in the supercritical field regime leading in the 
short-time regime to the steady state density of the vacuum polarization charges and in the long time 

limit to the steady state of the real pair creation. [Q = 102443 a.u., numerical parameters as in Fig. 2] 
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 In the top of Figure 3, the five temporal snapshots show how the positive vacuum polarization charge 

grows around the (negatively charged) plate at z = d.  While the front portion of the spatially oscillatory 

density escapes with the speed of light to z=±¥, we see a relatively fast occurrence of the steady state of 

the vacuum polarization charge density.  Note that the total area under rpol(z,t) close to the plate is not 

conserved, as the charge conservation law is only a global quantity as ò–¥¥ dz rpol(z,t) vanishes only when 

integrated over the entire domain.  As expected, the transient portion of the curve is asymmetric reflecting 

the different electric fields on each side of the plate.  After a short-time scale of the order of c–1, the 

distribution of the vacuum's virtual charges associated with the polarization approaches its symmetric 

steady state [given by the long-time limit of Eq. (1.a) and displayed in Fig. 2].   

 In the bottom graph of Fig. 3, we illustrate the formation of the steady state charge density associated 

with the vacuum decay process.  This process occurs on much longer time scale as the permanently created 

electron-positron pairs have to travel between both plates before their steady state is created.  This steady 

state is characterized by a spatially constant (positive) density to the right of the right plate (z>d), which 

reflect the constant flow of positrons to z=¥.  Similarly (and not shown in the figure), for z<–d, we would 

find a constant flux of permanent electrons that escape to z=–¥.  The fact that the density is constant 

outside the plates (denoted by ± rout) is expected, as there is no electric force field that could accelerate the 

generated charges.  While this is not so important for our present analysis, we should mention that there are 

numerous approaches that permit us to calculate (even semi-analytically) the precise value of the outgoing 

density rout as well as the associated particle flux.  Most of these techniques rely on Hund's formula [40], 

which can relate the vacuum's pair creation rate in the steady state to the quantum mechanical transmission 

coefficient for the associated scattering system [41]. 
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Figure 4   The top left graph shows the charge distribution rpol(z) solely associated with the vacuum 
polarization density around the two plates, (similarly to Fig. 2, but for supercritical field parameter 
Q=102443 a.u.). The bottom left graph shows the conjectured density rreal(z) associated solely with 
the permanent vacuum break down process.  In the right Figure we compare the exact total charge 
density r(z) obtained from quantum field theory with the sum rpol(z) + rreal(z).   
 

 In Figure 4, we display on a larger spatial scale the resulting steady state distribution r(z) of the 

vacuum polarization as well as the permanent electron-positron pairs.  It turns out that this distribution can 

be reproduced by the sum of the vacuum polarization charge rpol and the steady state charge rreal 

associated with the permanent creation of real electron-positron pairs.  The spatial dependence of the 

vacuum polarization portion rpol(z) was already discussed in Figs. 2 and 3.  The steady state charge density 

associated solely with the pair creation process can be approximated by the linear function rreal(z) = – rout 

for z £ –d, rreal(z) = rout [–1+(z+d)/d] for –d £ z £ d and finally rreal(z) = rout for d £ z.   

 The agreement between the exact density r(z) and rpol(z) + rreal(z) is superb.  This is a direct 

indication that vacuum polarization and real pair creation are two rather independent entities.  The 

appearance of one does not mean at all the disappearance of the other.  Alternatively, we could also have 

established a supercritical plate configuration by keeping the plate separation 2d invariant and increasing 

Q.  However, in this scenario, we do not have a nice spatial separation between the regions of mainly 

vacuum polarization close to z = ±d, and those between the plates where most of the permanent electron-

positron pairs are being created. 

 In conclusion, we have examined the Dirac vacuum breakdown process triggered by a supercritical 

field.  Contrary to what one might expect, this process is not necessarily the second step following a strong 

vacuum polarization process.  We note that in an interesting recent article by Karbstein [42] the difference 

between the physical mechanisms for the vacuum polarization and the real pair creation was also 
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confirmed by their different scaling with the electric field.  In fact, in each spatial region it is possible to 

separate the individual contributions to the total charge density into those that are solely associated with the 

vacuum polarization mechanism and those contributions associated with permanently created (and moving) 

charges due to the vacuum breakdown process.  The latter finding opens this research field to tackle 

numerous new fundamental challenges, two of which we outline here briefly.   

 First, the possible separability to remove rpol from r in order to study rreal permits to us to obtain 

some first insight into the very birth process of particle pairs during the vacuum breakdown process.  Here 

we point out that presently almost all of our knowledge is obtained rather indirectly based on the electron-

positron field operator as a mathematical intermediate auxiliary quantity to compute observables such as 

rreal.  Due to the indirect nature of this theoretical approach, direct equations of motion for rreal have not 

been discovered yet, but having now found a method to separate out rreal, should be a valuable first step 

towards constructing such a more direct equation for it.  This direct equation of motion for rreal(z,t) would 

then be a direct analog to the well-known quantum Vlasov equation [43-45], which governs the 

corresponding momentum density of the created particles for the special case of spatially homogeneous 

time-dependent fields. 

 Second, while the charge density rreal can now be unambiguously accessed inside the supercritical 

pair creation zone, we still have not developed the corresponding theoretical tools to define an actual 

particle probability density n(z), except those approximations that are based on projections of the field 

operators on field-free or incompletely-dressed states [46].  Any proposal to map the supercritical potential 

V(z) onto n(z), which can be decomposed into its electronic and positronic contributions, n(z) = ne–(z)+ 

ne+(z), could then be tested for consistency with rreal(z), i.e., we could check the validity of rreal(z) =  

– ne–(z) + ne+(z), to gauge the accuracy of such a concept. 
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