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Abstract We examine the degree of accuracy of simple feedforward neural
nets with N inputs and a single output to forecast time series that represent an-
alytical functions. We show that the subspace of those functions, whose higher
order derivatives can be clustered into a finite number of linearly dependent
groups, can be forecasted exactly by a neural net. Furthermore, we derive gen-
erally applicable summation and product rules that permit us to calculate the
associated optimum connection weights for the particular network architec-
ture for complicated but exactly predictable functions. If a general network is
initialized with these particular weights, the learning process for general data
(with noise) can be significantly accelerated and the forecasting accuracy in-
creased. We also show that neural nets can be used to predict the finite value
of diverging sums, which is a generic problem for most perturbation-based
approaches to physical systems.

Keywords Exactly predictable functions · Simple neural networks · Time
series forecast · Summation and product rules

1 Introduction

Among the many computational benefits of artificial neural networks, the ca-
pability to predict the future value of a time series from past information is of
special interest to the physical sciences [1]. It has been suggested that these
networks can be superior to traditional statistical forecast approaches [2]. In
classical supervised machine learning [3], a neural net is often considered as
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a black box process where N inputs, typically given by historical values of a
sampled function f(tn) with tn = t � nh and n = 1, 2, ..., N and step size h,
can be successfully trained to predict the future value f(t).

Artificial neural networks have a rich history with early suggestions dating
back to 1890 [4] when James defined a neural process of learning. In 1943
McCulloch and Pitts [5] introduced first mathematical models and in 1954
Hebb and his collaborators [6] provided first simulations. In 1958 Rosenblatt [7]
introduced the perceptron, which in 1969 [8] was shown to have some severe
limitations. In the mid 1980’s the new concepts of back-propagation [9] and
multi-layer networks [10] lead to some re-emergence of the field leading now
to today’s central role in machine learning. Due to its widespread applications
in science and technology, there have been many reviews, books and journals
published in this field. The system we examine in this work is closest related to
the formalism used in ARIMA-like (autoregressive integrated moving average)
time series calculations [11–15]. This model is frequently used in statistics,
economics, and finance to better understand the data or to predict future
points in the series.

To have a simple example of linear regression [16], a network with N = 3
inputs can be trained with numerous training pairs, where each pair (charac-
terized by a specifically given time t) consists of three numerical values that
sample the unknown function [f(t � 3h), f(t � 2h), f(t � h)] and an associ-
ated target value f(t). The quality of a particular network architecture is then
measured by its ability to generalize from its training set to previously unseen
regions, i.e. to a new time t in the future. We assume here that the measured
data originate from an unknown but analytical function f(t). For several ap-
plications, it can be su�cient to just predict a single future value f(t) from its
historical data. In many situations, where data further into the future need to
be predicted, the exact (measured) value of f(t) is then used to predict f(t+h).
This contrasts more powerful schemes, where the actually predicted value for
f(t) is used to consecutively predict f(t+h) and so on. For the latter iterative
scheme, the accuracy of the first predicted value for f(t) is therefore crucial
to guarantee the quality of all of its consecutive predictions f(t + nh). In all
of these contexts, the questions about the optimal hyperparameters (such as
the number of inputs and length and width of hidden layers) or the possibil-
ity of over- or under-fitting are all important challenges of eminent practical
relevance.

In order to better understand the mechanisms on which e�cient neural
nets are based on, we have examined the following simple questions. For a
given net’s architecture with a finite number of N inputs, are there specific
sets of functions, for which the future value f(t) can be actually predicted
from the past values f(tn) without any error? If these exists, can one con-
struct the corresponding associated sets of optimal connection weight factors?
If those exactly predictable functions (which we abbreviate by epfs) exist, are
the sets of new functions obtained from the sums (or even the products) of
those original epfs again exactly predictable?
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An important breakthrough was obtained by Hornik et al. [17,18] and
others [19–21] who suggested that a neural network (even with just one in-
put and output) can approximate any arbitrary function, where its accuracy
is determined by the number of units in the hidden layer. This theorem is
complementary to our findings where we show that a single neuron with N
inputs and a single output can also approximate arbitrary functions. Here the
accuracy is improved by increasing the number of input units.

The contribution of this article is two-fold. We show that there exists indeed
a set of elementary exactly predictable functions (epfs) and determine their
associated optimum weights. We prove that any sums and even products of
these functions are epfs again, but these require a larger number of input
channels. We show that neural nets can be used to compute diverging series.
Furthermore, the weights factors of epfs can be used to enhance the learning
e�ciencies of networks.

This article is structured as follows. In Section 2 we provide the underlying
theory for epfs based on the observation that in this case all derivatives can
be partitioned into a finite number of linearly dependent clusters. We also
introduce the superposition principle for sums and products of epfs and provide
the rules to determine their weight factors of complicated functions in terms of
those associated with more elementary functions. Section 3 is devoted to two
applications. We show how that the weights of epfs can be used to accelerate
the learning rate. The network can also be used to evaluate diverging sums.
Section 4 generalizes epf to multineuron networks. In Section 5 we provide an
outlook to open questions and future challenges.

2 Elementary and composite exactly predictable functions

2.1 General theory

It is obvious that a function f(t) can never be uniquely identified from only
a finite number of sampled data f(tn) with tn = t � nh for n = 1, 2, ..., N .
Therefore, the prediction of the future value of the underlying function f at
time t (corresponding to n=0) based on just a finite amount of historical
information f(t � nh) is not a problem that has a mathematically unique
solution. However, as we will discuss in this work, there exists an interesting
subspace of functions, for which a finite amount of historical data f(t � nh)
is actually su�cient to predict their future value exactly at any time.

To begin with the simplest possible system, we examine a single neuron
with N inputs, characterized by N weight factors Wn, which is similar to
the ARIMA (autoregressive integrated moving average) configuration. Fur-
thermore, we neglect any bias or activation function such that it maps the
N inputs, denoted by past values of the (unknown) f(tn) ⌘ f(t � nh) to

a single output, i.e., yout =
PN

n=1 Wnf(t � nh). We assume here that the
unknown function f(t) is real, analytical and can be Taylor expanded, i.e.,
f(t� nh) =

P1
m=0 am(nh)f (m)(t), where f (m)(t) denotes the m-th derivative
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of f(t) with f0 = f(t) and where am(nh) ⌘ (�nh)m/m! We therefore obtain

yout =
PN

n=1 Wnf(t � nh) =
PN

n=1 Wn
P1

m=0 am(nh)f (m)(t). The key ques-
tion is if we can construct a finite set of weight factors Wn, such that yout
matches exactly f(t), i.e., we require

f(t) =
NX

n=1

Wn

1X

m=0

am(nh)f (m)(t) (1)

to be valid for all times t. In the general case, where all derivatives f (m)(t) are
linearly independent of each other, the equality of the left and right hand side
of Eq.(1) would require that we have

NX

n=1

Wnam(nh) =
(�h)m

m!

NX

n=1

Wnn
m = �m,0 (2)

for all integers m and where �m,0 denotes the Kronecker delta symbol. This an
infinite set of equations with N unknowns Wn that -for any general function
f(t)- can only be satisfied for N = 1 coe�cients Wn.

This feature should not be confused with the universal approximation the-
orem [17–21] for networks, which showed that any measurable function f(t)
can be represented arbitrarily well by a standard multilayer feedforward con-
figuration. In contrast to our (single-neuron) architecture where the desired
degree of accuracy grows with the number N of input units, here the accuracy
grows with the number of units (the width) of the hidden layer.

There is a special subset of functions f(t), which we will denote as exactly
predictable f unctions (or epfs), where not all of the derivatives f (m)(t) are
independent of each other. In this case, the derivatives can be grouped into a
finite set of linear-dependent classes, that we denote by g↵(t). In other words,
for any time t, each derivative can be assigned uniquely to an integer index
↵(m) = 0, 1, 2, 3, ..., N↵ � 1 such that f (m)(t) = kmg↵(m)(t), where km is an
irrelevant proportionality constant that does not depend on time. If there is a
total number of N↵ (derivative) clusters, then the Taylor expansion of Eq. (1)
can be conveniently regrouped as

f(t) = k0g↵(0)(t) =
NX

n=1

Wn

1X

m=0

am(nh)kmg↵(m)(t) (3)

The second summation in Eq. (3) over all integers m can be partitioned
into the summation over those groups that are characterized by the same value
for ↵ as

1X

m=0

am(nh)kmg↵(m)(t) =
N↵�1X

↵=0

g↵(t)
1X

m0(↵)

am0(↵)(nh)km0(↵) (4)

In other words, we obtain
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k0g↵(0)(t) =
NX

n=1

Wn

N↵�1X

↵=0

g↵(t)
1X

m0(↵)

am0(↵)(nh)km0(↵) (5)

Here m0 in the m0 summation combines all m in the m summation that
give rise to the same ↵. To make this equation valid for all times t, only the
(time-independent) pre-factors of the (mutually independent) g↵(m)(t) have to
vanish. This means that the weights Wn are uniquely specified as solutions to
the following set of N↵ linear equations, assuming ↵(m = 0) = 0 and ↵  m

for ↵ = 0, k0 =
NX

n=1

Wn(
1X

m0(0)

am0(0)(nh)km0(0))

for ↵ 6= 0, 0 =
NX

n=1

Wn(
1X

m0(↵)

am0(↵)(nh)km0(↵)) (6)

where the summation
P1

m0(↵) extend only over those subgroups of integers,
for which ↵(m0) = ↵ takes the same value. This means, if there are N↵ (in-
dependent) derivative clusters, then we require only at most N = N↵ weight
factors to construct a unique set of weights Wn. We denote with N the class
of the epf.

For small numbers N↵, the resulting elementary epfs can take a very simple
form. For example, a class N↵ = 1 epf is the exponential function f(t) =
a exp(bt), with arbitrary constants a and b. In this case, all derivatives are
linearly dependent of each other and we have W1 = exp(bh), and all other
weights vanish. Similarly, for N↵ = 2, all derivatives of the function f(t) =
a sin(bt) can be grouped into only two clusters, leading to the weight factors
W1 = 2 cos(bh) and W2 = �1.

Another interesting example are monomials f(t) = atL, which lead to
N↵ = L+1 clusters, reflecting the fact that all f (m)(t) for m > L vanish. Here
the optimum weight factors Wn are given by binomial coe�cients (L+1,n)
with alternating signs, i.e., Wn = (�1)n+1(L + 1, n) ⌘ Bn,L+1. In contrast
to the class=1 or =2 epfs such as exp(at) or sin(at), these weight factors
do not dependent on the numerical value of the temporal grid spacing h.
These particular weight factors will play an important role in accelerating the
learning speed for neural nets as we will suggest in Section 3.1.

In Table 1 we have summarized some of the elementary class=3 and class=4
epfs together with their weight factors Wn. We see that the weights do not
depend on the pre-factors ↵ and �.

The possibility of a function f(t) to be decomposable into a finite number
of derivative clusters is also a direct consequence of the fact, that each epf
is also a solution to a corresponding autonomous linear di↵erential equation.
Here the required functional relationship among certain groups of derivatives is
explicitly stated. If a function f(t) is a solution to the generalN -th order di↵er-

ential equation dNf/dtN =
PN

n=1 cnd
nf/dtn with arbitrary time-independent
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Table 1 Examples of some class=3 and class=4 exactly predictable functions f(t) together

with their perfect weight factors Wn such that f(t) =
PN

n=1
Wnf(t�nh) is exact for N = 3

or N = 4.

epf f(t) W1 W2 W3 W4

↵t2eat 3eah �3e2ah e3ah 0
↵+ � sin(at) 1 + 2 cos(ah) �1� 2 cos(ah) 1 0
↵ cos2(at)ebt ebh[1 + 2 cos(2ah)] �e2bh[1 + 2 cos(2ah)] e3bh 0
↵t sin(at) 4 cos(ah) �4� 2 cos(2ah) 4 cos(ah) -1

↵t+ � sin(at) 2 + 2 cos(ah) �2� 4 cos(2ah) 2 + 2 cos(ah) -1

constants cn then f(t) is automatically an epf of class=N and vise versa. The
relationship between discrete time-series analysis and di↵erential equations has
been addressed in [22–24]. The specific functional form of f(t) follows from the
multiplicity of the roots of the corresponding characteristic polynomial [24].
One might attempt to relate the N coe�cients an of the di↵erential equation to
the corresponding perfect weight factors Wn for the N-point predictive scheme
for f(t) based on f(t � nh), but this is not so trivial, as the Wn depend in
general nontrivially on the chosen grid spacing h.

On the other hand, for the special case, where the N coe�cients are chosen
as the alternating binomials an = Bn,N , the di↵erential equation has the N
superpositions of product terms tj exp(t) with j = 0, 1, ..., N�1 as its solution.
To return to some of the concrete examples of Table 1, the class=2 function
f(t) = t exp(at) fulfills d2f/dt2 = 2a df/dt�a2f . The class=3 function f(t) =
↵t2 exp(at) is a solution to the third-order di↵erential equation d3f/dt3 =
3a d2f/dt2 � 3a2 df/dt + a3f and class=4 given by f(t) = ↵t + b sin(at) is a
solution to the fourth-order di↵erential equation df4/dt4 = �a2 df2/dt2

2.2 The general superposition principle for summations of epfs

One could (incorrectly) conjecture that the set of exactly predictable functions
is limited to only a small group of those few functions, that have a trivial
dependence on time such as monomials, exponentials and sine functions as
sketched in Table 1. However, this is not true. It turns out that the sum of
any two epfs f(t) and g(t) is automatically an epf again. More precisely, one
can show that if the two functions f(t) and g(t) are of class N and M, then
the new function F (t) ⌘ f(t) + g(t) is at most of class N +M . The proof for
this claim is straight forward and follows directly from Eq. (6) when applied
to F (t) = g(t) + f(t). If the derivatives of f(t) fall into N clusters and those
of g(t) into M clusters, then -due to the linearity of Eqs. (6)- we can regroup
the derivatives of F (t) into (at most) N +M clusters. As a result, we would
have to solve (N +M) equations for the weight factors of F (t).

Furthermore, it is even possible to derive a general relationship between
the sets of perfect weights associated with f(t) [denoted here by Wn(f) with
n = 1, 2, 3, ..., N ] and those of g(t) [denoted by Wm(g) with m = 1, 2, ...,M ]
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and the resulting perfect weights for the sum F (t), denoted by Wk(f+g) with
k = 1, 2, ..., N+M . One finds the linear superposition law for the k�th weight

Wk(f + g) = Wk(f) +Wk(g)�
NX

n=1

Wn(f)Wk�n(g) (7)

with Wk(f) = 0 for k  0 and k > n and with Wk(g) = 0 for k  0 and
k > M . This general superposition law for the sums is one of the main findings
of this article. A tedious but straightforward proof for this general law is
derived in Appendix A. While the proof involves higher-order products of the
underlying weight factors Wn(f) and Wm(g), it is quite remarkable that the
final expressions for Wk(f + g) require only linear and bi-linear combinations
of the original weights.

An important consecutive application of the sum rule for monomials f(t) =
a tL with increasing order L leads to the important fact that also general
polynomials of any order N are epfs. However, as in this particular case the
derivatives of the lower order monomials are naturally linearly dependent on
the derivative of higher order monomials, their class (=number of required
inputs for an exact predictability) is simply given by that of the associated
monomial of the highest order. Even more remarkable, the associated perfect
weights for the polynomial f(t) are completely identical to the ones associated
with this particular monomial. In the prior Section 2.1 we have shown that its
weight factors are given by

Wn = (�1)n+1(L+ 1, n) (8)

for n = 1, 2, 3, ..L+1, again independent of the numerical value of the temporal
grid spacing h.

2.3 The general superposition principle for products of epfs

Quite remarkable, the possibility of the clusterability of higher-order deriva-
tives applies even to the products of epfs. In other words, if each of two func-
tions f(t) and g(t) is an epf (of class N and M), then one can show that
even the new function given by the product of F (t) ⌘ f(t)g(t) is again an
epf and therefore can be exactly forecasted by the net. The proof follows di-
rectly from the Leibniz product rule for the n-th derivative for F (t), where
F (n)(t) =

Pn
k=0(n, k)f

(n�k)(t)g(k)(t) with the binomial coe�cient (n, k). If
the derivatives of f (n�k)(t) can be clustered into N groups of linearly depen-
dent functions and, similarly, g(k) into M groups, then it is obvious that also
the derivatives of F (t) can be clustered into at most NM clusters. In other
words, F (t) is exactly predictable as well. In this sense, the superposition
principle for sums can be generalized to products as well.

While for the case of summations it was possible to provide general con-
struction rules of the perfect weight factors from those of the underlying two
functions f(t) and g(t), see Eq. (7), in the case of products these rules cannot
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be found for general N and M and the resulting expressions are extremely
complicated. In Appendix B we derive the expressions for the 9 weight factors
associated with the product F (t) = f(t)g(t), where f(t) and g(t) are class=3
epfs.

2.4 Concrete numerical illustration and sensitivity to noise

To illustrate the sensitivity of the predictive power of the optimum weights, we
have examined the test function f(t)=3 exp(a1t) cos(b1t) + exp(a2t) cos(b2t),
which is a class=4 epf. In other words, the knowledge of this function at just
4 past times f(t�nh), n = 1, 2, 3, 4 together with the perfect four weights Wn

is fully su�cient to predict f(t) exactly. The predicted value for f(t) can then
be used iteratively to forecast f(t+ h) and then f(t+ 2h), etc.

To have a concrete numerical example, we chose the specific parameters
(a1 = �2, b1 = 70, a2 = 2 and b2 = 20). While being functionally simple for
illustrative purposes, f(t) still has su�cient complexity that it is very di�cult
to humanly predict its future behavior for 0.5  t from the known historical
data [t, f(t)] for 0 < t < 0.5 by simple inspection of the graph. In the inset of
Figure 1 we display its complicated behavior.

0.5 0.6 0.7 0.8 0.9 1

-4

0

4

8

t
historical

f(t)
f(t)

exact W

binomial W

0.995 W

0 0.5 1

-4

0

4

t

f(t)

Fig. 1 The predictions of the future 51 values of the function f(t) based solely on its four
historical values at times t = 0.46, 0.47, 0.48 and 0.49. The future times are t = 0.5 + (n �
1)0.01 with n = 1, 2, ..51. The second set of predictions was based on a set of four imperfect
weights Wn, obtained by a reduction of 0.5% of the optimum weights. The third set of
predictions simply used a standard cubic extrapolation scheme, here we display (with the
squares) only the first four predictions, as these data quickly grow out of bounds. The test
function was chosen as f(t) = 3 exp(�2t) cos(70t) + exp(2t) cos(20t) as shown in the inset
for the range 0  t  1.
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In Figure 1 we show how the four historical values of f(t) at past times
t = 0.46, 0.47, 0.48 and 0.49 (solid circles) can be used to predict consecu-
tively the 51 future values of f(t) (open circles) at times 0.5 + (n � 1)0.01
with n = 1, 2, ..., 51. The match between the forecasted and the true value
f(t) is perfect, as the four weight factors are chosen as W(h) = W(0.01) =
(3.50,�5.00, 3.48,�1.00). The analytical form of these weights for arbitrary
a1, b1, a2, b2 and h is derived in Appendix A. While due to the four di↵erent
growth, decay and periodic time scales associated with each of the four con-
stituent functions (proportional to a�1

1 , b�1
1 , a�1

1 and b�1
2 ) this test function is

su�ciently complicated, its entire future behavior is nevertheless accurately
predicted by only 4 historical data points.

The second set of predictions shown in the same figure is based on slightly
inaccurate weight factors. These were obtained by reducing the optimum
weights by half a percentage each, given by Wnew = 0.995W. While the first
five future points are still predicted su�ciently accurate, we see major devia-
tions for longer times, where the inaccuracies accumulate as expected due to
the consecutive nature of this forecasting scheme. This suggests that the accu-
racy of the prediction depends rather sensitively on the quality of the weight
factors. This high sensitivity for any long-time forecasting is not so unex-
pected. Due to the consecutive application of the same weight factors for each
predicted value, these predictions scale highly nonlinearly with the weightsWn.
For example, the 51th prediction f(t) for the long time t = 1[= 0.5+(n�1)0.01
with n = 51, based on the historical data from t < 0.5] scales like W 51

1 , which
is obviously rather sensitive to the accuracy of W1 itself.

For a comparison with the quality of more standard extrapolation ap-
proaches [16], we have also displayed (by the open squares) the predictions of
the cubic polynomial based scheme. Here the fitted cubic polynomial of the
form P (t) = �6050+38973 t�83522 t2+59529 t3 was obtained from the four
historical values f(0.46), f(0.47), f(0.48) and f(0.49). However, the first four
predicted values P (0.5), P (0.51), P (0.52) and P (0.53) vary significantly from
the corresponding true future values of f(t). This disagreement is, of course,
expected as any polynomials of N� th order can take at most (N�1) maxima
and therefore can never approximate any oscillatory function as tested in this
case. The same predictions could have also been obtained if the data were
computed not from P (t) (as an intermediate step) but directly from the four
binomial weight factors W = (4,�6, 4,�1). These weight factors assume that
the underlying function that matches the historical data is a cubic polynomial
and make the forecasting accordingly.

In closing, we want to stress again that all of the predictions for t � 0.5
in this article were solely based on only four historical data. There are, of
course, many applications (for example in predictions for financial markets)
where a single-time step prediction is su�cient. Here the weight factors can be
constantly relearned in each step and -in contrast to our work- the prior four
values are not the predicted values themselves, but actual historical measured
data. As these truly short time predictions can self-correct as time evolves,
they are much more easily obtained. For example, had we used in each step
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the true four values given by f(t), then using the simple binomial weights
W = (4,�6, 4,�1) would have led to predictions that are graphically indis-
tinguishable from the true graph of f(t) for the entire range t � 0.5.

3 Applications

3.1 Increased speed of convergence for smartly initialized networks

A crucially important aspect of any network is its e�ciency with which it can
learn from the training set. In many situations, the e�ciency of the learning
process is determined by the quality of the initial choice of the weights. While
there has been some guidance in the literature [13] about desirable magnitude
ranges for the initial weights, they are often assumed to be random. In this
section, we will suggest that the e�ciency of the learning process can be sig-
nificantly increased if in the initialization of the net the alternating binomial
weights given by BnN = (�1)n+1(N,n) for n = 1, 2, 3..N are used.

In Section 2.2 we have derived the set of N perfect connection weights Wn

that would make the forecasting exact if the function to be forecasted is a
polynomial of degree N � 1. We have shown that this set given by Wn = BnN

is independent of the numerical value of the temporal grid spacing h. This
means if the net’s forecasting of f(t) is based on this particular set of weights,
it would assume that the N points associated with the historical data [obtain
by sampled values f(t � nh)] describe actually a (N � 1)th order polynomial
and make the prediction for f(t) accordingly.

Let us assume we consider here an algorithm that tries to predict the future
value of the function f(t) from the N historical data f(t�nh) (n = 1, 2, ..., N).
Furthermore, let us assume the function is sampled over a total of J temporal
grid points tj = (j � 1)h, j = 1, 2, ..., J , then we would have a maximum
number of N � J training sets for the learning process available.

For the simplest case of a threshold-free single neuron, the accuracy de-
pends of course on the deviation of the predicted future value, fpred(t) =PN

n=1 Wnf(t � nh) and the true future value, given by f(t). For a given
set of weight factors Wn, the cost (loss function) associated with the en-
tire training sets is often defined by the mean squared distance E(W) ⌘
J�1

PJ
j=1[f(tj)�

PN
n=1 Wnf(tj � nh)]2. This loss function plays a dual role,

first, when evaluated over the historical times, it guides the learning process
based on the historical values (via back propagation of the error) as an indica-
tor of the learning progress, and second, when summed over future grid points,
it can act as a criterion for the predictive power of the finally obtained weights.
Due to the simple quadratic dependence of the error E as a function of the
weights, there is at most a single (i.e. global) minimum in this N-dimensional
space spanned by the weights. For the special case of epf functions with N
weights, this minimal error is identical to E=0.

This means that any gradient based optimization algorithm for the optimal
weights will converge to the global minimum. However, this minimum might
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be very shallow and the learning process usually stops after a certain given
error tolerance is reached. In this sense it might be from a practical point of
view non-trivial to converge to the precise global minimum in finite CPU time.
There can be also a sub surface along which the minimum lies. For example,
this later situation can occur if a class=N epf is being optimized with more
than N weight factors.

To provide a concrete illustration, let us consider again the test function
f(t) = exp(a1t) cos(b1)t + exp(a2t) cos(b2)t from Section 2.4. This function is
an epf of class N = 4 and in Appendix C we have derived the analytical form
of its associated four weights Wn. It follows that in the limit of very small
grid spacings h ! 0, the weights approach the binomial forms, i.e. Wn ! Bn4.
This limiting behavior is crucially important. It makes the binomial coe�cients
rather universally applicable to accelerate the learning scheme for any function
f(t) if only the step size h is chosen su�ciently small. The h-dependence of
the true weights is also graphed in the Appendix.

In our numerical illustration, we use J = 50 linearly spaced historical
times tj ⌘ (j � 1)h ranging from t1 = 0 to tJ = 0.5� h with a grid spacing of
h ⌘ 0.5/J . Therefore, the J data pairs [tj , f(tj)] provide the 46 training sets. In
Figure 2a we have graphed the progress of the learning process as a function of
the number of epochs. Each epoch consists here of 46 training sets, each given
by [f(tj�4), f(tj�3), f(tj�2), f(tj�1)] ! f(tj), for j = 5, 6, ..., 50. The specific
learning algorithm for the weights was based on the stochastic gradient decent
(SGD) method. We used 0.1 for the initial learning rate. For comparison, in
a separate study, we also used the standard gradient-based adaptive learning
rate optimization algorithm (ADAM) [26–30] and found similar results [31].
For the initialization of the net we used the parameters W = (�5, 6,�8, 10).

In Figure 2b we display the average error given by E(W) ⌘ J�1
PJ

j=1[f(tj)�P4
n=1 Wnf(tj � nh)]2 that compares the predicted value

P4
n=1 Wnf(tj � nh)

with the target value f(tj) for the training set.

We see that with a random initialization of the four weights, the learning
algorithm requires about 70,000 epochs for the weight factors to converge.
The values of the converged weights match those perfect weights W(0.01) =
(3.50,�5.00, 3.48,�1.00), as discussed in Section 2.4 above.

In Figure 2b we have displayed the loss function for the same learning
process, however, here we have initialized the weights as W = (4,�6, 4,�1).
We see a significant enhancement of the learning process. The weights converge
to the same final set, but the rate of convergence is significantly enhanced.
Here we obtain weights that match the exact one by an error of less than
1.65⇥ 10�7% already after 47400 epochs.

In order to suggest the universal applicability of these binomial weights
to enhance the learning process, we have used a test function that is not
an epf for any N-point scheme. Here we choose g(t) = 3 exp(a1t) cos(b1t) +
exp(a2t4) cos(b2t), where we have simply replaced the second exponential in
f(t) by a super Gaussian. For easier comparison, we have kept all the param-
eters the same. This case di↵ers from the above example by only two minor
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Fig. 2 (a) The (SGD-based) learning process of the four weights Wn for the test function as
a function of the number of epochs based on 46 training sets. After about 70,000 epochs the
error between the exact perfect weights and the learned ones is less than 1.5810⇥ 7%. Here
the initialization was based on W = (�5, 6,�8, 10); (b) The decrease of the loss function
as a number of the epochs for the random initialization W = (�5, 6,�8, 10) and also for
the initialization based on the binomials weights W = (4,�6, 4,�1). The test function was
chosen as f(t) = 3 exp(�2t) cos(70t) + exp(2t) cos(20t) as shown in the inset of Fig. 1 for
the range 0  t  1.

details. First, the exact values of the optimum weights are not known ana-
lytically and, second, they will not predict the true function exactly. As a
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result, the loss function has a lower (non-zero) bound, which takes the value
8.52⇥ 10�8 as can be seen from the graph in Figure 3.

Fig. 3 The decrease of the loss function as a number of the epochs for the random
initialization based on the weights W = (�5, 6,�8, 10) for a second learning process
based on binomials weights W = (4,�6, 4,�1). The test function was chosen as g(t) =
3 exp(�2t) cos(70t) + exp(2t4) cos(20t), which is not exactly predictable.

In Figure 3 we also compare again the learning process based on ran-
dom and binomial initial weights. Once again, we can confirm that the ef-
ficiency of the learning process can be enhanced. In fact, after the same
number of learning epochs, the loss associated with the better initial weights
W = (4,�6, 4,�1) is almost three orders in magnitude lower.

In Figure 4 we compare the accuracy of the four numerically obtained
weights, given by W(0.01) = (3.4630709,�4.9084044, 3.391008,�0.9639567)
to predict the region t � 0.5 from 46 data obtained from 0  t < 0.5. We see
that while for early times 0.5  t  0.75 the agreement with the true values
g(t) is not so bad, for larger values the predictions are no longer so good and
we see significant di↵erences between the forecasted and the true values.

In closing, we should mention, if we had tested the scheme not based on an
honest prediction, (where only for t < 0.5 the true values of g(t) were used)
but for only a single-step prediction (where any past values were provided by
the true values g(t)), then all of the “forecasted” data and the true graph
g(t) would be graphically indistinguishable from each other for this set of four
weights, even though the function is not an epf.
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Fig. 4 Comparison of the forecasted data for 0.5  t  1 based on optimized four weight
factors and the true values of g(t). The first 50 points for 0  t < 0.5 were used for the
learning process leading to W = (3.4630709,�4.9084044, 3.391008,�0.9639567). The test
function was chosen as g(t) = 3 exp(�2t) cos(70t) + exp(2t4) cos(20t). It is not an exactly
predictable function as the forecasted and exact data do not match.

3.2 Forecasting beyond a singularity

In this section we examine the usefulness of epfs to predict the value of
functions that exhibit a singularity. Can we use the historical data on one
side of the infinity for training such that the net can predict the future val-
ues of the function correctly on the other side of the singularity? We have
two simple examples, both of the functions f1(t) = 3e2t/(0.4875 � t) and
f2(t) = 3e2t/(0.4875� t)2 have a singularity at t = 0.4875 and are positive in
the training region 0 < t < 0.4785.

We note, however, that neither function is an epf, such that a very large
number N of inputs would be required to minimize the associated forecasting
error. However, if we take the reciprocal of the input data 1/f(t � nh), then
the underlying inverse data are epf, which means that the associated perfect
weights would be fully su�cient to predict these data exactly.

We have demonstrated this in Figure 5a and 5b, where we used just two
(three) historical data of the two functions f1(t) and f2(t) to predict their
future values. The predictive accuracy is superb such that in both cases the
singularity is not an obstacle for an accurate forecast.

The possibility to exactly forecast a time series even through a singularity
has also direct applications for networks to be able of assigning finite values
to the limit of diverging series. Since the early works of Borel [32], Hardy [33]
and many others, it was demonstrated that the divergence of certain series
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Fig. 5 (a) Comparison of the forecasted 20 values of a singular function for 0.5  t  1 based
solely on its two historical values at times t = 0.450 and 0.475 and the optimum weights
W(0.025) = (1.902,�0.905) and the true values of f1(t). The future times are t = 0.5+(n�
1)0.025 with n = 1, 2, ..., 20. The test function was chosen as f1(t) = 3 exp(2t)/(0.4875 �
t);(b) Same comparison, but the prediction is for a quadratic singularity, given by f2(t) =
3 exp(2t)/(0.4875 � t)2, requiring three historical data points at times t = 0.425, 0.450 and
0.475 and optimum weight factors given by W(0.025) = (2.854,�2.714, 0.8607).

does not automatically mean that it becomes useless. In fact, there have been
several analytical and computational techniques developed that permit us to
associate a finite value with a diverging series [34,35]. To provide a simple
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example, the sequence S ⌘
P1

n=0(�2)n can be associated with the finite
value S = 1/3. There are at least three di↵erent ways to show how this result
can be understood. First, applying the distributive law S ⌘ 1 + 2(1� 2 + 4�
8+16� ...) = 1+2S leads to the solution S = 1/3. Second, when we evaluate
both sides of the geometric series S =

P1
n=0 t

n = 1/(1 � t) for t = �2 we
obtain S = 1/3. Third, there are also more general and systematic techniques
such as the Borel summation [20], which is based on introducing a factorial
factor n! =

R1
0 dt exp(�t)tn into the summation S =

P1
n=0(�2)nn!/n! (in

the numerator). If we replace the summation and integration, we obtain S =R1
0 dt exp(�t)

P1
n=1(�2)ntn/n!, whose (converging) summation portion can

be evaluated as
P1

n=1(�2)ntn/n! = exp(�2t). As a result, we confirm again
S =

R1
0 dt exp(�3t) = 1/3.

We will illustrate that the forecasting power of neural nets can be exploited
to evaluate diverging sums. The network is trained with the finite data ob-
tained from the converging regime of the series. Once the weight factors are
learned, they can be applied to the diverging region of interest.

Let us take as a concrete numerical example a sum that is not Borel
summable such as S =

P1
n=0 2

n. We can compute the training set S(t) =P1
n=0 t

n from the perfectly converged values for t < 1. While a more com-
plicated example would require many training sets, the basic idea can be
illustrated here for only two historical points t1 = 0 and t2 = 0.5 with
S1 ⌘ S(t1) = 1 and S2 ⌘ S(t2) = 2. The associated optimum weights are
W = (2,�1). We assume t3 = 1, t4 = 1.5 and t5 = 2 and want to find S(t5).
For the first predicted point, we obtain S�1

3 = W1S
�1
2 + W2S

�1
1 leading to

S�1
3 = 0. A second iteration S�1

4 = W1S
�1
3 + W2S

�1
2 leads to S�1

4 = �1/2.
The final forecasting step S�1

5 = W1S
�1
4 + W2S

�1
3 leads to S�1

5 = �1. As
S5 = S(2) =

P1
n=0 2

n, we have shown that the numerical value of this (non-
Borel summable) diverging sum is equal to

P1
n=0 2

n = �1.

4 Generalization of epfs to multi-neuron networks

So far, our discussion was based entirely on using a single neuron with N
input channels for forecasting. As we continuously increase the complexity of
the network in a systematic way, one might expect that we can enlarge the
possible class of epfs by increasing the number of neurons in the first layer.

For the case, where we do not allow for any activation function, one can eas-
ily see that due to the linear character of a network with M neurons, the class
of those epfs discussed above is already complete, despite the much larger avail-
able space of weight factors Wmn, with n = 1, 2, ..N and m = 1, 2, ..M . Here
the predicted output value is given by yout =

PM
m=1 Vm

PN
n=1 Wmnf(t� nh),

where the coe�cients Vm, with m = 1, 2, ..N are the weights associated with
the output of each of the M neurons. As the same output yout can be obtained
equivalently via yout =

PN
n=1 W

eff
n f(t � nh) any M-neuron system can be

replaced equivalently by the single neuron system already studied (with e↵ec-

tive weights W eff
n ⌘

PM
m=1 VmWmn). This proves that the apparent larger
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number of degrees of freedom associated with a M-neuron system cannot be
deployed to led to a larger class of epfs or more powerful forecasting algorithms
for general functions f(t).

The next level of complexity is achieved if we permit each neuron to have an
activation function, such that its output modifies to yout,m=A[

PN
n=1 Wmnf(t�

nh)], such that the forecasted output of M neurons is given by yout=
PM

m=1VmA

[
PN

n=1 Wmnf(t�nh)]. Due to the non-linearity A[a+b] 6= A[a]+A[b] inherent
to any activation function, the question about the existence of epfs is much
more complex for a general A.

However, for the special case where the activation function is a rectified
linear unit, a 2-neuron system with N inputs channels has again the iden-
tical set of epfs as a single neuron without an activation function. A ReLU
refers to the most commonly deployed activation function for the outputs
of the convolutional neural network neurons [3] and is defined via the (non-
di↵erentiable) maximum function as R[a] ⌘ max[0, a]. As it fulfills the identity
R[a]�R[�a] = a, we see that a 2-neuron network with N inputs and an out-

put given by yout = V1R[
PN

n=1 W1nf(t � nh)] + V2R[
PN

n=1 W2nf(t � nh)],
can once again be mapped onto our original problem of a 1-neuron system
(without ReLu) if V2 = �V1 and W2n = �W1n.

The interesting question therefore arise, if this 2-neuron system has a larger
class epfs than the 1-neuron system. Are there more functions that can be
exactly forecasted?

f(t) = V1R[W11f(t�h)+W12f(t�2h)]+V2R[W21f(t�h)+W22f(t�2h)] (9)

In order to examine this question, we can attempt to reversely engineer the
potential candidates by viewing Eq. (9) as a two-step iteration scheme, that for
a given set of W and V iterates two initial values [corresponding to f(t� 2h)
and f(t � h)] forward. The resulting sequence of iterated values for f(t) and
f(t+ nh), would then naturally be a discrete sampling of the underlying epf.
In the absence of any activation function this scheme works well to generate
any epf due to the inherent linearity of the system. However, due to the non-
linearity and the non-invertibility of the ReLU, the sequence of iterated values
f(t+nh) for n = 0, 1, 2, ... approaches certain periodic steady states. To have a
concrete example, for the weight factors W = [(1,�1), (�1, 1)] and V = (1, 1),
and initial values [f(t�h), f(t�2h)] = (1, 3) or (3, 1), the iteration approaches
quickly a repeating three-point cycle (1, 1, 0).

Even if the non-invertible ReLu activation function is replaced by an invert-
ible logistic sigmoid function L(z) ⌘ 1/[1 + exp(�z)], the resulting iterative
scheme is very dissipative and approaches a one or two cycle steady state
function that is rather independent of the choice of the initial values f(t� h)
and f(t � 2h). As a truly useful forecasting algorithm should not predict the
identical future values f(t + nh) for any di↵erent initial values, this analysis
suggests that it is very nontrivial to generalize the concept of epfs to multi-
neuron systems with activation functions. On the other hand, we also point



18 Jack Yost et al.

out that the low-weight limit of the logistic activation function approaches
our original system, as 4/W1[L(W1z) � 1/2] ⇠ z is linear. In this limit, the
superposition principle for sums and products of epfs generalizes trivially to
more complicated configurations of multiple neurons.

5 Summary and future challenges

We have shown that those subsets of functions f(t), whose temporal deriva-
tives can be partitioned into a finite number N of clusters containing linearly
dependent functions, are exactly predictable by a neural net based on N in-
puts, associated with sampled values of the function at earlier times. Quite
remarkable, it turns out that summation as well as products over these epfs
are exactly predictable again. We have provided rules that permit us to com-
pute the perfect weight factors for these new functions in terms of the weights
of the original constituent functions.

Another interesting question concerns the possibility to generalize the ex-
istence of exactly predictable function to those that have more than just one
argument t. For example, it might be quite interesting from a practical per-
spective to explore if there are also subset of functions f(t, x) that can be
forecasted exactly from sample values f(t�nh, x�mh). In this case, are there
also superposition laws?

In 2009, Schmidt and Lipson [36] have generalized symbolic regression
schemes [37] of numerical data to find not only analytical expressions that
describe the data, but to also construct the di↵erential equations, whose so-
lutions were represented by the sampled data. To find the underlying general
laws (di↵erential equations) is, of course, an important challenge in many ar-
eas of science. If a data set is found to be exactly predictable with N inputs,
this suggests that the temporal derivatives can be related to each other and
grouped into N clusters. This conclusion can also be viewed from the reverse
perspective. If a data set samples a function that is a solution to a linear dif-
ferential equation of order N, then it will be automatically an epf of class=N.
This means that the functional space of data describing possible solutions to
di↵erential equations can be severely restricted. If a network with N inputs is
able to learn perfect weights (which make the data exactly predictable), then
one could conclude that the underlying function can be indeed a solution to a
di↵erential equation of order N. This information might be very beneficial for
the above algorithms.

We have focused our attention in this work on simple feedforward net-
works with a single hidden layer. While the inclusion of a nonlinear activation
function can be incorporated into our theoretical framework and exactly pre-
dictable function sets can be constructed here as well, we consider it an im-
portant goal for future work to explore, how the concept of exactly predictable
function sets can be also helpful for other more complicated forecasting archi-
tectures such as neural networks with more than just one output, deeper nets
with more than a single hidden layer or even recurrent nets. In contrast to the
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ARIMA-type situations discussed here, these environments are intrinsically
nonlinear due to multiple and nested activation functions and one likely has
to rely on purely numerical means in discovering their properties of the epfs.
These sets will likely be rather specific for each application, and it is not clear
if the summation and product rules that we discussed above to construct more
complicated function sets from simpler ones can be derived. As these deep ma-
chine learning environments have in general more predictive powers than the
traditional ARIMA-based schemes, these explorations are worthwhile. These
are especially true in view of the fact that so far these new powerful algorithms
are basically still black box in nature.
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A : Proof of the superposition laws for sums

Here we briefly outline the basic ideas for the general proof of the superposition law that
permits us to construct the perfect connection weights Wk(F ) for F (t) ⌘ f(t) + g(t) in
terms of the original weights of f(t), denoted by Wn(f), and of g(t), denoted by Wm(f).
We require

f(t) + g(t) =

N+MX

k=1

Wk(f + g)[f(t� kh) + g(t� kh)] (10)

f(t) =

NX

n=1

Wn(f) f(t� nh) (11)

g(t) =

MX

m=1

Wm(g) g(t�mh) (12)

The proof in full generality is very clumsy and can be best performed with some com-
puter algebra software packages such as Mathematica or MatLab. The basic idea is to replace
the (M+1) functions at the times f(t), f(t�h) up to f(t�Mh) in terms of the N functions
at earlier times f(t � jh) with j = 1 + M,N + M . This iterative procedure that needs to
be done in a strict consecutive order is extremely cumbersome. For example, by evaluating
both sides of Eq. (11) for the argument t�Mh, we have

f(t�Mh) =

NX

n=1

Wn(f) f(t� (M + n)h) (13)

Similarly, for the argument t� (M � 1)h and insertion of Eq. (13) we obtain

f (t� (M � 1)h) =

NX

n=1

Wn(f) f(t� (M � 1 + n)h)
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= W1(f) f(t�Mh) +

NX

n=2

Wn(f) f(t� (M � 1 + n)h)

= W1(f)

NX

n=1

Wn(f) f(t� (M + n)h) +

NX

n=2

Wn(f) f(t� (M � 1 + n)h) (14)

This sequence of iterative steps needs to be repeated (M + 1) times until the function
f(t) can be expressed in terms of f(t� jh) with j = M+1, N+M and all Wn(f). The same
replacements need to be performed for the function g(t) as well. Here the (N +1) functions
at the times g(t), g(t� h) up to g(t�Nh) need to be expressed in terms of the N functions
at earlier times g(t� jh) with j = N + 1, N +M .

After these expressions are inserted into Eq. (10), this equation becomes finally a single
linear equation for the unknown (N+M) weights Wk(f+g), containing all N weights Wn(f)
and M weights Wm(f) as well as the N functions f(t� jh) with j = 1 +M,N +M and M
functions g(t� jh) with j = N + 1, N +M .

As this single equation needs to be satisfied for all times t, the (N + M) pre-factors
in front of all f(t � jh) and g(t � jh) need to vanish identically. The corresponding set of
(N +M) equations for the (N +M) weights Wk(f + g) can be solved uniquely.

To give the reader a better idea of the complexity of the derivation, we present here a
concrete example, where we choose N = 3 and M = 2. For example, f(t) = t2 exp(3t) and
g(t) = cos(5t) would fall in this category with the known weights according to Table 1.

f(t) + g(t) =

5X

k=1

Wk[f(t� kh) + g(t� kh)] (15)

f(t) = U1 f(t� h) + U2f(t� 2h) + U3 f(t� 3h) (16)

g(t) = V1 g(t� h) + V2 g(t� 2h) (17)

where for notational simplicity we abbreviate Un ⌘ Wn(f) and Vm ⌘ Wm(g). Using
Eqs. (16) and (17) repeatedly, the sequence of required replacements leads to

f(t) = [U3
1 + 2U1U2 + U3]f(t� 3h) + [U2(U

2
1 + U2) + U1U3]f(t� 4h)

+ (U2
1 + U2)U3f(t� 5h)

f(t� h) = [U2
1 + U2]f(t� 3h) + (U1U2 + U3)f(t� 4h) + U1U3f(t� 5h)

f(t� 2h) = U1f(t� 3h) + U2f(t� 4h) + U3f(t� 5h)

g(t) = (V 4
1 + 3V 2

1 V2 + V 2
2 ) g(t� 4h) + V1V2(V

2
1 + 2V2) g(t� 5h)

g(t� h) = (V 3
1 V2 + 2V1V2) g(t� 4h) + V2(V

2
1 + V2) g(t� 5h)

g(t� 2h) = (V 2
1 + V2) g(t� 4h) + V1V2 g(t� 5h)

g(t� 3h) = V1 g(t� 4h) + V2 g(t� 5h) (18)

As a result, we obtain for Eq. (15)

0 = �f(t)� g(t) +

5X

k=1

Wk[f(t� kh) + g(t� kh]

= A1f(t� 3h) +A2f(t� 4h) +A3f(t� 5h) +A4 g(t� 4h) +A5 g(t� 5h) (19)

where the five coe�cients are given by

A1 = �U3
1 � U3 � 2U1U2 + (U2

1 + U2)W1 + U1W2 +W3
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A2 = �U2
2 � U1(U1U2 + U3) + (U1U2 + U3)W1 + U2W2 +W4

A3 = �U2U3 � U1U1U3 + U3U1W1 + U3W2 +W5

A4 = �V 4
1 � 3V 2

1 V2 � V 2
2 + (V 3

1 + 2V1V2)W1 + (V 2
1 + V2)W2 + V1W3 +W4

A5 = �V 3
1 V2 � 2V1V

2
2 + (V 2

1 V2 + V 2
2 )W1 + V1V2W2 + V2W3 +W5 (20)

If we equate these five coe�cients Ak to zero, we obtain the final solutions for the
weights W as

W1 = U1 + V1

W2 = U2 + V2 � U1V1

W3 = U3 � U1V2 � U2V1

W4 = �U2V2 � U3V1

W5 = �U3V2 (21)

In view of the complexity of the expressions in the intermediate steps, these forms are
remarkably simple and they are in full agreement with the general solutions of Eq. (7) for
arbitrary N and M.

B : Weight factors for the product rule

Here we briefly outline the basic ideas for the general proof of the superposition law that
permits us to construct the perfect connection weights Wk(F ) for products F (t) ⌘ f(t)g(t)
in terms of the original weights of f(t), denoted by Wn(f), and of g(t), denoted by Wm(f).
We require

f(t) g(t) =

NMX

k=1

Wk(fg)f(t� kh) g(t� kh) (22)

f(t) =

NX

n=1

Wn(f) f(t� nh) (23)

g(t) =

MX

m=1

Wm(g) f(t�mh) (24)

The approach to derive of the weightsWk(fg) from theWk(f) andWk(g) is -in principle-
similar to the one used in appendix A, but it is significantly more complicated and we
illustrate it here only for the N = 3 and M = 3 case. Here we would iteratively use Eq. (23)
to replace the functions f and g at later times in terms of the six values f(t�kh) and g(t�kh)
for k = 7, 8 and 9. After the replacements, the central equation Eq. (23) for the nine weights
Wk(fg) depend on the nine time-dependent product functions f(t � k1h)g(t � k2h) with
k1 = 7, 8, 9 and k2 = 7, 8, 9. If we assume that these nine functions are linearly independent
of each other, we have to require that the corresponding nine pre-factors vanish. If we solve
the resulting nine coupled but linear equations of the nine weights Wk(fg) for k = 1, 2, ..., 9
we finally obtain the solutions

W1(fg) = U1V1 (25)

W2(fg) = U2
1V2 + U2V

2
1 + 2U2V2 (26)

W3(fg) = U3(V
3
1 + 3V1V2 + 3V3) + U1(U2V1V2 + U2

1V3 + 3U2V3) (27)

W4(fg) = U2
1U2V1V3 � U2

2 (V
2
2 � 2V1V3) + U1U3[V2(V

2
1 + 2V2) + V1V3] (28)
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W5(fg) = �U1U
2
2V2V3 + U2

1U3(V
2
1 + 2V2)V3 + U2U3(�V1V

2
2 + 2V 2

1 V3 � V2V3) (29)

W6(fg) = U3
2V

2
3 � U1U2U3V3(V1V2 + 3V3) + U2

3 (V
3
2 � 3V1V2V3 � 3V 2

3 ) (30)

W7(fg) = U3V3[U
2
2V1V3 + U1U3(V

2
2 � 2V1V3)] (31)

W8(fg) = �U2U
2
3V2V

2
3 (32)

W9(fg) = U3
3V

3
3 (33)

For notational simplicity, we have used again the abbreviations Uk ⌘ Wk(f) and Vk ⌘
Wk(g). Unfortunately, we have not been able to recognize a certain regular pattern to these
nine weights that would have allowed us to predict the corresponding 16 weights for the
N = 4 M = 4 system. Even though we note that the sum of the indices of each factor U
and V matches the index k of Wk(fg), respectively, to predict reliably the corresponding
permutations of these factors, their pre-factors and signs seems di�cult.

C : Optimum weights involving a sum of products

Here we examine the optimum weights due for the specific function f(t)

f(t) = 3 exp(a1t) cos(b1t) + exp(a2t) cos(b2t) (34)

where we have used the specific values a1 = �2 and a2 = 2 for the decay and growth
rates and b1 = 70 and b2 = 20 for the two frequencies. As a sum of the class=2 functions
exp(a1t) cos(b1t) and exp(�a2t) cos(b2t), the function f(t) is again a epf of class=4. Ap-
plying consecutively the superposition laws derived in this work for optimal weights for the
summation and products of functions (Eqs. 7, 25 and 26), one can derive the following
analytical expressions for the six optimal weights.

W1 = 2 exp(a1h) cos(b1h) + 2 exp(a2h) cos(b2h) (35)

W2 = � exp(2a1h)� exp(2a2h)� 4 exp(a1h+ a2h) cos(b1h) cos(b2h) (36)

W3 = 2 exp(a1h+ 2a2h) cos(b1h) + 2 exp(2a1h+ a2h) cos(b2h) (37)

W4 = � exp(2a1h+ 2a2h) (38)
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Fig. 6 The dependence of the optimal four weights for the test function Eq. (34) for a1 =
�2, a2 = 2, b1 = 70 and b2 = 20 as a function of the grid spacing h.
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In Figure 6 we have graphed these four optimum weights as a function of the grid
spacing h. In the limit of small spacings h ! 0 we find that the weights approach the values
(W1,W2,W3,W4) = (4,�6, 4,�1) ⌘ W(h = 0). This set corresponds precisely the optimal
(h-independent) weights Bn4 for any polynomial of degree 3. This is not a coincidence as
the original optimal weights of the constituent functions exp(at), cos(bt) of f(t) of Eq. (34)
converge already in this limit to the alternating binomial coe�cients given in Eq. (8).

The key question is, whether the binomial coe�cients can act as helpful initial values for
the learning algorithm for the relevant case where h 6= 0. For example, for h < 0.0076, each
the optimal set of weights di↵ers from the setW(h = 0) by at most 10%. For example, for h =
0.01 we have the set of exact optimal weights given by W(0.01) = (3.50,�5.00, 3.48,�1.00),
very similar to Bn4 = (�1)n+1(4, n). This suggests, that as long as the grid spacing is not
too large, the binomial set should be an ideal set of weight parameters in order to initialize
the net for the learning process.
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