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Abstract— This paper considers the problem of globally
finite-time stabilizing a planar nonlinear system with a mis-
matched unknown disturbance. First, a nonlinear integral dy-
namic is constructed to compensate the disturbance. For finite-
time convergence, we use the system states and integral state
to construct a new controller which not only is homogeneous
with a negative degree but also contains a linear combination
of states to handle the unmatched disturbance. The finite-time
integral controller originally obtained for a linear planar system
is appropriately scaled to regulate a nonlinear planar system
within the framework of homogeneous domination. In addition,
for a faster convergence speed for any initial condition, a dual-
mode integral controller is introduced with better performances
demonstrated by simulation studies.

I. INTRODUCTION

Since uncertainties and/or disturbances exist in almost all
control systems, countering their effects has become one of
the main problems in the field of control theory. In this paper,
we consider a class of planar nonlinear system{

ẋ1 = x2 + θ + g1(t, x1),

ẋ2 = u+ g2(t, x1)
(1)

where x = [x1, x2]T ∈ R2, u ∈ R, and y = x1 are
the system state, control input and output, respectively. In
addition, g1(t, x1) and g2(t, x1) are unknown and vanishing
functions at the origin and θ is an unknown, mismatched,
and non-vanishing constant disturbance. The main aim of
this paper is to solve the problem of Global Finite-Time
Stabilization by constructing a controller under which the
states of nonlinear planar system (1) are globally bounded
and converge to the equilibrium in a finite time. More
specifically, for the closed-loop system there is a finite time
t∗ such that x1(t) = 0 and x2(t) = −θ when t ≥ t∗.

Based on the controllability of nominal linear system,
global stabilization of nonlinear system under low-triangular
uncertainties that satisfy a linear growth condition has been
realized in [1] by a linear feedback controller. Under the
same condition, an output feedback controller has been
developed in [2]. However, those results are only applicable
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to the case when the disturbances vanish at the origin.
Estimating non-vanishing disturbances using observers and
then canceling their effects using appropriate controllers has
become the main feature of many methods [3] such as
active disturbance rejection control (ADRC), disturbance-
observer based control (DOBC) and generalized extended
state observer based control (GESOC). More recently, the
unobservable and mismatched disturbances have been trans-
formed into total disturbances which are observable and
matched in [4] and then the ability of ADRC is achieved
using extended state observer based control (ESOC). With
appropriate compensation of the disturbance, the standard
ESOC for SISO systems with matched disturbances has
been further generalized to MIMO systems with mismatched
disturbances in [5]. With the help of nonlinear disturbance
observers, nonlinear DOBC has also been proposed in [6]
for dealing with mismatched disturbances. However, only
asymptotic results can be obtained using those methods.

Due to the faster convergence speed as well as better
disturbance rejection performance, finite-time control of sys-
tems with mismatched disturbances has also received a lot of
attention. With the help of finite-time disturbance observer
(FTDOB), a continuous non-singular terminal sliding mode
control approach has been proposed in [7] for mismatched
disturbance attenuation. Still with the help of FTDOB, finite-
time stabilization of systems with low-triangular disturbances
is solved in [8] through compositing a finite time con-
troller and FTDOB. To relieve the computation burden in
calculating derivative when using method of backstepping,
adaptive finite-time controller and adaptive sliding mode
observer have been utilized [9] in finite-time stabilization
of systems with mismatched disturbances. In the results
mentioned above, an additional dynamic observer should be
firstly constructed and then composited with some appro-
priate controllers. Thus the controller design procedure is
not very intuitive especially when the separation principle
in terms of controller design and observer design is not
satisfied.

The main aim of this paper is constructing finite-time
controllers for a class of nonlinear planar system under
mismatched and non-vanishing disturbances. Based on the
inspiration of integral action in PID controllers, a nonlinear
integral mode is firstly employed to compensate the effects
of mismatched disturbances. Then, we use the system states
and integral state to construct a new controller which is
homogeneous with a negative degree to guarantee finite-time
convergence. This nonlinear controller also has a specific
structure containing a linear combination of two states to
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handle mismatched disturbances. The finite-time integral
controller is first developed for a linear planar system. Then,
by adding an appropriate scaling gain, the controller can
be used to handle a nonlinear planar system within the
framework of homogeneous domination. Finally, for a faster
convergence speed throughout the whole state-space, we
introduce a dual-mode integral controller with a lower-order
mode to handle the region close to the equilibrium and a
higher-order mode to handle the region far away form the
equilibrium.

II. PRELIMINARIES

This section includes the definition of homogeneity and
some useful properties of homogeneous systems and func-
tions.

Definition 1 (Weighted Homogeneity): [10] A vector field
f(x) = [f1(x), f2(x), · · · , fn(x)]T is said to be δr-
homogeneous of degree k if the component fi is δr-
homogeneous of degree k + ri for each i, i.e.,

fi(ε
r1x1, ε

r2x2, · · · , εrnxn) = εk+rifi(x) ∀x ∈ Rn,∀ε > 0

where the one-parameter family of dilation δrε(x) :=
(εr1x1, ε

r2x2, · · · , εrnxn) and r = (r1, r2, · · · , rn) be a n-
uplet of positive real numbers. The homogeneous norm is

defined as ‖x‖δ =
2

√∑n
i=1 |xi|

2/ri .
Lemma 1: [10] If V (x) is a homogeneous function of

degree l with respect to the weight r = (r1, r2, · · · , rn),
then ∂V (x)

∂xi
is homogeneous of degree l − ri.

Lemma 2: [10] If V1(x) is homogeneous function of
degree k1 and V2(x) is homogeneous function of degree k2

with respect to the same weight r = (r1, r2, · · · , rn), then
V1(x) · V2(x) is homogeneous of degree k1 + k2.

Lemma 3: [11] Suppose that V is continuous real-valued
functions on Rn, homogeneous of degrees l > 0 with respect
to δr. Then there is a positive constant c̄ such that

V (x) ≤ c̄ ‖x‖lδ , ∀x ∈ R
n.

In addition, if V (x) is positive definite, there is a positive
constant c such that

c ‖x‖lδ ≤ V (x), ∀x ∈ Rn.
Lemma 4: [12] For the following continuous system

ẋ(t) = f(x(t)), (2)

suppose f(x) is homogeneous of degree τ with respect to
δrε(x). Then the origin is a finite-time-stable equilibrium if
the origin is an asymptotically stable equilibrium of system
(2) and τ < 0.

Lemma 5: [10] Suppose f is homogeneous of degree
τ < 0 with respect to δ. If the origin is a finite-time stable
equilibrium of (2), then there exist a real number c > 0 and
a C1 positive-definite function V that is homogeneous of
degree l > |τ | such that

V̇ (x) =
∂V

∂x
f ≤ −cV (x)α, ∀ x ∈ Rn

where α := l+τ
l ∈ (0, 1).

Definition 2: For any positive constant n, define

bxen := sign(x)|x|n, ∀x ∈ R.
III. MAIN RESULTS

To solve the finite-time stabilization problem of system
(1), we impose the following condition on the nonlinearities
g1(t, x1) and g2(t, x1).

Assumption 1: There exist positive constants c1, c2 and
q ∈ (0, 1) such that |g1(t, x1)| ≤ c1 |x1|

q+1
2 , |g2(t, x1)| ≤

c2 |x1|q .
Under Assumption 1, a scaled controller can be con-

structed to regulate the nonlinear system in a finite time.
Theorem 1: Under Assumption 1, there is a large enough

L ≥ 1 such that the following homogeneous integral con-
troller  ẋ0 = Lbx1eq,

u = −L2
(
bax0 + c

x2

L
e

2q
q+1 + bbx1eq

)
,

(3)

with positive constants q satisfying 0 < q < 1 and a, b, c
satisfying bc > a, globally stabilizes the nonlinear system
(1) in a finite time.

Theorem 1 is proved in three steps. First, we consider
the finite-time stabilization problem of a three-dimensional
nonlinear system. Then we construct a finite-time stabilizer
for the nominal part of system (1) without considering the
nonlinearities. Finally, we introduce a scaling gain into the
stabilizer constructed for the nominal system and show that
by adjusting the gain the proposed controller (3) will globally
stabilize the nonlinear system (1) in a finite time.

A. Global finite-time stabilization via homogeneous con-
trollers

We first consider the following nonlinear system
ż1 = bz2eq

ż2 = θz3

ż3 = u

(4)

where the constant q ∈ (0, 1) and θ is an unknown positive
constant. With the help of homogeneous system theory, a
finite-time stabilizer can be explicitly constructed as shown
in the following theorem.

Theorem 2: The nonlinear system (4) is globally finite-
time stabilized by the following controller

u = −baz1 + cz3e
2q

q+1 − bbz2eq (5)

where a, b, c are positive constants satisfying bc > a, q ∈
(0, 1).

Proof: The closed-loop system of (4) under the con-
troller (5) can be described as

ż = F (z) =

 bz2eq
θz3

−baz1 + cz3e
2q

q+1 − bbz2eq

 . (6)

Construct the following Lyapunov function

V (z1, z2, z3)=
a

2
(bz1+z3)2+

b(bc−a)

(q+1) θ
|z2|q+1+

(bc−a)

2
z2

3 , (7)
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which is positive definite and radically unbounded since bc >
a. The derivative of V (z1, z2, z3) along system (6) can be
computed as follows

V̇ (z1, z2, z3) =a(bz1+z3)
(
bbz2eq−baz1+cz3e

2q
q+1−bbz2eq

)
+ b(bc− a)bz2eqz3

+ (bc− a)z3

(
−baz1 + cz3e

2q
q+1 − bbz2eq

)
=− (abz1 + az3)baz1 + cz3e

2q
q+1

− (bc− a)z3baz1 + cz3e
2q

q+1

=− b(az1 + cz3)baz1 + cz3e
2q

q+1 ≤ 0.

Define S =
{
z ∈ Rn| V̇ (z1, z2, z3) = 0

}
as the LaSalle’s

invariant set. Notice that

V̇ (z1, z2, z3) = 0 =⇒ az1 + cz3 = 0,

which implies S = {z ∈ Rn| az1 = −cz3}. For the solution
z of (6) in S, we have the following

0 =aż1 + cż3

=− cbaz1 + cz3e
2q

q+1 − (bc− a)bz2eq

=− (bc− a)bz2eq. (8)

From (8), we can conclude that z2 ≡ 0 in S. In addition,
we can obtain z3 ≡ 0 by 0 = ż2 = θz3 and consequently
z1 ≡ 0 (recall az1 = −cz3) in S.

Therefore, the only solution that stays identically in S is
the trivial solution z(t) ≡ 0. Thus the origin of system (6)
is globally asymptotically stable.

Under the selection of r1 = 1, r2 = 2
q+1 , r3 = 1 and

τ = q−1
q+1 , we can verify

F (εr1z1, ε
r2z2, ε

r3z3)

=

 ετ+r1bz2eq
ετ+r2θz3

ετ+r3
(
−baz1 + cz3e

2p
p+1 − bbz2eq

)
 .

Therefore, by the weighted homogeneity in Definition 1, it
can be concluded that F (z) is homogeneous of degree q−1

q+1 <
0. Then based on Lemma 4, the origin of system (4) under
controller (5) is globally finite-time stable.

Remark 1: It is worth pointing out that if we set q = 1,
the closed-loop system (6) becomes a linear system whose
characteristic equation is

s3 + cs2 + θbs+ θa = 0

for a positive θ. By Routh-Hurwitz stability criterion, the
sufficient and necessary condition for asymptotic stability
of the linear case is bc > a which is the exactly same
as the sufficient condition introduced in Theorem 2 for the
nonlinear system (6).

B. Finite-time control of linear planar systems with mis-
matched disturbances

In this subsection, we consider the finite-time stabilization
problem of the following linear system{

ẋ1 = θ0x2 + θ1,

ẋ2 = u,
(9)

where θ0 > 0 and θ1 are unknown constants. The unknown
constant θ1 represents a mismatched disturbance. Not only
we want to stabilize the output, i.e., to drive the output to
zero, but also we will try to make it converge to zero in a
finite time.

Theorem 3: The equilibrium of system (9) can be globally
stabilized in a finite time by the following integral controller{

ẋ0 = bx1eq,

u = −bax0 + cx2e
2q

q+1 − bbx1eq,
(10)

for positive constants a, b, c, and q, satisfying bc > a and
q < 1.

Proof: The closed-loop system of (9)-(10) can be de-
scribed as 

ẋ0 = bx1eq,
ẋ1 = θ0x2 + θ1,

ẋ2 = −bax0 + cx2e
2q

q+1 − bbx1eq.
(11)

Under the following coordinate transformation

z1 = x0 −
cθ1

aθ0
, z2 = x1, z3 = x2 +

θ1

θ0
,

system (11) can be rewritten as
ż1 = bz2eq,
ż2 = θ0z3,

ż3 = −baz1 + cz3e
2q

q+1 − bbz2eq.
(12)

Under the conditions bc > a and q < 1, by Theorem 2
the origin of system (12) is globally finite-time stable and
the equilibrium (0,−θ1/θ0) of system (9) is also globally
finite-time stable under the integral controller (10).

In what follows, we use an example to show how a finite-
time integral controller can be designed.

Example 1: Consider{
ẋ1 = x2 + θ,

ẋ2 = u,
(13)

with an unknown constant θ. Based on Theorem 3, the
following integral controller can be constructed{

ẋ0 = bx1e
3
7 ,

u = −bax0 + cx2e
3
5 − b bx1e

3
7 .

(14)

For simulation study, we set the initial condition as
[x0(0), x1(0), x2(0)] = [1, 2, 3], and θ = 1. First, we choose
a = 1, b = 2 and c = 1 to obtain Figure 1, from which we
can see the convergence of x1(t) and x2(t) has been realized
in a finite-time by the integral controller (14).
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Fig. 1. States of system (13) under the controller (14)

In order to improve the transition response of the closed-
loop system, a different choice of control gains a = b =
c = 5 in controller (14) have been used in the simulation of
Figure 2. Compared with the simulation obtained in Figure
1, the settling time has been reduced with larger values of
control coefficients a, b and c.
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Fig. 2. States of system (13) under the controller (14)

Remark 2: To handle system (9), different from the com-
plex techniques such as DOB (disturbance observer)[13],
ESO (extended state observer)[13] or GPIO (generalized
proportional-integral observer)[14] in the previous studies,
we have used a nonlinear integral action and constructed
a homogeneous controller with a linear combination, i.e.,
ax0 + cx2, to counter the effects of mismatched constant
disturbances. With the controllers proposed in Theorem 3,
globally finite-time stabilization of system (9) has been
successfully realized.

C. Finite-time control of nonlinear planar systems with
mismatched disturbances

Based on the results obtained for the linear system (9),
now are can readily prove Theorem 1.

Proof of Theorem 1: The closed-loop consisting of system
(1) and the homogeneous integral controller (3) is

ẋ0 = Lbx1eq,
ẋ1 = x2 + θ + g1(t, x1),

ẋ2 = −L2
(
bax0 + c

x2

L
e

2q
q+1 + bbx1eq

)
+g2(t, x1).

(15)
Under the following change of coordinates

z1 = x0 −
cθ

aL
, z2 = x1, z3 =

x2 + θ

L
, (16)

system (15) can be rewritten as ż1

ż2

ż3

=L

 bz2eq
z3

−baz1+cz3e
2q

q+1−bbz2eq


︸ ︷︷ ︸

Ξ(Z)

+

 0
g1(t, z2)
g2(t,z2)

L


︸ ︷︷ ︸

Ψ(Z)

(17)

It is clear that
Ż = Ξ(Z) (18)

is the exactly same as (12) with θ = 1. Based on Theorem
2, for bc > a system (18) is globally finite-time stable and
is homogeneous of negative degree τ = q−1

q+1 with respect to
δr, where r1 = 1, r2 = 2

q+1 , r3 = 1. By Lemma 5, there
exist a C1 positive-definite function V that is homogeneous
of degree l > |τ |, and constants α = l+τ

l ∈ (0, 1) and k > 0
such that

V̇ (Z) =
∂V

∂Z
Ξ(Z) ≤ −kV (Z)α,∀Z ∈ Rn. (19)

The derivative of V (Z) along system (17) can be computed
as

V̇ (Z) ≤ L∂V
∂Z

Ξ(Z) +
∂V

∂z2
g1(t, z2) +

∂V

∂z3

g2(t, z2)

L
. (20)

Next we can use the nice properties of homogeneous func-
tions to estimate the terms on the right side of (20). First,
under Assumption 1, the following estimations can be ob-
tained∣∣∣∣ ∂V∂z2

g1(·)
∣∣∣∣≤ c1 ∣∣∣∣ ∂V∂z2

∣∣∣∣|z2|
q+1
2 ,

∣∣∣∣ ∂V∂z3

g2(·)
L

∣∣∣∣≤ c2
L

∣∣∣∣ ∂V∂z3

∣∣∣∣|z2|q .

By Lemma 1, ∂V
∂z2

and ∂V
∂z3

are homogeneous functions with
homogeneous degree l−r2 and l−r3, respectively. Due to the
fact that both |z2|

q+1
2 and |z2|q are homogeneous functions

with homogeneous degree 1 and 2q
q+1 , by Lemma 2 we

have that
∣∣∣ ∂V∂z2 ∣∣∣ |z2|

q+1
2 and

∣∣∣ ∂V∂z3 ∣∣∣ |z2|q are also homogeneous
functions of a homogeneous degree l + τ with respect to
the dilation δrε(x), where r1 = 1, r2 = 2

q+1 , r3 = 1.
This, together with the fact that the positive definite function
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V (x)α is homogeneous of degree l · α = l+ τ , implies that
the following inequalities hold by Lemma 3∣∣∣∣∂V (Z)

∂z2

∣∣∣∣ |z2|
q+1
2 ≤ c̄1V (Z)α,

∣∣∣∣∂V (Z)

∂z3

∣∣∣∣ |z2|q ≤ c̄2V (Z)α,

for positive constants c̄1 and c̄2.
Substituting the above estimations into the right side of

(20), we can have the following

V̇ (Z) ≤ −LkV (Z)α + (c1c̄1 + c2c̄2)V (Z)α

= − (kL− c1c̄1 − c2c̄2)V (Z)α. (21)

Thus, with a sufficiently large L, there exists a positive
constant c3 such that the derivative of V (Z) along system
(17) becomes

V̇ (Z) ≤ −c3V (Z)α. (22)

Therefore, the origin of closed-loop system (17) is globally
finite-time stable. According to the coordinate transformation
(16), the equilibrium of system (1) under the homogeneous
integral controller (3) is also globally finite-time stable. �

Remark 3: Different from the previous results on stabi-
lization in finite-time [15], [16], the nonlinear integral action
ż0 = bz1eq with q < 1 has been employed to handle
the mismatched and non-vanishing disturbances. Under the
framework of homogeneous domination [17], a scaled inte-
gral controller has been constructed to solve the finite-time
stabilization of nonlinear planar systems with mismatched
disturbances.

Remark 4: As shown in [10], based on the inequality
(22) the upper bound of settling time can be estimated
as 1

c3(1−α)V (Z(0))1−α, provided that we have the explicit
construction of V (Z).

Next we apply Theorem 1 to an example with uncertain
nonlinearities.

Example 2: Consider the following nonlinear system{
ẋ1 = x2 + sin(x1)d(t),

ẋ2 = u+ ln(x2
1 + 1)d(t),

(23)

where |d(t)| ≤ 1. Instead of a direct mismatched disturbance,
we assume there is an arbitrary constant drift in measurement
of x2, which is common in estimating attitude of UAV from
its angular velocity that measured by gyroscope. Thus in this
example, we assume that only the information of x2 = x2+ϑ
not that of x2 is available for controller design, where ϑ is
an arbitrary constant drift. Under the measurable states x1

and x2, system (23) can be rewritten as{
ẋ1 = x̄2 − ϑ+ g1(t, x1),

˙̄x2 = u+ g2(t, x1)

where g1(t, x1) = sin(x1)d(t), and g2(t, x1) = ln(x2
1 +

1)d(t). It can be verified that g1(t, x1) and g2(t, x1) satisfy
Assumption 1 for q = 3

7 . As a matter of fact, since
| sinx| ≤ max{|x|, 1}, we have |sin(x1)d(t)| ≤ |x1|

5
7 . In

addition, by the mean-vale theorem, we have |g2(t, x1)| ≤
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Fig. 3. States of system (23) under controller (24)

∣∣∣ln((|x1|
3
7 )

14
3 + 1

)∣∣∣ ≤ 14
3 |x1|

3
7 . Therefore, by Theorem 1

the following controller can be constructed
ẋ0 = L bx1e

3
7 ,

u = −L2

(⌊
ax0 + c

x2

L

⌉ 3
5

+ b bx1e
3
7

)
.

(24)

For simulation study, we set the initial condition as
[x0(0), x1(0), x2(0)] = [1, 2, 3], ϑ = 5 and a = b = c = 5.
From the simulation results obtained in Figure 3, it can be
seen that the states x1(t) and x2(t) converge to zero in a
finite time.

D. Integral control with dual modes

In the previous subsections, to globally regulate the uncer-
tain systems in a finite time, we have designed homogeneous
controllers with a negative homogeneous degree. However,
in the areas far away from the equilibrium, the homogeneous
controllers with a negative homogeneous degree will not be
as powerful as the linear controllers.

To address this issue, in this subsection we introduce a
new integral controller with dual models. For two constants
q ∈ (0, 1) and p ∈ [1,+∞), we construct the following
integral controller{
ẋ0 = bx1eq + bx1ep,

u =−bax0+cx2e
2q

q+1−bax0+cx2e
2p

p+1−bbx1eq−bbx1ep,
(25)

with control coefficients a, b and c.
Theorem 4: The equilibrium of system (9) can be globally

asymptotically stabilized by the integral controller (25),
where a, b, c are positive constants satisfying bc > a.

Proof: Construct the following Lyapunov function

V (x0, x1, x2) =
a

2
(bx0+ x2)2+

1

2
(bc−a)x2

2

+
b(bc−a)

θ0

(
|x1|q+1

q + 1
+
|x1|p+1

p+ 1

)
(26)
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which is positive definite and radically unbounded since bc >
a. It can be verified that the derivative of the above Lyapunov
function along the closed-loop system of (9) and (25) is

V̇ (x0, x1, x2)=−b|ax0+cx2|
3q+1
q+1 −b|ax0+cx2|

3p+1
p+1 . (27)

Clearly, the right hand side of (27) is semi-negative definite.
Following the same line of the proof of Theorem 2, asymp-
totic stability of the closed-loop system of (9) and (25) can
be proved using LaSalle’s invariance principle.

Remark 5: It is clear that the closed-loop system (9) and
(25) is not homogeneous if p 6= q. However, when the
states are close to the equilibrium, the closed-loop system
will be locally homogeneous of the negative degree q−1

q+1

which is smaller than p−1
p+1 . Therefore, the closed-loop will

be locally finite-time stable [15], [16]. In addition, when
the states are far away from the equilibrium, the system
is dominated by the homogeneous terms with the larger
degree of p−1

p+1 . Therefore, the closed-loop system will have
faster convergence speeds guaranteed for states close to the
equilibrium or far away form the equilibrium.

Next we apply the dual-mode controller (25) to stabilize
(13).

Example 3: To conduct computer simulation of system
(13) under the duel-mode controller (25), we use the same
control coefficients a, b, c and initial conditions used for
Figure 1, i.e., a = 1, b = 2, c = 1, [x0(0), x1(0), x2(0)] =
[1, 2, 3], and θ = 1. In addition to q = 3/5 used in Example
1, we use p = 1 for Figure 4.
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a=1, b=2, c=1, q=3/7, p=1

Fig. 4. States of system (13) under the controller (25)

Clearly, the states x1(t) and x2(t) in Figure 4 demonstrate
faster convergence speeds compared to those in Figure 1.
Therefore, in the practices, if faster convergence rates are
desirable for both small and large initial conditions, the dual-
mode controllers (25) will be more powerful than the lower-
order controller (14) or linear controllers like PID controllers.

IV. CONCLUSIONS

Globally finite-time stabilization of a planar nonlinear sys-
tem with a mismatched unknown disturbance has achieved
in this paper. To compensate the disturbance, we have
introduced a nonlinear integral dynamic and then constructed
a finite-time integral controller using a linear combination of
the system state and integral state. Under the framework of
homogeneous domination, the obtained controllers for linear
planar system is further scaled for global finite-time stabiliza-
tion of a nonlinear planar system. For a faster convergence
rate, we have also proposed a dual-model integral controller,
under which the equilibrium is locally finite-time stable and
the solutions are exponentially convergent in the large.
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