
Adaptive Kernel Graph Neural Network

Mingxuan Ju1,2, Shifu Hou2, Yujie Fan2, Jianan Zhao1,2, Yanfang Ye1,2*, Liang Zhao3

1 University of Notre Dame, Notre Dame, IN 46556
2 Case Western Reserve University, Cleveland, OH 44106

3 Emory University, Atlanta, GA 30322
{mju2, jzhao8, yye7}@nd.edu, {sxh1055,yxf370}@case.edu, liang.zhao@emory.edu

Abstract

Graph neural networks (GNNs) have demonstrated great suc-
cess in representation learning for graph-structured data. The
layer-wise graph convolution in GNNs is shown to be power-
ful at capturing graph topology. During this process, GNNs
are usually guided by pre-defined kernels such as Lapla-
cian matrix, adjacency matrix, or their variants. However, the
adoptions of pre-defined kernels may restrain the generali-
ties to different graphs: mismatch between graph and kernel
would entail sub-optimal performance. For example, GNNs
that focus on low-frequency information may not achieve
satisfactory performance when high-frequency information
is significant for the graphs, and vice versa. To solve this
problem, in this paper, we propose a novel framework - i.e.,
namely Adaptive Kernel Graph Neural Network (AKGNN) -
which learns to adapt to the optimal graph kernel in a unified
manner at the first attempt. In the proposed AKGNN, we first
design a data-driven graph kernel learning mechanism, which
adaptively modulates the balance between all-pass and low-
pass filters by modifying the maximal eigenvalue of the graph
Laplacian. Through this process, AKGNN learns the optimal
threshold between high and low frequency signals to relieve
the generality problem. Later, we further reduce the num-
ber of parameters by a parameterization trick and enhance
the expressive power by a global readout function. Exten-
sive experiments are conducted on acknowledged benchmark
datasets and promising results demonstrate the outstanding
performance of our proposed AKGNN by comparison with
state-of-the-art GNNs. The source code is publicly available
at: https://github.com/jumxglhf/AKGNN.

Introduction
Graph-structured data have become ubiquitous in the real
world, such as social networks, knowledge graphs, and
molecule structures. Mining and learning expressive node
representations on these graphs can contribute to a vari-
ety of realistic challenges and applications. The emphasis
of this work lies in the node representation learning on
graphs, aiming to generate node embeddings that are expres-
sive with respect to downstream tasks such as node classifi-
cation (Kipf and Welling 2016; Klicpera, Bojchevski, and

*Corresponding Author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Günnemann 2019; Veličković et al. 2017). Current state-
of-the-art frameworks could be categorized as graph con-
volutions, where nodes aggregate information from their di-
rect neighbors with fixed guiding kernels, e.g., different ver-
sions of adjacency or Laplacian matrices. And information
of high-order neighbors could be captured in an iterative
manner by stacked convolution layers.

Although the results are promising, recent researches have
shown that such a propagation mechanism entails certain
challenges. Firstly, (Chen et al. 2020a; Oono and Suzuki
2019) illustrate that the performance of GNNs could be de-
teriorated by over-smoothing if excessive layers are stacked.
As proved in the work of (Zhu et al. 2021), graph convo-
lution could be summarized as a case of Laplacian smooth-
ing, in which adjacent nodes become inseparable after mul-
tiple layers. (Oono and Suzuki 2019) shows that multiple
non-linearity functions between stacked convolution lay-
ers further antagonize this problem. Moreover, these afore-
mentioned propagation layers cause the over-fitting problem
(Wang et al. 2019). In current GNNs, each layer serves as a
parameterized filter where graph signals are first amplified
or diminished and then combined. Adding more layers aims
to capture high-order information beneficial for the down-
stream classification but it meanwhile introduces the num-
ber of trainable parameters, which might cancel out the in-
tended benefits as real-world data is often scarcely labeled
(Zhao et al. 2020; Chen et al. 2020a). Effective frameworks
such as JK-Nets (Xu et al. 2018b) and DAGNN (Liu, Gao,
and Ji 2020) overcome the over-smoothing issue by a global
readout function between propagation layers, making local
information from early layers directly accessible during the
inference phase. And the over-fitting issue is conquered by a
single learnable matrix, placed before all propagation layers,
to approximate parameters of all layers (Wu et al. 2019).

Another far less researched issue rests in the fixed graph
kernels (e.g., adjacency matrix, Laplacian matrix, or their
variants) that current GNNs model on, which restricts their
generalization to different graphs. (Ma et al. 2020; Zhu
et al. 2021; Dong et al. 2016) prove that the current GNNs
could be explained in a unified framework, where the out-
put node representation minimizes two terms: 1) the dis-
tances between adjacent nodes and 2) the similarities be-
tween the input and output signals. Some GNNs such as
GCN (Kipf and Welling 2016) mainly focus on the lat-

ter term, which solely extracts low-frequency information.
Others like APPNP (Klicpera, Bojchevski, and Günnemann
2019) merges these two terms by introducing original sig-
nals through teleport connection after low-pass filtering, and
hence brings a certain degree of high-frequency signals. But
in reality, it is difficult to determine what and how much in-
formation should be encoded, unless experiments are con-
ducted across algorithms with different hyperparameters.
Merely considering one kind of information might not sat-
isfy the needs of various downstream tasks, while introduc-
ing extra information could jeopardize the decision bound-
ary. Some very recent works such as GNN-LF and GNN-HF
(Zhu et al. 2021) utilize models with different pre-defined
graph kernels to adapt to various datasets. These models ei-
ther focus on high or low frequency signals. Still, experi-
ments need to be conducted on both in order to know which
one works out best, and the threshold between low and high
frequency signals needs to be defined via human experts,
which might be sub-optimal under some circumstances. To
the best of our knowledge, there has not yet a unified frame-
work that solves this problem. To fill this research gap, in
this paper, we propose Adaptive Kernel Graph Neural Net-
work (i.e., AKGNN) where a novel adaptive kernel mecha-
nism is devised to self-learn the optimal threshold between
high and low frequency signals for downstream tasks.

Specifically, to effectively combat the generality issue en-
tailed by fixed graph kernel, AKGNN dynamically adjusts
the maximal eigenvalue of graph Laplacian matrix at each
layer such that the balance between all-pass and low-pass fil-
ters is dynamically optimized. And through this process, the
optimal trade-off between high and low frequency signals is
learned. From the spatial point of view, our model is able to
raise the weight of self-loop when neighbors are not infor-
mative (i.e., all-pass filter from spectral view), or focus more
on adjacent nodes when neighbors are helpful (i.e., low-pass
filter). To prevent the over-fitting problem, we modify the
parameterization trick proposed in (Wu et al. 2019), wherein
learnable parameters of all convolution layers, except maxi-
mal eigenvalues, are compressed and approximated by a sin-
gle matrix. Nevertheless, it is possible that different nodes
require information from neighbors of distinct orders and
hence we utilize a global readout function (Xu et al. 2018b)
to capture node embeddings at different orders.

Finally, we demonstrate the legitimacy of the proposed
AKGNN through theoretical analysis and empirical stud-
ies, where it is able to achieve state-of-the-art results on
node classification at acknowledged graph node classifica-
tion benchmark datasets, and persistently retain outstanding
performance even with an exaggerated amount of convolu-
tion layers across all benchmark datasets.

Problem and Related Work
Let G = (V,E) denote a graph, in which V is the set
of |V | = N nodes and E ⊆ V × V is the set of |E|
edges between nodes. Adjacency matrix is denoted as A ⊆
{0, 1}N×N . The element aij in i-th row and j-th column
of A equals to 1 if there exists an edge between nodes
vi and vj or equals to 0 otherwise. Laplacian matrix of a
graph is denoted as L = D − A or its normalized form

L = D−
1
2 (D − A)D−

1
2 = I − D−

1
2 AD−

1
2 , where D is

the diagonal degree matrix D = diag(d(v1), . . . , d(vN)) and
I is the identity matrix. Spectral graph theories have studied
the properties of a graph by analyzing the eigenvalues and
eigenvectors of L (Kipf and Welling 2016; Defferrard, Bres-
son, and Vandergheynst 2016), and our model adaptively
modifies the maximal eigenvalue of L to learn the optimal
trade-off between all-pass and low-pass filters.
Node Classification on Graphs. We focus on node classi-
fication on graph. X ∈ RN×d represents the feature ma-
trix of a graph, where node vi is given with a feature vector
xi ∈ Rd and d is the dimension size. Y ⊆ {0, 1}N×C de-
notes the label matrix of a graph, where C is the number of
total classes. GivenM labeled nodes (0 < M � N) with la-
bel YL andN−M unlabeled nodes with missing label YU ,
the objective of node classification is learning a function
f : G,X,YL → YU to predict missing labels YU . Tra-
ditional solutions to this problem are mainly based on Deep-
walk (Ando and Zhang 2007; Pang and Cheung 2017; Dong
et al. 2016). Recently GNNs have emerged as a class of pow-
erful approaches for this problem. GCN (Kipf and Welling
2016), which iteratively approximates Chebyshev polyno-
mials proposed by (Defferrard, Bresson, and Vandergheynst
2016), has motivated numerous novel designs. Some typical
GNNs are reviewed below.
Graph Neural Networks. GNNs generalize neural network
into graph-structured data (Scarselli et al. 2008; Kipf and
Welling 2016; Klicpera, Bojchevski, and Günnemann 2019;
Veličković et al. 2017). The key operation is graph convolu-
tion, where information is routed from each node its neigh-
bors with some deterministic rules (e.g., adjacency matrices
and Laplacian matrices). For example, the propagation rule
of GCN (Kipf and Welling 2016) could be formulated as
H(l+1) = σ(ÂH(l)W(l)), where Â denotes the normal-
ized adjacency matrix with self-loop, σ(.) denotes the non-
linearity function, and W(l) and H(l)is the learnable param-
eters and node representations at lth layer respectively. That
of APPNP (Klicpera, Bojchevski, and Günnemann 2019) is
formulated as Z(k+1) = (1 − α)ÂZ(k) + αH, where α
denotes the teleport probabilities, H is the predicted class
distribution before propagation and Z(k) denotes the propa-
gated class distribution at kth layer.
From Graph Spectral Filter to Graph Neural Network.
The idea behind graph spectral filtering is modulating the
graph signals with learnable parameters so that signals at dif-
ferent frequencies are either amplified or diminished. (Def-
ferrard, Bresson, and Vandergheynst 2016) proposes signal
modulating with Chebyshev polynomials, which allows the
model to learn neighbor information within K-hops with
a relatively scalable amount of parameters. GCN proposed
by (Kipf and Welling 2016) approximates the K-th order
Chebyshev polynomials by K convolution layers connected
back-to-back, each of which assumes K equals to 1 and the
maximal eigenvalue of Laplacian matrix equals to 2. Spa-
tially, each propagation layer could be understood as gather-
ing information from direct neighbors by mean pooling, and
information from high-order neighbors could be captured
through multiple stacked layers. Our proposed AKGNN

simplifies this complexity of such filtering process by de-
coupling it into two sub-tasks: 1) limiting the scope of filters
by finding the optimal trade-off between high and low fre-
quency signals and 2) graph signal filtering on the distilled
signals.

Methodology
In this section, we explain the technical details of Adap-
tive Kernel Graph Neural Network (AKGNN), as shown in
Fig. 1. We present a type of graph convolution that is able
to adaptively tune the weights of all-pass and low-pass fil-
ters by learning the maximal eigenvalue of graph Lapla-
cian at each layer. Through such a design, the threshold
between high and low frequency signals is efficiently op-
timized. Demonstrated by comprehensive experiments, pro-
posed AKGNN is able to achieve state-of-the-art results on
benchmarks acknowledged as community conventions.

Adaptive Graph Kernel Learning
Given an input graph G and its normalized Laplacian ma-
trix L = I − D−

1
2 AD−

1
2 = UΛUT , where U is the

eigenvector matrix and Λ is the diagonal eigenvalue matrix
of L, Cheby-Filter (Defferrard, Bresson, and Vandergheynst
2016) on a graph signal f is formulated as:

f
′
=

K∑
k=0

θkUTk(Λ̃)UT f =
K∑
k=0

θkTk(L̃)f , (1)

where f
′

is the resulted modulated signal, K is the order
of the truncated polynomials, θk denotes the learnable filter
at kth order, Tk(.) refers to the kth polynomial bases, Λ̃

denotes the normalized diagonal eigenvalue matrix, and L̃ =
UΛ̃UT . Λ̃ = 2·Λ

λmax
− I, where λmax denotes the maximum

value in Λ, has domain in range [-1,1]. Normalized form
is used here instead of Λ since Chebyshev polynomial is
orthogonal only in the range [-1,1] (Defferrard, Bresson, and
Vandergheynst 2016).

GCN (Kipf and Welling 2016) simplifies the Cheby-Filter
by assuming K = 1 and λmax ≈ 2 at each layer. Although
the efficacy of GCN is promising, through this simplifica-
tion, one issue is brought: graph convolution operation es-
sentially conducts low-frequency filtering as proved by (Zhu
et al. 2021), where the similarity between adjacent nodes
are enlarged as the number of propagation layers increases,
and the kernel could not be adjusted to dataset where high-
frequency information is important. Given that T0(L̃) = I

and T1(L̃) = L̃ (Defferrard, Bresson, and Vandergheynst
2016), Eq. 1 is re-formulated as follows:

f
′
= θ0If + θ1(

2

λmax
(I−D−

1
2 AD−

1
2)− I)f

= θ0If +
2

λmax
θ1If −

2

λmax
θ1D

− 1
2 AD−

1
2 f − θ1If .

(2)

By setting θ0 = −θ1, Eq. 2 can be simplified as follows:

f
′
= θ0If +

2

λmax
θ1If −

2

λmax
θ1D

− 1
2 AD−

1
2 f − θ1If

= θ0If −
2

λmax
θ0If +

2

λmax
θ0D

− 1
2 AD−

1
2 f + θ0If

=
2λmax − 2

λmax
θ0If +

2

λmax
θ0D

− 1
2 AD−

1
2 f

(3)

In Eq. 3, the first and second term could be regarded as the
all-pass filter with weight 2λmax−2

λmax
and low-pass filter with

weight 2
λmax

, respectively. With these settings, we have the
following theorem with theoretical analysis later.

Theorem 1. While conducting spectral modulation, we
can control the balance between all-pass and low-pass
filters by simply tuning λmax. And limλmax→∞ f

′ ≈
θ0If , which is an all-pass filter; limλmax→1 f

′ ≈
θ0D

− 1
2 AD−

1
2 f , which is a low-pass filter.

We can find the optimal threshold between low and high
frequency signals by tuning the weights of these two filters.
With a high λmax, the weight of all-pass filters is elevated
and so are the high frequency signals. Whereas when λmax
is low, the weight of low-pass filters is high and so are the
low frequency signals. However, it is nontrivial to manually
decide which part is more significant than the other as sit-
uations are different across various datasets. A natural step
forward would be finding the optimal eigenvalues in a data-
driven fashion. Hence, in order to find the optimal threshold,
we make λmax at kth layer a learnable parameter:

λkmax = 1 + relu(φk), (4)
where φk ∈ R is a learnable scalar, and relu(.) refers to
rectified linear unit function. φk is initialized as 1, since
λkmax = 2 when φk = 1. Under this setting, the initial
balance between two filters is identical (i.e., 2λmax−2

λmax
=

2
λmax

= 1), preventing the model from being stuck at local-
minimum. We regularize φk by a relu function because relu
has a codomain of [0,∞]. This enables the propagation layer
to achieve a all-pass filter when φk →∞ or a low-pass filter
when φk → 0. Utilizing a layer-wise matrix representation,
we have node embedding H(k) at kth layer as:

H(k) = (
2λkmax − 2

λkmax
I +

2

λkmax
D−

1
2 AD−

1
2)H(k−1)Wk

= (
2relu(φk)

1 + relu(φk)
I +

2

1 + relu(φk)
D−

1
2 AD−

1
2)H(k−1)Wk,

(5)

where H(0) = X, Wk ∈ Rd(k−1)×d(k)

denotes the pa-
rameter matrix of filter at kth layer and d(k) refers to the
dimension of signals at kth layer. The domain of eigen-
values of (2relu(φk)

1+relu(φk)
I + 2

1+relu(φk)
D−

1
2 AD−

1
2) is [0, 2],

which can introduce numerical instabilities and unexpected
gradient issues. So using the renormalization trick pro-
posed in (Kipf and Welling 2016), we further normalize and

Figure 1: AKGNN for node classification. The parameters of filters at all layers are approximated by a single MLP. And at each
propagation layer, AKGNN learns the optimal trade-off between all-pass and low-pass filters and constructs A∗k to conduct
graph convolution. The class label is inferred by summing node representations at all layers through a prediction MLP.

reformat (2relu(φk)
1+relu(φk)

I + 2
1+relu(φk)

D−
1
2 AD−

1
2) as A∗k =

D
− 1

2

k AkD
− 1

2

k , where Ak = 2relu(φk)
1+relu(φk)

I + 2
1+relu(φk)

A, and
Dk denotes the diagonal degree matrix of Ak. Putting them
together, the layer-wise propagation is summarized as:

H(k) = A∗kH
(k−1)Wk. (6)

Many current GNNs (Klicpera, Bojchevski, and
Günnemann 2019; Zhu and Goldberg 2009; Chen et al.
2020b) have adopted kernels where the balance between
all-pass and low-pass filters are dedicatedly tailored. They
utilize a pre-defined balancing variable to achieve so but
finding the optimal threshold for a specific dataset is unde-
niably non-trivial as the search space is usually very large.
Different from these current approaches, the adjacency
matrix A∗k we utilize at kth layer is parameterized with a
single scalar. This design enables our model to effectively
learn the optimal balance between high and low frequency
signals during the training phase and omit the cumbersome
hyper-parameter tuning. However, it is difficult for the
model to simultaneously learn both the filter Wk and the
optimized graph Laplacian A∗k since the filter operates on
the current version of graph Laplacian and dynamically up-
dating both might lead to a situation where the whole model
will never converge. Moreover, as we stack numerous layers
to capture the high-order information, Wk still introduces
a number of parameters, which are very likely to introduce
the over-fit issue. Hence we utilize a parameterization trick
to alleviate the above issues.

Parameterization trick
The key motivation of all graph convolutions to stack mul-
tiple propagation layers is capturing high-order information
that is beneficial to downstream tasks. As mentioned in the
introduction, aiming to capture such information, under the
designs of most GNNs, more parameters are also introduced
(e.g., Wk in Eq. 6). This could bring the over-fitting prob-
lem when nodes are scarcely labeled and offset the intended

benefits. (Wu et al. 2019) proposes to approximate parame-
ters at all layers with a single matrix and meanwhile elimi-
nate the non-linearity in between, which is proved to achieve
similar results with fewer parameters. Nevertheless, by con-
ducting such approximation, the complexity of the graph fil-
ter is also significantly decreased, making dynamically tun-
ing both the filter and graph Laplacian feasible. Hence, we
utilize a modified version of such parameterization trick to
approximate parameters at all layers with a single matrix.
Specifically, we can re-write Eq. 6 by expanding H(k−1) as
follows:

H(K) = A∗kH
(K−1)WK

= A∗KA∗K−1 . . .A
∗
1XW1 . . .WK−1WK ,

(7)

where K is the total number of propagation layers. We pro-
pose to use a single matrix W∗ ∈ Rd×d(K)

to approximate
the functionalities of all Wk, such that:

H(k) = A∗kH
(k−1) for k ≥ 1, and H(0) = σ(XW∗),

(8)

where σ(.) denotes the ReLU non-linearity. From the per-
spective of spatial aggregation, intuitively, ith row of H(k)

is simply a linear combination of the modulated graph sig-
nals of node vi and those of its neighbors, whose distances
to vi are within k hops. Through this trick, each convolution
layer has only one parameter φk, which also significantly
alleviates the convergence issue.

Inference and Prediction
After performing signal modulation for K propagation lay-
ers, we generate K node representation matrices {H(k)|1 ≤
k ≤ K}. These matrices are combined through a readout
function and then fed into a Multi-layer Perceptron (MLP)
to predict the class labels YP ⊆ {0, 1}N×C , formulated as:

YP = softmax(fMLP (READOUT (H
(k)))), (9)

where READOUT (.) denotes the layer-wise readout func-
tion. We choose to combine intermediate node representa-
tions through a readout function, instead of using H(k) di-
rectly for the final prediction, because it is very possible
that different nodes require distinct levels of information for
node classification. And bringing high-order information for
nodes whose labels could be inferred merely through local
information might jeopardize the decision margin (Xu et al.
2018b; Liu, Gao, and Ji 2020). As for the selection of read-
out function, we explore element-wise summation sum(.)
instead of other element-wise operations (e.g., mean, or
max) to maximize the express power (Xu et al. 2018a). Com-
pared with other readout functions, the summation function
is injective and with such function, we reduce the possibil-
ity of nodes, that share the same graph signal coefficients but
are structurally different, being represented the same. Layer-
wise concatenation is also able to achieve similar function-
alities but it also introduces the number of parameters in
fMLP (.).

Theoretical Analysis
In this section, we explain the mechanism of adaptive ker-
nel learning with maximal eigenvalue from the perspec-
tive of spectral graph theory. Recall that graph Laplacian
is formulated as L = D − A or its normalized form
L = D−

1
2 (D−A)D−

1
2 = I−D−

1
2 AD−

1
2 . The Laplacian

matrix of either form is symmetric and semi-positive defi-
nite, which gives it an important property: it can be eigen-
decomposed such one set of resulted eigenvalues are all
greater than or equal to zero, formulated as L = UΛUT .
We sort the eigenvalues and their corresponding eigenvec-
tors such that 0 = λ1 ≤ λ2 · · · ≤ λN−1 ≤ λN . The
key idea behind graph spectral filtering is modulating the
graph signals’ frequencies so that these beneficial to down-
stream tasks are magnified while others are diminished. This
could be achieved by modifying the eigenvalues of Lapla-
cian matrix with a filter function f(.). (Defferrard, Bresson,
and Vandergheynst 2016) proposes to utilize model f(.) by
Chebyshev polynomials Tk(.). In the work of (Defferrard,
Bresson, and Vandergheynst 2016), it is prerequisite that
polynomials at different orders are orthogonal, because or-
thogonality guarantees that modifying filter at a specific or-
der won’t interfere with other orders. So it is necessary to
normalize Λ as Λ̃ = 2·Λ

λmax
− I such that its domain aligns

with the domain [-1, 1] where the orthogonality of Cheby-
shev polynomials is defined. Under this setup, in order to
modulate signals, at least O(d×K) parameters are needed,
where d,K stands for the dimension of input signals and
the order of truncated polynomials, respectively. To reduce
the complexity of this process, we propose to make λmax
as a learnable parameter. λmax as a single parameter could
effectively solve one major task of the graph filter: balanc-
ing the trade-off between high and low frequencies. When
λmax is large (e.g., limλmax→∞), all values on the diago-
nal of Λ becomes infinitely close to each other and hence
every signal in the original graph Laplacian is retained, cor-
responding to the all-pass filter limλmax→∞ f

′ ≈ θ0If in
Theorem 1. Notice that the domain of normalized Laplacian

matrix is upper-bounded by 2 and we allow the maximum
eigenvalue to freely vary between (1, inf). In this case, our
goal here is not to find the actual maximum eigenvalue; in-
stead, we aim to utilize this normalization process such that
the trade-off between all-pass and low-pass filters is opti-
mized. If λmax is upper-bounded by 2, in circumstances
where high-frequency signals are significant for downstream
tasks, the best scenario we can possibly approach is the equal
weight on all-pass and low-pass filters (i.e., 2λmax−2

λmax
θ0If +

2
λmax

θ0D
− 1

2 AD−
1
2 f = If + θ0D

− 1
2 AD−

1
2 f).

On the other hand, when λmax is small (e.g., limλmax→1),
we will have some high frequency signals whose eigen-
values are larger than λmax. In this case, these signals
will become unorthogonal to low frequency signals whose
eigenvalues are less than or equal to λmax and these high
frequency signals can be generated by linear combina-
tions of the low ones, which corresponds to low-pass fil-
ter limλmax→1 f

′ ≈ θ0D
− 1

2 AD−
1
2 f . With the help of

learnable λmax, the complexity of graph signal filtering in
AKGNN is significantly reduced. Because the scope of sig-
nal sets is diminished by learnable λmax and filter only
needs to focus on signals beneficial to the downstream task.

Complexity Analysis
The complexity of AKGNN can be decoupled into two parts.
The first portion is graph signal filtering with fMLP (.), with
complexityO(Nd ·d(K)), where N stands for the number of
nodes, d refers to the dimension of the input signal, and d(K)

is the dimension of the filtered signal. The second portion is
graph convolution with the adaptive kernel, with complexity
O(|E|d(K)) per each layer, where |E| denotes the number
of edges. Hence for a K-layer AKGNN, the total computa-
tional complexity isO(N · d · d(K) +K · |E| · d(K)), which
is linear with the number of nodes, edges, and layers.

Experiments and Analysis
We follow the experiment setup acknowledged as commu-
nity conventions, the same as node classification tasks in
(Kipf and Welling 2016; Veličković et al. 2017) (e.g., pub-
licly fixed 20 nodes per class for training, 500 nodes for val-
idation, and 1,000 nodes for testing). The three datasets we
evaluate are Cora, Citeseer and Pubmed (Sen et al. 2008).
Baselines. We compare AKGNN with three GNN branches:

• Graph convolutions: ChebyNet (Defferrard, Bresson,
and Vandergheynst 2016), GCN (Kipf and Welling
2016), GAT (Veličković et al. 2017), JKNets (Xu et al.
2018b), APPNP (Klicpera, Bojchevski, and Günnemann
2019), SGC (Wu et al. 2019) and SSGC (Zhu and Ko-
niusz 2021).

• Regularization based: VBAT (Deng, Dong, and Zhu
2019), Dropedge (Rong et al. 2020), GAugO (Zhao et al.
2020), and PGSO (Dasoulas, Lutzeyer, and Vazirgiannis
2021). The backbone model used is GCN.

• Sampling based: GraphSage (Hamilton, Ying, and
Leskovec 2017), FastGCN (Chen, Ma, and Xiao 2018).

Method
Graph

Cora Citeseer Pubmed

ChebyNet 81.2 69.8 74.4
GCN 81.5 70.3 79.0
GAT 83.0±0.7 72.5±0.7 79.0±0.3

APPNP 83.8±0.3 71.6±0.5 79.7±0.3
SGC 81.0±0.0 71.9±0.1 78.9±0.0

SSGC 83.5±0.0 73.0±0.1 80.2±0.0
JKNets 83.3±0.5 72.6±0.3 79.2±0.3

PGSO 82.5±0.3 71.8±0.2 79.3±0.5
VBAT 83.6±0.5 73.1±0.6 79.9±0.4

GAugO 83.6±0.5 73.3±1.1 80.2±0.3
Dropedge 82.8 72.3 79.6

GraphSage 78.9±0.6 67.4±0.7 77.8±0.6
FastGCN 81.4±0.5 68.8±0.9 77.6±0.5

AKGNN (ours) 84.4±0.3 73.5±0.2 80.4±0.3

w/o λ learning 81.4±0.2 71.9±0.1 79.1±0.2
w/o PT 83.1±0.1 72.2±0.5 80.1±0.3

w/o readout 83.5±0.2 73.1±0.3 79.4±0.2

Table 1: Overall classification accuracy (%).

Implementation Detail We utilize PyTorch as our deep
learning framework to implement AKGNN. The adaptive
kernel learning mechanism is engineered in a sparse tensor
fashion for compact memory consumption and fast back-
propagation. The weights are initialized with Glorot nor-
mal initializer (Glorot and Bengio 2010). We explore Adam
to optimize parameters of AKGNN with weight decay and
use early stopping to control the training iterations based on
validation loss. Besides, we also utilize dropout mechanism
between all propagation layers. All the experiments in this
work are implemented on a single NVIDIA GeForce RTX
2080 Ti with 11 GB memory size and we didn’t encounter
any memory bottleneck issue while running all experiments.

Hyperparameter Detail In AKGNN, related hyperpa-
rameters are the number of layers K, hidden size d(K),
dropout rate, learning rate, weight decay rate, and patience
for early stopping. We utilize identical hyperparameter set-
tings over all three datasets as our model learns to adapt to
different dataset. The number of layers K is 5, the hidden
size d(K) is 64, the dropout rate between propagation layers
is 0.6, the learning rate is 0.01, the weight decay rate is 5e-4,
and patience for early stopping is 100 iterations.

Overall Results
From the upper portion of Tab. 1, we observe that AKGNN
consistently outperforms all baselines by a noticeable mar-
gin over all datasets. Comparing AKGNN with the best-
performing baseline of each dataset, we further conduct
t-test and the improvement margin is statistically signifi-
cant with the p-values less than 0.001. The improvement of
AKGNN over GCN is 3.2%, 3.7% and 1.4% on Cora, Cite-

seer and Pubmed; whereas that over GAT is 1.4%, 1.3% and
1.4%. Compared with JKNet that utilizes a similar global
readout function and parameterization trick, AKGNN has
1.1%, 0.9% and 1.2% improvements, demonstrating the ef-
ficacy of adaptive kernel learning mechanism. As the graph
regularization-based model gets more attention, we also
compare AKGNN with these recent works and the improve-
ments are 0.8%, 0.2% and 0.2%.

Figure 2: Generalization on Cora.

Ablation Studies
To analyze the contribution of different components in
AKGNN, we conduct several sets of ablation studies. In or-
der to examine the effectiveness of λmax learning, we de-
sign the first variant as our model without adaptive kernel
learning, denoted as ‘w/o λ’. Another variant is our model
without parameterization trick, denoted as ‘w/o PT’, aimed
at validating its effectiveness in combating the over-fitting
issue. The last variant is our model without readout function
(i.e., sum(.)), in order to prove that nodes require different
levels of information to achieve better performance. From
the bottom portion of Tab. 1, we can first observe that all
components contribute to the performance of AKGNN. The
first variant without adaptive kernel learning and readout ex-
periences a significant performance downgrade and is worse
than the vanilla GCN model on some datasets, because we
stack a lot of convolution layers and it encounters the over-
smoothing. Comparing AKGNN without readout function
with baselines, we observe similar performance.

In Fig. 2.a, both training and validation loss of this variant
are highest and the differences between them are smallest
across all variants, indicating that the over-smoothing issue
has caused node representations to be indistinguishable. The
second variant without parameterization trick has the low-
est training loss, and also the biggest gap between training
and validation loss, as shown in Fig. 2.b. This phenomenon
represents the model suffers from the over-fitting problem
due to the large number of parameters brought by numerous
propagation layers. The third variant without readout func-
tion relatively performs better than the previous two, but still
not as good as AKGNN, as shown in Fig. 2.c. This illus-
trates that the decision boundary is diminished as a result of
bringing redundant high-order information for nodes that re-
quires only low-frequency signals. Nevertheless, we further

examine the generalization ability of our proposed method.
As shown in Fig. 2.d, we can observe the lowest valida-
tion loss across all variants and meanwhile the differences
between training and validation loss remain small, which
demonstrates the generalization ability of AKGNN.

Figure 3: Maximal eigenvalues vs. number of layers (x-axis:
layer k, y-axis: λkmax). Red dashed line indicates the equal
weights of all-pass and low-pass filters. A higher λkmax indi-
cates a higher weight of all-pass filter; whereas a low λkmax
indicates a higher weight of low-pass filter.

Analysis of Adaptive Kernel Learning
The key motivation of learning the maximal eigenvalue is
learning the optimal threshold between low and high fre-
quency signals. In order to examine how it combats against
the generality issue, we visualize the maximal eigenvalue at
each layer, as shown in Fig. 3. We first analyze the dynamics
of maximal eigenvalues λkmax within the same dataset. We
can notice that the value of λkmax incrementally decreases
as k progresses and reaches a plateau where λkmax doesn’t
change much after fifth layer across all datasets. We interpret
this phenomenon as our model enforcing high-order layers
to become meaningless. Because a low maximal eigenvalue
at high-order layer would make node representations get-
ting more indistinguishable. Moreover, λkmax at early lay-
ers doesn’t deviate as K increases, demonstrating the strong
contribution of local information and stability of AKGNN.
Then we analyze the dynamics between these three datasets.
We can notice that the λkmax of Pubmed has a higher mean
than those of other two, showing that for node classification,
high frequency signals benefits most for Pubmed dataset.
Meanwhile, we can observe a significant λkmax drop at the
second layer for Pubmed, indicating the redundancy of high-
order information. This phenomenon also aligns with GNNs
like GCN or GAT performing best with only two layers.
Besides an intuitive explanation given above, we also the-
oretically explicate these phenomenon. Adapted Laplacian
matrices across all layers share the same eigenvectors U,
because essentially our operation only modifies the diagonal
eigenvalue matrix Λ. Hence the commutative rule for matrix
multiplication applies for all A∗k as they are simultaneously
diagonalizable and the order of A∗k multiplication in Eq. 7

could be switch. In short, higher learned maximum eigenval-
ues should be observed if high-frequency signals dominate;
whereas lower ones should be observed if low-frequency
signals dominate. Across these three datasets, we can ob-
serve that AKGNN learns relatively high maximum eigen-
values compared with Cora and Pubmed, which aligns with
the homophily property of there three datasets (i.e., Citeseer
has the lowest homophily ratio.).

Analysis of Number of Propagation Layers
Beside adaptation of global readout function that has been
utilized in (Liu, Gao, and Ji 2020; Xu et al. 2018b), our adap-
tive kernel learning mechanism also improves AKGNN’s re-
silience to the over-reaching by enforcing high-order layers
to become meaningless, as discussed in the previous sec-
tions. And the impact of the number of layers on perfor-
mance is shown in Fig. 4. From this figure, we can notice
that the accuracy on both testing and training reaches their
highest around fifth layer and remains stable as the number
of layers increases, demonstrating the AKGNN’s strong re-
silience to the over-smoothing while the model is the over-
reaching. We don’t conduct experiments on AKGNN with
more than 10 layers because 10-hop sub-graph of a target
node covers almost all its possibly reachable nodes; the re-
silience to the over-fitting of AKGNN is only a byproduct of
adaptive kernel learning and not the focus of this work.

Figure 4: Impact of the number of layers on accuracy. (x-
axis: K, y-axis: accuracy (%))

Conclusion
In this work, we study the problem of node representation
learning on graphs and present Adaptive Kernel Graph Neu-
ral Network (AKGNN). In AKGNN, we propose adaptive
kernel learning to find the optimal threshold between high
and low frequency signals. Together with parameterization
trick and global readout function, AKGNN is highly scal-
able, achieves competitive performance and retains so even
with a number of convolution layers. Through experiments
on three acknowledged benchmark datasets, AKGNN out-
performs all baselines. Different from other graph convolu-
tion models whose guiding kernels are fixed and not ideal
to all kinds of graphs, AKGNN learns to adapt to different
graph Laplacians, which could shed light on a different path
while researchers design new GNN models. We do not ob-
serve ethical concern or negative societal impact entailed by
our method. However, care must be taken to ensure posi-
tive and societal consequences of machine learning. In the
future, we aim to transfer the similar ideas of AKGNN to
directed graphs or investigating the possibility of applying
adaptive kernel learning to other kernels.

Acknowledgement
This work is partially supported by the NSF under
grants IIS-2107172, IIS-2140785, CNS-1940859, CNS-
1814825, IIS-2027127, IIS-2040144, IIS-1951504 and
OAC-1940855, the NIJ 2018-75-CX-0032.

References
Ando, R. K.; and Zhang, T. 2007. Learning on graph with
Laplacian regularization. Advances in neural information
processing systems, 19: 25.
Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; and Sun, X. 2020a.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 3438–3445.
Chen, J.; Ma, T.; and Xiao, C. 2018. Fastgcn: fast learning
with graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247.
Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; and Li, Y. 2020b.
Simple and deep graph convolutional networks. In In-
ternational Conference on Machine Learning, 1725–1735.
PMLR.
Dasoulas, G.; Lutzeyer, J.; and Vazirgiannis, M. 2021.
Learning Parametrised Graph Shift Operators. arXiv
preprint arXiv:2101.10050.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. arXiv preprint arXiv:1606.09375.
Deng, Z.; Dong, Y.; and Zhu, J. 2019. Batch virtual adversar-
ial training for graph convolutional networks. arXiv preprint
arXiv:1902.09192.
Dong, X.; Thanou, D.; Frossard, P.; and Vandergheynst, P.
2016. Learning Laplacian matrix in smooth graph signal
representations. IEEE Transactions on Signal Processing,
64(23): 6160–6173.
Glorot, X.; and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on arti-
ficial intelligence and statistics, 249–256. JMLR Workshop
and Conference Proceedings.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Induc-
tive representation learning on large graphs. arXiv preprint
arXiv:1706.02216.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Klicpera, J.; Bojchevski, A.; and Günnemann, S. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personal-
ized PageRank. arXiv preprint arXiv:1810.05997.
Liu, M.; Gao, H.; and Ji, S. 2020. Towards deeper graph
neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, 338–348.
Ma, Y.; Liu, X.; Zhao, T.; Liu, Y.; Tang, J.; and Shah, N.
2020. A unified view on graph neural networks as graph
signal denoising. arXiv preprint arXiv:2010.01777.

Oono, K.; and Suzuki, T. 2019. Graph neural networks expo-
nentially lose expressive power for node classification. arXiv
preprint arXiv:1905.10947.
Pang, J.; and Cheung, G. 2017. Graph Laplacian regu-
larization for image denoising: Analysis in the continuous
domain. IEEE Transactions on Image Processing, 26(4):
1770–1785.
Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2020. DropE-
dge: Towards Deep Graph Convolutional Networks on Node
Classification. arXiv preprint arXiv:1907.10903.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The graph neural network model.
IEEE transactions on neural networks, 20(1): 61–80.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine, 29(3): 93–93.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.
Wang, G.; Ying, R.; Huang, J.; and Leskovec, J. 2019. Im-
proving graph attention networks with large margin-based
constraints. arXiv preprint arXiv:1910.11945.
Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019. Simplifying graph convolutional networks.
In International conference on machine learning, 6861–
6871. PMLR.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018a.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018b. Representation learning on graphs
with jumping knowledge networks. In International Con-
ference on Machine Learning, 5453–5462. PMLR.
Zhao, T.; Liu, Y.; Neves, L.; Woodford, O.; Jiang, M.; and
Shah, N. 2020. Data Augmentation for Graph Neural Net-
works. arXiv preprint arXiv:2006.06830.
Zhu, H.; and Koniusz, P. 2021. Simple spectral graph con-
volution. In International Conference on Learning Repre-
sentations.
Zhu, M.; Wang, X.; Shi, C.; Ji, H.; and Cui, P. 2021. Inter-
preting and Unifying Graph Neural Networks with An Opti-
mization Framework. arXiv preprint arXiv:2101.11859.
Zhu, X.; and Goldberg, A. B. 2009. Introduction to semi-
supervised learning. Synthesis lectures on artificial intelli-
gence and machine learning, 3(1): 1–130.

