
Heterogeneous Temporal Graph Neural Network

Yujie Fan∗ Mingxuan Ju† Chuxu Zhang‡ Yanfang Ye∗†§

Abstract

Graph neural networks (GNNs) have been broadly studied

on dynamic graphs for their representation learning, major-

ity of which focus on graphs with homogeneous structures

in the spatial domain. However, many real-world graphs

- i.e., heterogeneous temporal graphs (HTGs) - evolve dy-

namically in the context of heterogeneous graph structures.

The dynamics associated with heterogeneity have posed new

challenges for HTG representation learning. To solve this

problem, in this paper, we propose heterogeneous temporal

graph neural network (HTGNN) to integrate both spatial

and temporal dependencies while preserving the heterogene-

ity to learn node representations over HTGs. Specifically,

in each layer of HTGNN, we propose a hierarchical aggre-

gation mechanism, including intra-relation, inter-relation,

and across-time aggregations, to jointly model heterogeneous

spatial dependencies and temporal dimensions. To retain the

heterogeneity, intra-relation aggregation is first performed

over each slice of HTG to attentively aggregate information

of neighbors with the same type of relation, and then intra-

relation aggregation is exploited to gather information over

different types of relations; to handle temporal dependen-

cies, across-time aggregation is conducted to exchange in-

formation across different graph slices over the HTG. The

proposed HTGNN is a holistic framework tailored hetero-

geneity with evolution in time and space for HTG represen-

tation learning. Extensive experiments are conducted on the

HTGs built from different real-world datasets and promis-

ing results demonstrate the outstanding performance of HT-

GNN by comparison with state-of-the-art baselines. Our

built HTGs and code have been made publicly accessible at:

https://github.com/YesLab-Code/HTGNN.

1 Introduction

Many real-world data come in the form of graphs,
such as academic networks [1, 2], social networks [3,
4], and epidemiological networks [5, 6]. The graph
structure consists of a set of nodes interconnected by
a set of edges. Learning node representations on
graphs is essential for various downstream tasks, such

∗Case Western Reserve University, Cleveland, USA
†University of Notre Dame, Notre Dame, USA
‡Brandeis University, Waltham, USA
§Corresponding author: yye7@nd.edu

as node classification, node clustering, link prediction,
and personalized recommendation.

Recently, graph neural networks (GNNs) have been
broadly studied and achieved state-of-the-art perfor-
mance by taking both node features as well as graph
structures into consideration. Despite their superior
performance, most of the current research efforts con-
centrate on static graphs [7, 8, 9, 10] or dynamic/spatial-
temporal graphs with homogeneous structures [11, 12,
5, 13]. However, many real-world graphs evolve dynam-
ically in the context of heterogeneous graph structures.
From the perspective of spatial domain, the graph is het-
erogeneous with multi-typed nodes connected by multi-
typed relations; from the perspective of temporal do-
main, either the node features or graph structures evolve
over time. We call this type of graph the heterogeneous
temporal graph (HTG). A HTG could be described as
an ordered list of heterogeneous graph slices with a set
of temporal relations connecting them. It is a gen-
eral concept for modeling heterogeneous and dynami-
cally changing graph data. Typical examples include
dynamic academic networks and epidemiological net-
works. For dynamic academic networks, the heteroge-
neous structures would evolve along with the authors’
research directions and co-authorship. In contrast, the
graph structures remains unchanged for epidemiological
networks, but the node features inevitably change with
increased/decreased patient numbers. It is worth noting
that dynamic heterogeneous graphs [14, 15, 16, 17] can
be treated as an instance of HTGs, where the dynamic
nature comes from the evolving graph structures.

The dynamics associated with heterogeneity have
posed new challenges for representation learning on
HTGs. There exist some preliminary works. They could
be roughly summarized into two categories: one first ex-
plores neural sequence models to process time-series fea-
tures attached on each node, and then performs graph
representation learning with the processed node features
on the spatial domain [18, 5, 6, 19]; the other first ap-
plies GNNs on each graph slice of a HTG, and then
employs sequence models on the outputs of each slice to
obtain the final representations [20, 16, 15]. Although
these works could achieve satisfactory results, they are
still faced with the following limitations: (1) The ex-
isting models are graph-dependent. That is, the perfor-

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

https://github.com/YesLab-Code/HTGNN

mance depends heavily on the characteristics of a graph.
Specifically, for a HTG with dynamically evolving het-
erogeneous graph structures (e.g., academic networks),
the second category approaches that emphasize more on
spatial dependencies usually obtain better results. On
the contrary, for a HTG with constantly changing node
features (e.g., epidemiological networks), the first cate-
gory methods that focus more on temporal dependen-
cies would achieve superior performance. Apparently,
selecting a model that best fits with a given HTG re-
quires empirical knowledge. (2) The spatial and tempo-
ral dependencies are processed in a serialized way. Most
existing models either analyze the temporal domain first
and the spatial domain later or in reverse order, which
weakens the spatial-temporal interactions as the infor-
mation in these two domains is treated separately.

Currently, it is not yet well understood how to
jointly integrate both spatial and temporal dependen-
cies while preserving the heterogeneity for node repre-
sentation learning over HTGs. To fill this gap, in this
paper, we propose heterogeneous temporal graph neural
network (HTGNN), a holistic framework tailored het-
erogeneity with evolution in time and space to learn
node representations on HTGs. More specifically, to re-
tain the spatial heterogeneity, we design intra-relation
aggregation and inter-relation aggregation, which are
performed purely on each graph slice of a HTG, to suc-
cessively aggregate the information of a target node’s
neighbors within the same type of relation and over dif-
ferent types of relations. To handle the temporal depen-
dencies, we introduce across-time aggregation, which is
conducted across different graph slices, to gather the
information of the target node’s temporal neighbors.
To capture the spatial-temporal interactions, we equip
each layer of HTGNN with a hierarchical aggregation
mechanism, including intra-relation, inter-relation, and
across-time aggregation modules, to jointly, rather than
serially, model heterogeneous spatial dependencies and
temporal dimensions. With increased model depth, the
information is iteratively propagated in these two do-
mains, allowing HTGNN agnostic to graph characteris-
tics. In sum, we make the following contributions:

• We study the representation learning problem on
HTGs. HTG is a general concept to model graph data
with heterogeneous spatial structures and temporal
evolution patterns (i.e., dynamically evolving graph
structures or constantly changing node features).

• We propose HTGNN to learn node representations
on HTGs. HTGNN is a holistic framework, which
is capable of jointly modeling heterogeneous spatial
dependencies and temporal dimensions. This charac-
ter differs from existing works that process these two
types of dependencies in a serialized way.

• We establish two HTGs from different real-world
datasets, one with dynamically evolving heteroge-
neous structures (i.e., OGBN-MAG) and another
with constantly changing node features (i.e., COVID-
19). Extensive experiments on these two HTGs
demonstrate that HTGNN consistently achieves
strong performance in comparison with state of the
arts for different graph mining tasks.

2 Related Work

Heterogeneous Graph Neural Networks. Re-
cently, various heterogeneous GNNs [21, 22, 10, 2, 9,
23] have been proposed for learning on heterogeneous
graphs. RGCN [21] introduces relation-specific trans-
formations for different relation types during the learn-
ing process. HGT [10] utilizes meta relations to model
graph heterogeneity and further learns the mutual at-
tention for each meta relation based on the Transformer
architecture. By leveraging metapaths defined on the
heterogeneous graphs, HAN [2] designs node-level at-
tention and semantic-level attention to learn the impor-
tance of metapath-based neighbors and different meta-
paths, respectively. These models are built for static
heterogeneous graphs and cannot deal with the dynamic
properties of HTGs. It is worth noting that, HGT uses a
relative temporal encoding to assign each node a times-
tamp to handle graph dynamics. However, this could
partially address the problem as the node embedding in
HGT is assumed to be time-invariant, which is not in
line with many real-world scenarios.
Dynamic Graph Learning. Spatial-temporal graphs
[11, 18, 6, 5] and dynamic graphs with homogeneous
structures [12, 24, 13] have been widely studied in
the literature. To further consider the graph hetero-
geneity, learning on dynamic heterogeneous graphs has
drawn increasing attention, including dynamic hetero-
geneous graph embedding models [25, 26, 17, 14] that
solely consider graph structures and dynamic heteroge-
neous GNNs [15, 20, 27] that take both graph structure
and node features into consideration. DyHATR [15]
first introduces node-level and edge-level attentions to
learn heterogeneous information and then applies RNNs
with temporal attention to capture temporal dependen-
cies. HDGAN [28] combines heterogeneous attention
and Hawkes process to model graph heterogeneity and
dynamics. However, there are some limitations in cur-
rent works. Firstly, these models are graph-dependent,
which requires empirical knowledge; secondly, the spa-
tial and temporal dependencies are processed serially,
which leads to a weakened connection between these two
domains. This paper addresses these issues by design-
ing a holistic graph-agnostic framework to learn node
representations on HTGs.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

3 Preliminary

In this section, we define concepts used in our model.

Definition 3.1. Heterogeneous Graph. A hetero-
geneous graph is defined as a directed graph G = (V,E)
associated with a node type mapping φ: V → A and a
edge type mapping ψ: E → R, where V and E denote
the node set and edge set, A and R are the node type set
and edge type set, with the constrain of |A|+ |R| > 2.

Definition 3.2. Heterogeneous Temporal Graph.
A heterogeneous temporal graph is defined as a graph
G =

(
{Gt}Tt=1, E

′) = (V, E), where T is the number of

timestamps, G(t) is a heterogeneous graph at timestamp
t, E′ describes the temporal relations between Gt and
Gt+1, V =

⋃T
t=1 V

t and E =
⋃T
t=1E

t ∪ E′ denote the
node set and edge set of G, respectively. Figure 1 shows
one example from OGBN-MAG dataset.

HG(1)

…

HG(2) HG(T)

Author
Paper
Institution
Field of study

Figure 1: An graphical illustration of HTG.

Definition 3.3. Relation-r-based Neighbors.
Given a relation type r ∈ R, a node v at timestamp t,
its relation-r-based neighbors at timestamp t is defined
as N t

r (v) = {u|(u, v) ∈ Et, ψ(u, v) = r}.

Definition 3.4. Heterogeneous Temporal Graph
Representation Learning. Given a HTG G =(
{Gt}Tt=1, E

′) = (V , E) consisting of T timestamps, the
task of HTG representation learning is to learn a gen-
eral d-dimensional node representation hv ∈ Rd for each
node v ∈ V with d� |V|. The node representations are
able to capture both spatial heterogeneity and temporal
dependencies of the HTG, and could be applied in vari-
ous downstream tasks at timestamp T + 1.

4 Methodology

4.1 Overview The framework of HTGNN is shown
in Figure 2. HTGNN takes a HTG as input and
yields node representations as outputs for downstream
tasks (see Figure 2 (a)). It is composed of multi-
ple heterogeneous temporal aggregation layers. Each
layer is equipped with a hierarchical aggregation mech-
anism (see Figure 2 (b)), including intra-relation, inter-
relation, and across-time aggregation modules. Intra-
relation and inter-relation aggregation modules are per-
formed purely on each graph slice, aiming to depict the

spatial heterogeneity, while the across-time aggregation
module is conducted across different graph slices, aiming
to capture the temporal dependencies. In one aggrega-
tion layer, each node successively receives messages from
its spatial neighbors of the same relation type and differ-
ent relation types; the nodes then start gathering mes-
sages from their temporal neighbors across graph slices.
After this, another layer follows with node embeddings
obtained from the previous layer. With increased model
depth, the messages are iteratively propagated in spa-
tial and temporal domains. Such design makes HTGNN
be a holistic framework jointly modeling heterogeneous
spatial dependencies and temporal dimensions.

4.2 Intra-relation Aggregation In a heteroge-
neous graph, each node type may have its own feature
space. Take OGBN-MAG dataset as an example where
only nodes with paper type are associated with input
features. Metapath2vec [30] is a common approach to
initiate features for those nodes without input features.
Apparently, the feature spaces for paper type and other
types are different as the former reflects the text con-
tent information while the latter represents the graph
structural information. To handle this problem, before
feeding node features into multiple heterogeneous tem-
poral aggregation layers, we first adopt a type-specific
projection on each node to map its distinct feature vec-
tor into a same feature space. Mathematically, given a
node v with node type φ(v) at timestamp t, we have:

(4.1) ht,0v = Wφ(v) · xtv,

where xtv ∈ Rd′ and ht,0v ∈ Rd are d′-dimensional raw
feature vector and d-dimensional projected embedding
of node v, respectively; Wφ(v) ∈ Rd×d′ is the trainable
type-specific transformation matrix.

The intra-relation aggregation module is performed
separately on each relation type in each graph slice. It
takes the node embeddings of last layer as inputs and
outputs multiple relation embeddings for each node at
each timestamp. Given a target node v at timestamp t
and a relation type r ∈ R, the intra-relation aggregation
can be described as:

(4.2) ht,lv,r = AGGintra

({
ht,l−1
u |u ∈ N t

r (v)
}

; Θintra

)
,

where N t
r (v) represents relation-r-based neighbors of

node v at timestamp t, ht,l−1
u is node u’s embedding

at timestamp t in layer l − 1, ht,lv,r denotes the relation
r’s embedding with respect to node v at timestamp
t in layer l, and Θintra is the trainable parameters
and is non-shareable for relation type, timestamp and
aggregation layer. Noted that when l = 1, AGGintra
takes the outputs of type-specific projection module
introduced above as inputs.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

Attn

Proj

Proj

So
ftm

ax

(c) Intra-relation Aggregation (d) Inter-relation Aggregation

So
ftm

ax

Proj

Attn

.

.

.

Nodes of same relation

Proj

Proj

(e) Across-time Aggregation

T-1

T

1

2

Time
encoding

FC-V

FC-K

FC-Q

So
ftm

ax

Attn

.
.

…

.

Concatenate
Multiply

Sum

Attention
vecor

Tanh
Mean

Proj

Dot product

Projection

(b) Aggregation Layer

× L

A
cr

os
s-

tim
e

HG(1)

…

HG(2)

HG(T)

…… …
(a) Framework

Heterogeneous Temporal
Aggregation Layer

Downstream Tasks

HG(1)

…

HG(2) HG(T)

…

Intra-relation Inter-relation

Intra-relation Inter-relation

Intra-relation Inter-relation

Proj

Figure 2: The overall framework of heterogeneous temporal graph neural network.

For a target node, its different neighbors, even
within the same type of relation, would also contribute
differently in the learning process, and thus we adopt
the self-attention mechanism to assign each neighbor a
weight reflecting its importance. Formally, given a tar-
get node v and one of its relation-r-based neighbors at
timestamp t, i.e., u ∈ N t

r (v), their attention coefficient
can be computed by:

(4.3) et,l(u,v),r = σ
([

at,lr
]> ·[Wt,l

r ·ht,l−1
u ‖Wt,l

r ·ht,l−1
v

])
,

where σ(·) is LeakyReLU, Wt,l
r ∈ Rd×d and at,lr ∈

R2d are trainable transformation matrix and attention
vector, respectively, and ‖ concatenates the vector.
We then normalize the attention coefficient across all
relation-r-based neighbors via softmax function:

(4.4) αt,l(u,v),r =
exp

(
et,l(u,v),r

)
∑
u′∈N t

r (v) exp
(
et,l(u′,v),r

) .
After obtaining the normalized attention values of node
v’s neighbors, we perform weighted combination to
compute relation r’s embedding with respect to v:

(4.5) ht,lv,r = σ

(∑
u∈N t

r (v)

[
αt,l(u,v),r

]
·
[
Wt,l

r · ht,l−1
u

])
.

Figure 2 (c) illustrates the implementation of intra-
relation aggregation module. Without loss of general-
ity, multi-head attention mechanism can be employed.
Specifically, K independent attention heads are exe-
cuted in a parallel fashion, and then their representa-

tions are concatenated, as following:
(4.6)

ht,lv,r =
K

‖
k=1

σ

(∑
u∈N t

r (v)

[
αt,l(u,v),r

]k · [Wt,l
r · ht,l−1

u

]k)
,

where
[
αt,l(u,v),r

]k
denotes the attention value at k-th

attention head.

4.3 Inter-relation Aggregation Through intra-
relation aggregation, the target node would gather mul-
tiple relation embeddings. Based on this, the inter-
relation aggregation module aims to learn a spatial em-
bedding for the target node summarizing the informa-
tion of its spatial neighbors over all relation types. For-
mally, this process is denoted as:

(4.7) ht,lv,R = AGGinter

({
ht,lv,r|r ∈ R(v)

}
; Θinter

)
,

where R(v) denotes the set of relations connected to
node v, ht,lv,r is relation r’s embedding with respect to

node v from previous module, ht,lv,R denotes the spatial
embedding of node v that will be learned in this module,
Θinter is the trainable parameters and is non-shareable
for timestamp and aggregation layer.

A straightforward way to implement AGGinter(·) is
treating each relation embedding equally by conduct-
ing element-wise sum/mean operation or concatenating
them followed by a linear transformation. However,
each relation type preserves a unique semantic mean-
ing and thus should not be treated identically. There-
fore, we manage to learn a importance weight for each
relation type and explore the attention mechanism for
implementation. Specifically, for relation type r, we use
a three-step process to learn its importance: (1) we first

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

retrieve its embeddings of all related nodes and feed
them into a non-linear transformation; (2) we gener-
ate its summarized embedding by averaging the trans-
formed relation embeddings; (3) finally, we calculate
its attention coefficient by measuring the similarity be-
tween its summarized embedding with a relation atten-
tion vector. This learning process is formalized as:

(4.8) et,lr =
[
ct,lR
]> · 1

|V tr |
∑
v′∈V t

r

[
tanh

(
Wt,l

R ·h
t,l
v′,r+b

)]
,

where V tr denotes the set of nodes connected by relation

r at timestamp t, b ∈ Rd is the bias vector, Wt,l
R ∈

Rd×d and ct,lR ∈ Rd are trainable transformation matrix
and attention vector, respectively. The normalized
importance of r with regard to v is computed as:

(4.9) βt,lv,r =
exp

(
et,lr

)
∑
r′∈R(v) exp

(
et,lr′
) .

With the importance of different relations, we generate
the spatial embedding for v via linear combination:

(4.10) ht,lv,R =
∑

r∈R(v)

[
βt,lv,r

]
·
[
ht,lv,r

]
.

An intuitive explanation is shown in Figure 2 (d). We
could also extend it to multi-head mechanism.

4.4 Across-time Aggregation Intra-relation and
inter-relation aggregation modules that aggregate in-
formation from the target node’s spatial neighbors are
performed purely on each graph slice. Across-time ag-
gregation aims to capture the interactions among the
target node’s temporal neighbors. We define the tem-
poral neighbors as the same nodes in different graph
slices (including itself). This module takes in the spa-
tial embeddings of the target node’s temporal neighbors
and outputs a spatial-temporal embedding for this tar-
get node. This process is formalized as follow:
(4.11)

ht,lv,ST = AGGacross

({
ht

′,l
v,R|1 ≤ t

′ ≤ T
}

; Θacross

)
,

where ht
′,l
v,R is the spatial embedding of node v’s tempo-

ral neighbor at timestamp t′ in layer l, ht,lv,ST is node v’s
spatial-temporal embedding at timestamp t in layer l,
Θacross is the trainable parameters and is non-shareable
for node type and aggregation layer.

As the transformer [29] has shown great perfor-
mance in natural language processing domain, we ex-
plore its attention mechanism to model our across-time
aggregation process. Before calculating attentions for

different timestamps, we define a time encoding func-
tion PE(·) for ht,lv,R to incorporate time-related factors:

(4.12) PE
(
ht,lv,R

)
= ‖di=1

(
ht,lv,R(i) + p(t, i)

)
,

where i is the index of each element and p(·) is a
frequency encoding function that characterizes a time-
dependent sinusoid, where p(t, i) = sin(t/100002i/d) if
i is even, or cos(t/100002i/d) if odd. By feeding the
embeddings at different timestamps into this function,
they become discriminative with regard to time. We
then transform the target node’s spatial embedding into
Query vector, its temporal neighbor’s spatial embedding
into Key vector, and calculate their dot product as the
attention coefficient to measure the importance of this
temporal neighbor. Accordingly, we have:

(4.13)
qt,lv = Wl

φ(v),q · PE
(
ht,lv,R

)
,

kt
′,l
v = Wl

φ(v),k · PE
(
ht

′,l
v,R

)
,

where Wl
φ(v),q,W

l
φ(v),k ∈ Rd×d denote the trainable

transformation matrices for query, and key, respectively.
The normalized attention value is then calculated by:

(4.14) γt
′,l
v =

exp
([

qt,lv
]> · [kt′,lv

])
∑T
t′′=1 exp

([
qt,lv
]> · [kt′′,lv

]) .
Finally, node v’s spatial-temporal embedding is com-
puted via a linear combination of its temporal neigh-
bors’ transformed embeddings and the calculated at-
tention values, formulated as:

(4.15)

vt
′,l
v = Wl

φ(v),v · PE
(
ht

′,l
v,R

)
,

ht,lv,ST = σ
(T∑
t′=1

[
γt

′,l
v

]
·
[
vt

′,l
v

])
.

A graphical explanation of across-time aggregation is
shown in Figure 2 (e). Similarly, multi-head attention
mechanism could also be applied in this module.

Using the hierarchical aggregation mechanism
above, we can obtain the spatial-temporal embedding
for each node. Despite this, the feature vector of node
itself also plays an essential role in learning its repre-
sentation. Instead of directly summing them, we design
a gate mechanism to control how much information the
node and its neighbors should contribute. Given the
node feature vector at timestamp t in layer l−1 and its
spatial-temporal embedding at the same timestamp in
layer l, their combination is formulated as:

(4.16) ht,lv = δφ(v)·
[
ht,lv,ST

]
+(1−δφ(v))·

[
Wφ(v)·ht,l−1

v

]
,

where δφ(v) ∈ R1 and Wφ(v) ∈ Rd×d are the trainable
weight and transformation matrix, respectively.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

Table 1: Statistics of datasets.
Dataset Graph Time Span Node Relation Feature Data Split

OGBN-MAG
Graph: 10

Granularity: year
2010-2019

Author: 17,764
Paper: 282,039
Field: 34,601

Institution: 2,276

Author-Paper: 2,061,677
Paper-Paper:2,377,564
Paper-Field: 289,376

Author-Institution: 40,307

Paper: 128
Author: 128

Institution: 128
Field: 128

Training: 8
Validation: 1

Testing: 1

COVID-19
Graph: 304

Granularity: day
05/01/2020-
02/28/2021

State: 54
County: 3223

State-State: 269
State-County: 3,141

County-County: 22,176

State: 1
County: 1

Training: 244
Validation: 30

Testing: 30

4.5 Learning Algorithm By stacking L heteroge-
neous temporal aggregation layers, we could derive the
embedding for each node at each timestamp, denoted
as ht,Lv . We then simply sum the node embedding of

all timestamps as its final embedding: hv =
∑T
t=1 ht,Lv .

HTGNN could be trained in an end-to-end manner with
the labeled data at timestamp T + 1, as following:

(4.17) L =
∑
v∈VL

J(yv, ŷv)+λ‖Θ‖22, ŷv = σ(MLP (hv)).

where J(·) measures the loss between ground yv and
the predicted score ŷv, ‖Θ‖22 is the L2-regularizer to
prevent over-fitting. Depending on the goals of different
tasks, J(·) could be set as cross-entropy loss for node
classification and link prediction problems, or mean
absolute error for regression problem.

5 Experiments

In this section, we conduct four sets of experiments to
evaluate the performance of the proposed HTGNN.

5.1 Datasets We construct two HTGs from two dif-
ferent domains with distinct characteristics. OGBN-
MAG dataset, an academic network with dynamically
evolving heterogeneous structures, is used for link pre-
diction task. COVID-19 dataset, an epidemiological
network with constantly changing node features, is used
for node regression task.
OGBN-MAG: The original OGBN-MAG dataset [1]
is a static heterogeneous network composed of a sub-
set of the Microsoft Academic Graph (MAG). We ex-
tract a HTG from OGBN-MAG consisting of 10 graph
slices spanning from 2010 to 2019. We first select au-
thors that consecutively publish at least one paper ev-
ery year. We further collect these authors’ affiliated
institutions, published papers, and the papers’ field
of studies in each year to construct this HTG. Each
graph slice is a heterogeneous graph that contains four
types of nodes (paper, author, institution, and fields of
study), and four types of relations among them (author-
affiliated with-institution, author-writes-paper, paper-
cites-paper, and paper-has a topic of -field of study).
COVID-19: The COVID-19 data is obtained from

1point3acres1, which contains both state and county
level daily case reports (e.g., confirmed cases, new cases,
deaths, and recovered cases). We use the daily new
COVID-19 cases as the time-series data for each state
and county. We then build a HTG including 304 graph
slices spanning from 05/01/2020 to 02/28/2021. Each
graph slice is also a heterogeneous graph consisting of
two types of nodes (state and county) and three types of
relations between them, i.e., one administrative affilia-
tion relation (state-includes-county) and two geospatial
relations (state-near -state, county-near -county).

In OGBN-MAG, each paper comes with a 128-
dimensional feature vector obtained by averaging the
embeddings of words in its title and abstract. For other
nodes, we run the metapath2vec [30] on each graph slice
to generate the 128-dimensional node embeddings as
their input features. For COVID-19, we attach each
node in each graph slice with its daily new cases as the
node feature. We split each dataset into training, vali-
dation, and testing sets with a ratio of 8:1:1. Statistics
of these datasets are summarized in Table 1.

5.2 Baselines We compare HTGNN with three
classes of state-of-the-art baselines.
Neural Sequence Models: This class of baselines is
capable of capturing temporal dependencies. LSTM [31]
is a type of recurrent neural network that learns order
dependence of sequences. Transformer [29] handles
sequences with global message routing, weighing the
influence of different parts of the input.
Static Graph Models: We consider several static ho-
mogeneous/heterogeneous GNNs that depict spatial de-
pendencies. GCN [7] and GAT [8] work on homogeneous
graphs, where the neighbor information is aggregated
through a mean function and a self-attention mecha-
nism, respectively. For the heterogeneous GNNs, we
choose RGCN [21] and HGT [10] that do not rely on
metapaths. RGCN considers specialized transformation
matrices for different types of relations. HGT applies
the Transformer architecture to learn the mutual atten-
tion for each meta relation. In the experiment, we treat
HGT as a static heterogeneous GNN as the relative tem-
poral encoding is not applicable for HTGs.

1https://coronavirus.1point3acres.com/en

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

Table 2: Experimental results of different methods on OGBN-MAG (%) and COVID-19 datasets.

Dataset Metric
Sequence Model Static Graph Model Dynamic Graph Model Ours
LSTM TRFM GCN GAT RGCN HGT CoGNN DySAT HDGAN DyHATR HTGNN

OGBN-MAG
AUC

Mean 81.37 82.89 78.81 80.23 80.34 85.30 85.87 86.36 88.88 89.49 91.01
SD 0.42 0.36 1.53 2.07 2.21 1.20 1.52 0.24 0.73 0.65 0.77

AP
Mean 78.56 79.81 76.46 77.58 78.11 82.68 83.11 83.83 86.18 86.24 89.18
SD 0.29 0.25 1.95 1.74 1.65 1.20 0.92 0.29 0.82 0.91 1.24

COVID-19
MAE

Mean 720 691 846 821 833 805 653 672 656 643 555
SD 115 54 101 91 95 88 45 74 66 36 34

RMSE
Mean 1504 1458 1674 1612 1640 1598 1298 1373 1303 1282 1136
SD 258 182 204 211 198 200 60 96 81 59 65

Dynamic Graph Models: We select one spatial-
temporal GNN, one dynamic homogeneous GNN, and
two dynamic heterogeneous GNNs as baselines. CoGNN
[6] applies a multilayer perceptron to process time-series
node features and uses GCN [7] with skip connections
for spatial information aggregation. DySAT [12] em-
ploys self-attention to aggregate structural neighbor-
hood and temporal dynamics for node representation
learning. HDGAN [28] combines heterogeneous atten-
tion and Hawkes process to model graph heterogeneity
and dynamics. We replace the heterogeneous attention
module with HGT [10] to avoid incorporating metap-
aths. DyHATR [15] uses hierarchical attention to learn
heterogeneous information and incorporates RNNs with
temporal attention to capture temporal dependencies.

5.3 Implementation Details For those models de-
signed for homogeneous graphs, we ignore the graph
heterogeneity and directly feed the whole graph into
the learning algorithms. We employ Adam optimizer
with learning rate set to 5e-3, and weight decay set
to 5e-4. For other parameters, we set dropout rate to
0.2, GNN layer to 2, hidden embedding dimension to
32 for OGBN-MAG and 8 for COVID-19, respectively;
and we also use ReLU as the activation function. We
train all the models with a fixed 500 epochs and use an
early stopping strategy with a patience of 50. All mod-
els are trained for five times, and the mean and stan-
dard deviation of test performance are reported. All
baselines and the proposed HTGNN are implemented
with Python 3.7.10, PyTorch 1.8.1 and Deep Graph Li-
brary (DGL) 0.6.0. Experiments are conducted on a
machine equipped with i9-9900K processor, two RTX
2080Ti graphic cards, and 64 GB of RAM.

5.4 Link Prediction We perform link prediction on
OGBN-MAG dataset to evaluate different methods.
We split the dataset into three sets with a ratio of
8:1:1. Specifically, the graphs of 2010-2017 are used
for training, the graph of 2018 for validation, and the
graph of 2019 for testing. We frame our task to new
co-author link prediction. The new co-author relation
is defined as the co-author link that exists in year T + 1

but not in year T . We randomly select 10% new co-
author links as positive samples. Following the standard
manner of learning-based link prediction, we randomly
sample the same number of nonexistent co-author links
as negative samples. We set the time window size to
3, which means, to predict the co-author relation in
next year, we consider the HTG of the past three years.
Note that, for static graph models without considering
temporal dependency, we simply set the time window to
1. For a pair of authors, after obtaining the embeddings
via HTGNN, we feed their concatenation into Eq. (4.17)
for training with the cross-entropy loss. Similar to
[32, 33], we adopt the widely used AUC score and AP
score (Average Precision) to measure the co-author link
prediction performance.

The experimental results with mean performance
and their standard deviations are reported in Table
2. We have the following conclusions by analyzing the
results: (1) Both sequence and static graph models
could achieve satisfactory results, which indicates that
the temporal and spatial dependencies depicted by
these two types of methods contribute to the co-author
link prediction problem. (2) Dynamic graph models
improve the performance by taking the information in
both spatial and temporal domains into consideration.
(3) GNNs designed for heterogeneous graphs perform
better than homogeneous GNNs, which demonstrates
the advantage of incorporating graph heterogeneity.
(4) Our proposed HTGNN that could jointly model
the heterogeneous spatial dependencies and temporal
dimensions consistently outperforms all baselines.

5.5 Node Regression The node regression task is
conducted on COVID-19 dataset. We aim to perform
state-level daily new case forecasting. We also split the
dataset into training, validation, and testing sets with
a ratio of 8:1:1. Specifically, 05/01/2020-12/30/2020
are used for training, 12/31/2020-01/29/2021 for vali-
dation, and 01/30/2021-02/28/2021 for testing. In this
task, we set the time window to 7 (using the past one-
week historical data for forecasting). Similarly, we set
it to 1 for static graph models. As suggested in [11, 5],
MAE (Mean Absolute Errors) and RMSE (Root Mean

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

Squared Errors) are adopted to measure the perfor-
mance. We report the average MAE and RMSE of 54
states in the US. The experimental results with mean
and standard deviation reported are demonstrated in
Table 2. Besides some similar conclusions drawn from
the link prediction task, we notice that sequence mod-
els yield better performances than static graph mod-
els. This phenomenon indicates that the temporal do-
main contributes more to the COVID-19 forecasting
task compared to the spatial domain. This is because
the graph structures remain unchanged in this case;
however, the node features (i.e., daily new cases) have
a remarkable change over time.

5.6 Ablation Study In HTGNN, we propose to
model heterogeneous spatial dependencies and temporal
dimensions jointly. To evaluate this design, we estab-
lish two HTGNN variants for comparison that handle
these two types of dependencies serially. HTGNNST

processes spatial dependencies first and temporal de-
pendencies later by first performing multi-layer intra-
and inter-relation aggregations in each graph slice, then
applying across-time aggregation across all graph slices.
HTGNNTS analyzes these two domains in reverse or-
der by first employing across-time aggregation on the
temporal domain and then conducting multi-layer spa-
tial aggregation on the last graph slice. Experimen-
tal results shown in Table 3 demonstrate that: (1)
HTGNNST outperforms HTGNNTS on OGBN-MAG
dataset but is less effective on Covid-19 dataset. This
is because HTGNNST emphasizing more on spatial do-
main fits better with OGBN-MAG with dynamically
evolving graph structures. On the contrary, HTGNNTS

paying more attention to the temporal domain is more
suitable for COVID-19 with changing node features. (2)
HTGNN achieves better performance than these two
variants in both datasets, proving that our proposed
holistic model is agnostic to graph characteristics and
delivers superior performance.

We then perform additional ablation studies to eval-
uate the three major components in HTGNN: intra-
relation, inter-relation, and across-time aggregation
modules. Accordingly, we prepare three variants to ex-
amine the effect of each component. HTGNN w/o Intra
replaces the intra-relation aggregation module in each
layer with a mean pooling mechanism. HTGNN w/o
Inter replaces the inter-relation aggregation module in
each layer with a mean pooling mechanism. HTGNN
w/o Across replaces the across-time aggregation mod-
ule in each layer with a mean pooling mechanism. Ex-
perimental results are shown in Figure 3. From Figure
3, we observe that HTGNN equipped with three com-
ponents achieves the best performance, which proves

that each component makes its contribution to the fi-
nal performance. It is also worth noting that HTGNN
w/o Intra and HTGNN w/o Inter work better than HT-
GNN w/o across on COVID-19 dataset but yield worse
results on OGBN-MAG dataset. We owe this to the dis-
tinct characteristics of different datasets. In particular,
for OGBN-MAG, the heterogeneous graph structures
evolve dynamically, increasing the difficulty in captur-
ing spatial dependencies. In contrast, for COVID-19,
the temporal dependencies are relatively harder to cap-
ture as the node features change constantly, while the
graph structures remain unchanged.

Table 3: Evaluation of joint modeling on HTGs.
Dataset OGBN-MAG COVID-19
Metric AUC AP MAE RMSE

HTGNNST 89.35± 0.81 86.62± 0.78 640± 50 1270± 75
HTGNNTS 88.01± 0.71 85.11± 1.04 619± 38 1232± 81

HTGNN 91.01± 0.77 89.18± 1.24 555± 34 1136± 65

HTGNN w/o Intra HTGNN w/o Inter
HTGNN w/o Across HTGNN

HTGNN w/o Intra HTGNN w/o Inter
HTGNN w/o Across HTGNN93

90

87

84

1900

1500

1100

300

700

AUC AP
(a) OGBN-MAG (b) Covid-19

96

MAE RMSE

%

Figure 3: Evaluation of each component in HTGNN.

5.7 Parameter Sensitivity In this section, we in-
vestigate HTGNN’s sensitivity to key hyper-parameters.
Model depth. We vary the model depth (the number
of aggregation layers) from 1 to 5 to examine the model’s
performance on two datasets. The experimental results
with mean and standard deviation reported are shown
in Figure 4 (a)-(b). We can see that with the increase of
model depth, the performance of HTGNN first improves
then starts to decrease gradually. This phenomenon is
attributed to the oversmoothing problem.
Embedding dimension. We vary the embedding di-
mension from 4 to 64 for OGBN-MAG and 2 to 32 for
COVID-19 to investigate its influence. Comparison re-
sults are illustrated in Figure 4 (c)-(d). We observe that
increasing the embedding dimension initially improves
the performance since a larger dimension can preserve
more information. However, when using a too large di-
mension, the model would suffer the overfitting problem,
which results in reduced performance.
Time window size. We validate the effect of time
window size by ranging it from 2 to 6 for OGBN-MAG
and 5 to 13 for COVID-19, respectively. The results are
shown in Figure 4 (e)-(f). We can see that a large time
window size boosts the performance as more historical
information is included. However, further enlarging the
window size yields a fluctuating performance.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

MAE RMSE

(a) Model depth on OGBN-MAG (c) Dimension on OGBN-MAG (e) Time window on OGBN-MAG

AUC AP

2 3 4 5 6
T

%AUC AP

4 8 16 32 64
d

%AUC AP

1 2 3 4 5
L

%
96

90

87

84

93

(b) Model depth on Covid-19 (d) Dimension on Covid-19 (f) Time window on Covid-19

MAE RMSE
19

15

11

3

7

1 2 3 4 5
L

2 4 8 16 32
d

MAE RMSE

5 7 9 11 13
T

×102

96

90

87

84

93

96

90

87

84

93

×102 ×10219

15

11

3

7

19

15

11

3

7

Figure 4: Parameter sensitivity analysis.

6 Conclusion

In this paper, we study the representation learning prob-
lem on heterogeneous temporal graphs (HTGs), a gen-
eral concept for modeling heterogeneous and constantly
evolving graph data. We further propose heterogeneous
temporal graph neural network (HTGNN), a holistic
framework tailored heterogeneity with evolution in time
and space for HTG representation learning. In partic-
ular, HTGNN consists of several heterogeneous tempo-
ral aggregation layers, each of which employs a hierar-
chical aggregation mechanism, including intra-relation,
inter-relation and across-time aggregation modules, to
jointly model heterogeneous spatial dependencies and
temporal dimensions. Extensive experiments are con-
ducted on two built HTGs: OGBN-MAG with dynami-
cally evolving heterogeneous structures, and COVID-19
with constantly changing node features. Promising re-
sults demonstrate the great performance of HTGNN in
comparison with state-of-the-art baselines.

Acknowledgment

This work is partially supported by the NSF under
grants IIS-2107172, IIS-2140785, CNS-1940859, CNS-
1814825, IIS-2027127, IIS-2040144, IIS-1951504 and
OAC-1940855, the NIJ 2018-75-CX-0032.

References

[1] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
and J. Leskovec, “Open graph benchmark: Datasets for ma-
chine learning on graphs,” arXiv preprint arXiv:2005.00687,
2020.

[2] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in WWW, 2019.

[3] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social
network embedding,” TKDE, vol. 30, no. 12, 2018.

[4] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin,
“Graph neural networks for social recommendation,” in WWW,
2019, pp. 417–426.

[5] S. Deng, S. Wang, H. Rangwala, L. Wang, and Y. Ning, “Cola-
gnn: Cross-location attention based graph neural networks for
long-term ili prediction,” in CIKM, 2020, pp. 245–254.

[6] A. Kapoor, X. Ben, L. Liu, B. Perozzi, M. Barnes,
M. Blais, and S. O’Banion, “Examining covid-19 forecasting
using spatio-temporal graph neural networks,” arXiv preprint
arXiv:2007.03113, 2020.

[7] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[9] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: metapath
aggregated graph neural network for heterogeneous graph em-
bedding,” in WWW, 2020, pp. 2331–2341.

[10] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph
transformer,” in WWW, 2020, pp. 2704–2710.

[11] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolu-
tional networks: A deep learning framework for traffic forecast-
ing,” arXiv preprint arXiv:1709.04875, 2017.

[12] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat:
Deep neural representation learning on dynamic graphs via self-
attention networks,” in WSDM, 2020, pp. 519–527.

[13] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh,
and S. Kim, “Continuous-time dynamic network embeddings,”
in WWW, 2018, pp. 969–976.

[14] Y. Yin, L.-X. Ji, J.-P. Zhang, and Y.-L. Pei, “Dhne: Network
representation learning method for dynamic heterogeneous net-
works,” IEEE Access, vol. 7, pp. 134 782–134 792, 2019.

[15] H. Xue, L. Yang, W. Jiang, Y. Wei, Y. Hu, and Y. Lin,
“Modeling dynamic heterogeneous network for link prediction
using hierarchical attention with temporal rnn,” arXiv preprint
arXiv:2004.01024, 2020.

[16] W. Luo, H. Zhang, X. Yang, L. Bo, X. Yang, Z. Li, X. Qie,
and J. Ye, “Dynamic heterogeneous graph neural network for
real-time event prediction,” in KDD, 2020, pp. 3213–3223.

[17] Y. Xie, Z. Ou, L. Chen, Y. Liu, K. Xu, C. Yang, and
Z. Zheng, “Learning and updating node embedding on dynamic
heterogeneous information network,” in WSDM, 2021.

[18] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph
wavenet for deep spatial-temporal graph modeling,” arXiv
preprint arXiv:1906.00121, 2019.

[19] H. Hong, Y. Lin, X. Yang, Z. Li, K. Fu, Z. Wang, X. Qie, and
J. Ye, “Heteta: Heterogeneous information network embedding
for estimating time of arrival,” in KDD, 2020, pp. 2444–2454.

[20] L. Yang, Z. Xiao, W. Jiang, Y. Wei, Y. Hu, and H. Wang,
“Dynamic heterogeneous graph embedding using hierarchical
attentions,” in ECIR, 2020, pp. 425–432.

[21] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg,
I. Titov, and M. Welling, “Modeling relational data with graph
convolutional networks,” in ESWC, 2018, pp. 593–607.

[22] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla,
“Heterogeneous graph neural network,” in KDD, 2019.

[23] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song,
“Heterogeneous graph neural networks for malicious account
detection,” in CIKM, 2018, pp. 2077–2085.

[24] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan,
“Inductive representation learning on temporal graphs,” arXiv
preprint arXiv:2002.07962, 2020.

[25] X. Wang, Y. Lu, C. Shi, R. Wang, P. Cui, and S. Mou,
“Dynamic heterogeneous information network embedding with
meta-path based proximity,” TKDE, 2020.

[26] H. Peng, R. Yang, Z. Wang, J. Li, L. He, P. Yu, A. Zomaya, and
R. Ranjan, “Lime: Low-cost incremental learning for dynamic
heterogeneous information networks,” IEEE Transactions on
Computers, 2021.

[27] Q. Li, Y. Shang, X. Qiao, and W. Dai, “Heterogeneous dynamic
graph attention network,” in ICKG, 2020, pp. 404–411.

[28] Y. Ji, T. Jia, Y. Fang, and C. Shi, “Dynamic heteroge-
neous graph embedding via heterogeneous hawkes process,” in
ECML-PKDD, 2021, pp. 388–403.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” arXiv preprint arXiv:1706.03762, 2017.

[30] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scal-
able representation learning for heterogeneous networks,” in
KDD, 2017, pp. 135–144.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[32] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” arXiv preprint arXiv:1802.09691, 2018.

[33] H. Fan, F. Zhang, Y. Wei, Z. Li, C. Zou, Y. Gao, and Q. Dai,
“Heterogeneous hypergraph variational autoencoder for link
prediction,” TPAMI, 2021.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.

	Introduction
	Related Work
	Preliminary
	Methodology
	Overview
	Intra-relation Aggregation
	Inter-relation Aggregation
	Across-time Aggregation
	Learning Algorithm

	Experiments
	Datasets
	Baselines
	Implementation Details
	Link Prediction
	Node Regression
	Ablation Study
	Parameter Sensitivity

	Conclusion

