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Abstract

In this paper, we consider a noisy network of nonlinear systems in the sense that each system
is driven by two sources of state-dependent noise: (1) an intrinsic noise that can be generated
by the environment or any internal fluctuations, and (2) a noisy coupling which is generated by
interactions with other systems. Our goal is to understand the e↵ect of noise and coupling on
synchronization behaviors of such networks. First, we assume that all the systems are driven
by a common noise and show how a common noise can be detrimental or beneficial for network
synchronization behavior. Then, we assume that the systems are driven by independent noise
and study network approximate synchronization behavior. We numerically illustrate our results
using the example of coupled Van der Pol oscillators.

Keywords. Noisy networks, stochastic synchronization, approximate synchronization, homoge-
neous networks, heterogeneous networks.

1 Introduction

Coupled nonlinear oscillator models are fundamental in modeling and analyzing the synchroniza-
tion behavior of systems with rhythmic behavior, including systems in ecology, neuroscience, and
engineering [1–7]. Example phenomena that are modeled well by coupled nonlinear oscillators in-
clude biological rhythms [8, 9], neural synchrony [2], locomotion gaits [10, 11], collective motion
in animal groups [12], fish schools [13], cooperative robotic networks [14], power networks [15],
coupled Josephson arrays [16], and sinoatrial pacemakers [17]. These simple models often miss
environmental fluctuations as well as internal and external disturbances. In contrast, a stochastic
dynamics approach provides a significant compromise in terms of keeping modeling complexity
tractable while still capturing important phenomena.

The problem of understanding the influence of stochastic perturbations on the synchronization
behavior in networks of nonlinear systems has received some attention in the literature. The
influence of noise on the synchronization behavior in a large-scale model of the human brain network
is studied in [18] and the authors report that the addition of noise increases the synchronization
of global and local dynamics. Noise-induced synchronization in networks of excitable systems
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is studied in [19], and authors report that for low noise, the solutions remain in the vicinity
of the resting state; for large noise, the solutions are asynchronous; and the medium noise, the
synchronized periodic responses are obtained. Jafarian et al [20] study stochastic stability of
discrete-time phase coupled oscillators and derive su�cient conditions for achieving the phase-
cohesiveness. Meng and Riecke [21] study synchronization in networks of multiple coupled oscillator
networks and show that for strong inhibitory coupling between networks, the rhythms of each
coupled oscillator network synchronize even if the noisy inputs to di↵erent oscillator networks are
completely uncorrelated.

In addition to the intrinsic noise present at each system in the network, the interconnection noise
also plays an important role in synchronization. Experimental studies of cortical areas show
that heterogeneity in the connections plays a critical role in their synchronization behaviors [22].
Synchronization behavior has been studied theoretically in large-scale networks of firing-rate and
Fitzhugh-Nagumo neurons interconnected with stochastic synapses (see [23] and [24]).

In this paper, we consider a broad network of nonlinear systems (e.g., oscillators) that are coupled
through either linear coupling (e.g., gap junction in neuronal populations) or nonlinear coupling
(e.g., sinusoidal coupling in coupled Kuramoto oscillators). In addition, we consider two sources of
nonlinear stochasticity in the network: one a↵ects the systems, which we will refer to as a common
noise (e.g., a common stimulus that drives a population of neurons), and the other perturbs the
connection between the systems (e.g., noisy synaptic coupling). The objective is to explore the
influence of each network element on the synchronization behavior of the network. In particular, we
introduce a synchronization measure that reflects all the network parameters (such as noise intensity
and network connectivity) and show how tuning these parameters would alter the synchronization
status of the network.

There have been some e↵orts to find conditions for synchronization in stochastic networks, see for
example [25–27], where both the coupling and the common noise intensity are linear functions of the
state. There are also some interesting results which guarantee synchronization onset in networks
with no coupling but common noise, [28]. In [25], the authors study noise-induced synchronization
in a network of nonlinear systems which are coupled through deterministic di↵usive coupling. They
assume that each system is driven by a common state-dependent noise, where the intensity of the
noise is a linear function of the state. In [26], the authors consider a network of nonlinear systems
which are coupled through both deterministic and stochastic coupling and characterize the influence
of stochastic coupling on the synchronization behavior. However, this work does not consider any
common or intrinsic noise.

Motivated by coupled Kuramoto oscillators which are connected through nonlinear coupling and
phase equations of coupled noisy oscillators in which the common noise is nonlinear (see e.g.,
[29, 30]), we first extend the results given in [25, 26] to a network of nonlinear systems which
are driven by common noise whose intensity is a nonlinear function of state and are coupled
through nonlinear stochastic and deterministic coupling functions. In this scenario, we rigorously
characterize the conditions of the nonlinear noise intensity and coupling functions such that they
aid synchronization.

We then generalize the results to approximate synchronization for heterogeneous noisy networks,
i.e., networks of nonlinear systems in which the local noise is not the same for each system. The
approximate synchronization behavior is similar to the practical synchronization [31] and quasi-
synchronization [32] behavior studied in the context of heterogeneous deterministic perturbation
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to network of nonlinear systems. Similar to the practical synchronization behavior, we show that
by making the coupling strength strong enough, the steady state behavior of the system can be
driven arbitrarily close to synchronization.

Our main goal is to find conditions that foster synchronization in networks of coupled stochastically
perturbed systems, in which the systems are subject to a common perturbation or perturbations
through their interactions with other systems in the network. Here, we model both stochastic per-
turbations by nonlinear multiplicative (state-dependent) Itô terms. We introduce a synchronization
metric that depends on the intrinsic dynamics of each system, the coupling function and the un-
derlying network topology, the common noise which drives the systems, and the noise which a↵ects
the connections. We will analyze each factor’s conductive or destructive e↵ects on the network’s
synchronization. First, we show that, in general, adding multiplicative state-dependent noise to a
synchronized deterministic network is detrimental to synchronization. The network may synchro-
nize with small common noise but desynchronize with large common multiplicative noise. We then
show that adding multiplicative noise can aid synchronization if a linear function of the state lower
bounds the common multiplicative noise.

Our main contributions are twofold: (1) to generalize the (complete) synchronization conditions in
[25] and [26] to networks with common nonlinear state-dependent noise and skew-symmetric non-
linear coupling functions, which are a generalization of di↵usive coupling functions; and (2) to allow
heterogeneous intrinsic noise and provide conditions that guarantee approximate synchronization.

The remainder of the paper is organized as follows. In Section 2, we study the “complete” synchro-
nization behavior of homogeneous noisy networks where the individuals are driven by a common
noise. We provide conditions that guarantee stochastic synchronization in such networks and intro-
duce a class of homogeneous noisy networks that take advantage of noise to foster synchronization.
In contrast, in Section 3, we study the “approximate” synchronization behavior of heterogeneous
noisy networks where the individuals are driven by independent noises and show how coupling fos-
ters synchronization in these heterogeneous networks. In Section 4, we numerically illustrate the
theoretical results using the example of coupled Van der Pol oscillators. We conclude in Section 5.
All the proofs are given in Section 6.

2 Stochastic synchronization in homogeneous noisy networks

In this section, we consider a network of N coupled identical systems with two sources of state-
dependent noise: (1) an intrinsic noise which is common among all systems and can be generated
by the environment, and (2) a coupling noise which is generated by interactions with other systems.
For i = 1, . . . , N , let the stochastic di↵erential equation (SDE)

d�i = F(�i, t)dt+ �K(�i, t)dW| {z }
homogeneous intrinsic dynamics

+
NX

j=1

cij (✏H(�j ,�i)dt+ �C(�j ,�i)dWij(t))

| {z }
coupling dynamics

(1)

describe the dynamics of system i with state �i 2 Rn. The intrinsic and coupling dynamics of
system i are described as below.

Intrinsic dynamics. The systems are identical and governed by an n�dimensional vector of
nonlinear functions, F . There is a source of noise in (1) which is common among all the systems
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in the network and described by �K(�i, t)dW . The constant � � 0 is the common noise intensity,
K : Rn

⇥ R�0 ! Rn⇥n, and W is an n�dimensional vector of independent standard Wiener
processes. Since the intrinsic dynamics are common among all the systems, we refer to this network
as a homogeneous noisy network.

Coupling dynamics. Denote the underlying network graph by G and assume that it is an
undirected and weighted graph with weight cij , i.e., cij = cji � 0, with cij > 0 if i and j are
connected; and cij = 0 if i and j are not connected. The interaction between system i and another
system, say j, influences the dynamics of i through a deterministic term cij✏H(�j ,�i)dt and a
stochastic term cij�C(�j ,�i)dWij , where H, C : Rn

⇥ Rn
! Rn⇥n, and Wi = (Wi1, . . . ,WiN )> is a

vector of independent standard Wiener processes. The processes W and Wi’s are assumed to be
mutually independent. The constants ✏ � 0 and � � 0 respectively describe the coupling strength
and interaction noise intensity of the overall network while ✏cij and �cij respectively specify the
coupling strength and noise intensity of each connection.

For now, we only assume that F , H, K, and C are nonlinear functions and they are nice enough so
that (1) has a unique solution, for example, they are Lipschitz and satisfy a linear growth condition.
See [33, Section 2.3] for more details. Later in Theorems 1 and 2 below, we will discuss appropriate
conditions of these functions.

In what follows we review definitions of stochastic stability and stochastic synchronization. Sub-
sequently, in Theorem 1, we will provide a su�cient condition that guarantees stochastic syn-
chronization in (1). In the following section, Theorem 2 will discuss more conditions that foster
synchronization in such networks.

Definition 1 (Stochastic stability). Let x(t) be a solution of an SDE. Then,

Moment exponential stability. x(t) is p�th (p > 0) moment exponentially stable if there are a
pair of positive constants C and c and a neighborhood ⌦0 of x(0) such that for any solution y with
y(0) 2 ⌦0

Eky(t)� x(t)kp < C Eky(0)� x(0)kpe�ct
, 8t > 0,

where E denotes the expected value and k · k denotes the Euclidean norm. When p = 2, it is said
to be exponentially stable in mean square.

Almost sure exponential stability. x(t) is almost sure exponentially stable if there is a neigh-
borhood ⌦0 of x(0) such that for any solution y with y(0) 2 ⌦0

lim sup
t!1

1

t
log ky(t)� x(t)k < 0, almost surely (a.s.),

which means P
�
lim supt!1

1
t log ky(t)� x(t)k < 0

 
= 1.

Clearly, the p�th moment exponentially stability means that the solution y tends to x exponentially
fast, and the so called p�th moment Lyapunov exponent of y is negative:

lim sup
t!1

1

t
log ky(t)� x(t)kp < 0.

Also, the left hand side of (1) is called sample Lyapunov exponent of y. In general p�th moment
stability and almost sure exponential stability are not equivalent and additional conditions are
required to deduce one from the other [33, Section 4.4].
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Definition 2 (Stochastic invariance). A set S is called an invariant set for an SDE, if for any
x0 2 S, P {x(t) 2 S, 8t � 0} = 1, where x(t) is a solution of the SDE starting from x0 at t = 0.

Definition 3 (Stochastic synchronization). Let S be the set of states defined by S := {x =
(x1, . . . , xN )> | x1 = · · · = xN}. We say that a network stochastically synchronizes if S is stochas-
tically invariant and for any solution x(t) there exists s(t) 2 S such that x(t) converges to s(t)
exponentially fast, that is

Ekx(t)� s(t)kp < C Ekx(0)� s(0)kpe�ct
, 8t > 0, and some c, C > 0, (2)

or

lim sup
t!1

1

t
log kx(t)� s(t)k < 0, a.s. (3)

Although the systems in (1) can be of any arbitrary dimension, in the following theorems, for the
ease of notation, we assume that the state variables are 1-dimensional, n = 1.

We denote the Laplacian matrix of the underlying network graph G by L[c] (where the subscript
[c] represents the weights cij) and its eigenvalues by 0 = �1,[c]  �2,[c]  · · ·  �N,[c].

Theorem 1 (Stochastic synchronization: exponential stability in mean square). Fix
⌦1 ⇢ R and let ⌦2 := {x� y | x, y 2 ⌦1}. Consider (1) and assume that:

i. there exists a constant c̄F such that for all x, y 2 ⌦1 and t � 0,

(x� y)(F(x, t)� F(y, t))  c̄F (x� y)2; (4)

ii. H : ⌦1 ⇥⌦1 ! R satisfies H(x, y) = �H(y, x) and there exists a constant cH such that for all
x, y 2 ⌦1, cH(x� y)2  (x� y)H(x, y);

iii. there exists a non-negative constant c̄C such that for all x, y 2 ⌦1, |C(x, y)|  c̄C |x� y|; and

iv. there exists a non-negative constant c̄K such that for all x, y 2 ⌦1 and t � 0,

|K(x, t)�K(y, t)|  c̄K|x� y|.

Then for any solution (�1, . . . ,�N )>, there exists a solution on S := {x = (x1, . . . , xN )> | x1 =
· · · = xN}, namely ( (t), . . . , (t))>, where  (t) = 1

N

PN
i=1 �i(t), such that

E
NX

i=1

|�i(t)�  (t)|2 < E
NX

i=1

|�i(0)�  (0)|2e�ct
, 8t > 0,

and

c := �2c̄F + 2✏cH�� 2�2c̄2C

⇣
1�

1

N

⌘
�N,[c2] �

⇣
1�

1

N

⌘
�
2
c̄
2
K. (5)

In (5), if cH > 0 , then � = �2,[c], otherwise, � = �N,[c]. �N,[c2] denotes the largest eigenvalue of
the Laplacian matrix of network graph G with weights c

2
ij.

Therefore, the network stochastically synchronizes (in the sense of (2) with p = 2) when c > 0.
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On the synchronization manifold S := {x = (x1, . . . , xN )> | xi =  }, the dynamics of the network
(1) becomes d = F( , t)dt+�K( , t)dW , in which, a unique solution exists if F and K satisfy the
Lipschitz and growth conditions: 9K1,K2 > 0 such that 8x, y: kF(x)�F(y)k+ kK(x)�K(y)k 

K1kx� yk, and kF(x)k2 + kK(x)k2  K2(1 + kxk
2), where k · k denotes the Euclidean norm.

Condition (i) is a one-sided Lipschitz condition for F (bounded above). Unlike a Lipschitz constant
which must be positive, c̄F could take any values. Although the Lipschitz condition implies one-
sided Lipschitz condition for F with a non-negative c̄F , we assume Condition (i) to allow one-sided
Lipschitz condition with any c̄F . This condition is also called QUAD condition since the left-
hand side of (4) is bounded by a quadratic term. For c̄F < 0, the condition is equivalent to the
vector field F being contractive in L

2 norm. This means that the distance between any two flows
decreases and the flows converge to each other exponentially. For more details see [34]. This is
an easy condition to check. The best one-sided Lipschitz constant for a di↵erential F is supx �x
where �x is the largest eigenvalue of 1

2(DF(x) + DF(x)>). Here, DF is the Jacobian of F , or
simply, the derivative of F when F is scalar. For example, for a Kuramoto oscillator c̄F = 0 and
for a FitzHugh-Nagumo model it is equal to 1.

In Condition (ii), the skew-symmetric condition is a generalization of di↵usive coupling to nonlinear
coupling. This condition guarantees the existence of an invariant synchronization manifold, i.e., the
coupling dynamics vanish on the synchronization manifold, since H(x, x) = 0. Also, for technical
proofs, we assume that H is bounded below by a linear function. Here are three examples of
these types of coupling: 1) A gap junction H(x, y) = x � y with cH = 1; 2) A sinusoidal function
H(x, y) = sin(x� y) defined on ⌦1 = [�⇡/2 ⇡/2)2 with cH = 0 as in coupled Kuramoto oscillators;
and 3) A nonlinear coupling described by H(x, y) = H(x)�H(y), where H is a one-sided Lipschitz
function (bounded below) and cH is the Lipschitz constant of H.

In Condition (iii), we assume a linear upper bound for the stochastic coupling C which ensures that
the coupling vanishes on the synchronization manifold, C(x, x) = 0. Later in Theorem 2, we will
consider a class of coupling functions C which are lower bounded by linear functions and will show
how it helps synchronization.

The Lipschitz condition given in (iv) is necessary for the existence and uniqueness of the solutions
on the synchronization manifold. Note that when c̄K = 0, K becomes constant, i.e., K becomes an
additive noise. So the last term in c becomes zero and therefore it suggests that the additive noise
has no detrimental or beneficial e↵ects on a network synchronization. In Theorem 2 below, we will
consider a class of multiplicative noise which are lower bounded by linear functions and show how
these bounds aid synchronization.

The constant c consists of four terms related to deterministic and stochastic intrinsic and coupling
dynamics, respectively, and the topology of the network graph. The first term in c depends on the
intrinsic dynamics of isolated systems. The second term in c depends on the coupling term, coupling
intensity, and the algebraic connectivity of the underlying graph, � = �2,[c] (in the case of positive
cH). The algebraic connectivity of a graph, which determines how well-connected the graph is, may
increase or decrease when the size of the graph changes. For example, in a line graph, the algebraic
connectivity decreases as N increases while in an all to all graph it increases. In an almost surely
connected Erdös-Réyni graph, the algebraic connectivity increases as N increases [35]. Therefore,
our condition guarantees that large random networks of systems which are connected through e.g.,
di↵usive or sinusoidal coupling have a better chance to synchronize.

The third term in c reflects the stochastic coupling. So similar to the second term, it depends on
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the coupling intensity (�), coupling dynamics (c̄C) and the topology of the underlying graph (the
largest eigenvalue and the number of the nodes). The fourth term in c reflects the intrinsic noise.
Note that both the third and fourth terms are always negative and show that the noise could be
detrimental for synchronization, as this might be intuitively correct. However, this is not always
true. Indeed, noise can be beneficial for network synchronization. For example, if all the individuals
in a network are driven by a common noise, this common noise can act as a driving force to all the
systems and foster synchronization. In Theorem 2, we analytically state this intuitive idea.

In Theorem 1, we showed that if a network synchronizes in the absence of any noise (common noise
or noise induced by the interactions among the nodes in the network), it could also synchronize
in the presence of su�ciently small noise and we found an upper bound for the noise intensities
which guarantee such behavior, i.e., we proved that if the noise intensities are such that c > 0, then
the network preserves its synchronization behavior. However, c > 0 is a su�cient condition for
synchronization, and so, a network may synchronize with a negative c. In the following theorem, we
consider networks with negative c and find a new su�cient condition for synchronization. Indeed,
the next result shows that multiplicative noise terms can be beneficial for networks synchronization,
if they are lower bounded by some linear functions.

Theorem 2 (Noise-induced synchronization). Consider conditions (i-iv) of Theorem 1 and
furthermore assume that

i. C : ⌦1 ⇥⌦1 ! R satisfies C
2(x, y) = C

2(y, x) and there exists a non-negative constant cC such
that for all x, y 2 ⌦1, cC |x� y|  |C(x, y)|; and

ii. there exists a non-negative constant cK such that for all x, y 2 ⌦1 and t � 0,

cK(x� y)2  (x� y)(K(x, t)�K(y, t)).

Let

↵1 = �
c

2
= c̄F � ✏cH�+ �

2
c̄
2
C

⇣
1�

1

N

⌘
�N,[c2] +

1

2

⇣
1�

1

N

⌘
�
2
c̄
2
K, ↵

2
2 = (�cK)

2 +
�
2c2

C
�
2
2,[c]

4N
,

and assume that 0  ↵1 < ↵
2
2. Then for 0 < p < 2(1 �

↵1
↵2
2
)  2 and ↵ := �p[(p2 � 1)↵2

2 + ↵1]

(which is positive), (1) stochastically synchronizes, that is, for any solution (�1, . . . ,�N )>, there
exists a solution on S := {x = (x1, . . . , xN )> | x1 = · · · = xN}, namely ( (t), . . . , (t))>, where
 (t) = 1

N

PN
i=1 �i(t), such that

Eke(t)kp  Eke(0)kp e�↵t
, p�th moment exponential stability

lim sup
t!1

1

t
log ke(t)k  ↵1 � ↵

2
2, almost sure exponential stability

where e = (�1 �  , . . . ,�N �  )> is the corresponding error.

The su�cient condition for stochastic synchronization suggested by Theorem 2 is 0  ↵1 < ↵
2
2.

Since c = �2↵1 < 0, the result of Theorem 2 is a completion to the result of Theorem 1 (where c > 0
implies Stochastic synchronization). Consider a deterministic network which does not synchronize,
i.e., c̄F � ✏cH� � 0. Theorem 2 guarantees that adding a common noise with c̄

2
K

<
2N
N�1c

2
K

and
su�ciently large intensity, aims the network to synchronize (no noisy coupling is considered here).
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Under the conditions of Theorems 1 and 2, p-th moment exponential stability implies almost sure
exponential stability. See [33, Section 4.4, Theorem 4.2].

In summary, Theorems 1 and 2 provide su�cient conditions for stochastic synchronization. Both
theorems are stated for homogeneous noise and guarantee complete synchronization. Strong mul-
tiplicative noise can destroy synchronization in the first theorem, while in the second theorem,
multiplicative noise with a linear lower bound can foster synchronization.

In the following section, we state two theorems similar to Theorems 1 and 2 in the sense of how
noise can be detrimental or beneficial for network synchronization. We relax the homogeneity
condition of intrinsic noise and allow an independent noise to drive the systems. This leads to
approximate synchronization instead of complete synchronization.

3 Approximate synchronization in heterogeneous noisy networks

In this section, we consider (1), where we assume that each system is driven by an independent
noise instead of a common noise, i.e., we consider a network of heterogeneous noisy systems:

d�i = F(�i, t)dt+ �iK(�i, t)dWi| {z }
heterogeneous intrinsic dynamics

+
NX

j=1

cij (✏H(�j ,�i)dt+ �C(�j ,�i)dWij(t))

| {z }
coupling dynamics

. (6)

All the terms in (6) are as defined in (1), except that dWi’s are independent standard Wiener
processes. The goal is to study the synchronization behavior of (6). However, the conditions of the
previous section do not guarantee stochastic synchronization in such heterogeneous networks (see
Example 3 in Section 4). Therefore, in what follows, we provide conditions that the heterogeneous
noisy network given in (6) approximately synchronizes in the sense of the following definition:

Definition 4 (Approximate synchronization). Let S be the set of states defined by S :=
{x = (x1, . . . , xN )> | x1 = · · · = xN}. A stochastic network approximately synchronizes if S is
stochastically invariant and for any solution x(t) there exist s(t) 2 S and ⌘ � 0 such that

Ekx(t)� s(t)kp  ⌘, as t ! 1, (7)

that is, the p�th moment of the error is upper bounded by a constant ⌘.

Theorem 3 (Approximate synchronization in mean square). Assume that the conditions
(i-iv) of Theorem 1 hold. Furthermore, assume that there exists � > 0 such that for any solution
(�1, . . . ,�N )>,  (t) = 1

N

PN
i=1 �i(t) satisfies

Ek (t)k2  �
2
.

Also, assume that K(0, t) is bounded, supt kK(0, t)k = K0. Then for any solution (�1, . . . ,�N )>,

E
NX

i=1

|�i(t)�  (t)|2 

 
E

NX

i=1

|�i(0)�  (0)|2 � ⌘

!
e
�cat + ⌘, 8t > 0, (8)
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where

ca = �2c̄F + 2✏cH�� 2�2c̄2C

✓
1�

1

N

◆
�N,[c2] � 2

⇣
1�

1

N

⌘
c̄
2
K max

i
�
2
i ,

(the subscript “a” in ca stands for approximate synchronization) and

⌘ =
1

ca

⇣
1�

1

N

⌘
(c̄K� +K0)

2
X

i

�
2
i .

Therefore, when ca > 0, the network approximately synchronizes (in the sense of (7) with p = 2).

Note that (8) can be written as

E
NX

i=1

|�i(t)�  (t)|2  E
NX

i=1

|�i(0)�  (0)|2 e�cat +
1� e

�cat

ca
⌘̄, (9)

where ⌘̄ = ca⌘ is a positive constant and hence for any values of ca,
1�e�cat

ca
⌘̄ is always non-negative.

Theorem 3 is a generalization of Theorem 1 when either �dW is replaced by �idW or �idWi. In
this case, roughly speaking, the solutions exponentially fast converge to a tube that surrounds the
synchronization solution instead of converging to the synchronization solution. In Theorem 3,
for equal �is, ca = c, so the rate of convergence to the tube that surrounds the synchronization
solution remains constant.

Next, we generalize Theorem 2 to heterogeneous noisy networks. The goal is to classify the networks
which do not synchronize in the absence of noise, while they approximately synchronize in the
presence of independent noise.

Theorem 4 (Noise-induced expedited approximate synchronization). Consider the condi-
tions of Theorems 1, 2, and 3 where � = 0. Let

�1 = �c̄F + ✏cH��
1

2

⇣
1�

1

N

⌘
c̄
2
K max

i
�
2
i , �

2
2 = min

i
�
2
i
c2
K

2N
.

and assume that 0  �1  �
2
2 . Then for 0 < p < 2(1� �1

�2
2
), any solution (�1, . . . ,�N )> satisfies,

E
 

NX

i=1

|�i(t)�  (t)|2
! p

2



0

@E
 

NX

i=1

|�i(0)�  (0)|2
! p

2

� ⇣

1

A e
��t + ⇣, 8t > 0, (10)

where � = �p

⇣
�1 +

⇣
p
2 � 1

⌘
�
2
2

⌘
> 0, ⇣ = 1

� (l1E(e
>
e)

p
2�1 + l2E(e>e)

p�1
2 + l3E(e>e)

p
2�2), l1 �

0, l2 � 0 and l3  0 are constants.

Consider a deterministic network such that c̄F � ✏cH� < 0. Theorem 4 shows that the desynchro-
nizing e↵ect of adding independent intrinsic noise is mitigated to some extent under appropriate
conditions.

The results in Theorems 3 and 4 carry the flavor of practical synchronization studied in networks
of deterministic nonlinear oscillators [31]. Specifically, from the expression of ⌘ in Theorem 3, one
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can obtain the set of parameters (coupling strength, noise intensity, etc.) that can drive the system
arbitrarily close to synchronization.

In summary, Theorems 3 and 4 provide su�cient condition for stochastic synchronization. Both
theorems are stated for heterogeneous noise and guarantee approximate synchronization. Strong
multiplicative noise can destroy synchronization in the first theorem, while in the second theorem,
multiplicative noise with a linear lower bound can mitigate desynchronization to some extent.

4 Examples

In this section, we illustrate the results of Theorems 1-4 by a network of noisy Van der Pol oscillators
described by

 
dx

(i)
1

dx
(i)
2

!
=

 
x
(i)
1 �

1
3(x

(i)
1 )3 � x

(i)
2

x
(i)
1

!

| {z }
F

dt+ �K(X(i))

 
dW

(i)
1

dW
(i)
2

!

| {z }
dW (i)

, i 2 {1, . . . , N}, (11)

that are coupled through a coupling function H(·) with coupling strength ✏:

dX
(i) = F(X(i))dt+ �K(X(i))dW (i) + ✏

hPn
j=1 cijH(x(j)1 � x

(i)
1 ) 0

i
>

dt, (12)

where the state of oscillator i is denoted by X
(i) = (x(i)1 , x

(i)
2 ), the intrinsic dynamics is given by F ,

the state-dependent noise is given by K with constant noise intensity �. cij ’s are the edge weights
in the interaction graph underlying the network. cij is set to 1 if an edge exists between nodes i and
j; and is set to zero, otherwise. In Examples 1-2, we consider a common noise, i.e., dW (i) = dW ,
for each i, as in Theorems 1-2. In contrast, in Examples 3-4, we consider independent noise as in
Theorems 3-4. In the following examples, the noise terms �K are chosen such that they satisfy the
conditions of Theorems 1-4, respectively, and illustrate the corresponding results. We will illustrate
synchronization among Van der Pol oscillators using the synchronization error defined by

e(t) =
1

N

NX

i=1

0

@

������
X

(i)(t)�
1

N

NX

j=1

X
(j)(t)

������
1

1

A .

In the following, we consider the synchronization error e(t) at t = 200 sec as the steady-state
synchronization error. For the numerical simulations, we compute the steady-state synchronization
error by averaging the steady-state synchronization error for 20 realizations of noise sequence.

Example 1. In this example, we assume a common noise in (11)-(12) and let ✏ = 2. We set
H(x) = x, i.e., the coupling is di↵usive. We select the interaction network as a (fixed) realization
of Erdös-Réyni graph with 10 nodes in which an edge exists between any two distinct pair of nodes
with probability 0.5.

In Figure 1(a), we consider a multiplicative noise K(X(i)) = diag(sin(10x(i)1 ), sin(10x(i)2 )) and show
the steady-state synchronization error as a function of noise intensity �. Observe that the network
synchronizes in the absence of noise, � = 0; it preserves its synchronization as noise increases
slightly and it loses its synchronization as noise becomes large. In this example, c̄F = 1, cH = 1,
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� ⇡ 1, and c̄K = 10. Thus, Theorem 1 guarantees synchronization for � < 0.14. However, as
seen in Figure 1(a), the synchronization is preserved until � ⇡ 1.25, which suggests that while
the su�cient conditions in Theorem 1 capture the qualitative behavior of the system, they are
conservative.

In Figure 1(b), we consider an additive noise K(X(i)) = 1. Observe that the network preserves
its synchronization for all values of �. Here, c̄K = 0 and c > 0 for all values of �. Thus, these
numerical simulations are consistent with Theorem 1.

(a) Multiplicative noise. (b) Additive noise.

Figure 1: Steady-state synchronization error for 10 Van der Pol oscillators coupled through a random graph with
coupling strength ✏ = 2 as described in Equation (12) with H(x) = x. (a) Synchronization error for multiplicative
noise. The system retains synchronization for small noise, while it loses synchronization when the noise intensity
increases (as expected by Theorem 1). (b) The network preserves its synchronization behavior even in the presence
of large additive noise (as expected by Theorem 1, since c̄K = 0). See Example 1.

Example 2. In this example, we select the interaction graph as a line graph with 3 nodes. We
assume a common noise in (11)-(12) and let ✏ = 0 (no edge coupling) and

K(X(i)) =


1+x

(i)
1 +sin(x

(i)
1 /10) 0

0 1+x
(i)
2 +sin(x

(i)
2 /10)

�
. It can be verified that each entry of K(X(i)) satisfies

the assumptions of Theorem 2. Figure 2 shows the steady-state synchronization error as a function
of the noise intensity �. The system does not synchronize in the absence of edge coupling and small
common noise, and synchronization is achieved for large common noise even in the absence of edge
coupling. For this example cK ⇡ 0.9 and c̄K ⇡ 1.1. It can be verified that Theorem 2 requires �
to be at least

p
2 to guarantee synchronization; however, synchronization is achieved at � ⇡ 0.3

suggesting that the conditions on Theorem 2 are conservative.

Figure 2: Noise induced synchronization of three Van
der Pol oscillators as described in Equation (12) with no
edge-coupling (✏ = 0) and common noise K(X(i)) =

1+x
(i)
1 +sin(x

(i)
1 /10) 0

0 1+x
(i)
2 +sin(x

(i)
2 /10)

�
. No synchronization is

achieved when � is small, while synchronization is achieved when
� is large enough. See Example 2.
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Example 3. In this example, we assume heterogeneous noise (independent intrinsic noise) in
(11)-(12). We select the same network and parameters as in Example 1. Figure 3 shows that
the steady-state synchronization error increases with noise intensity �, which is consistent with
Theorem 3.

Figure 3: Synchronization error of van der Pol oscillators de-
scribed in Equation (12) with H(x) = x and heterogeneous noise
of intensity �. The steady-state synchronization error increases
with the noise intensity �. See Example 3.

Example 4. In this example, we assume heterogeneous noise (independent intrinsic noise) in
(11)-(12) and select the same network and parameters as in Example 2. Di↵erently from Example
2, we let ✏ = 0.2 and take H(x) = sin(x). Figure 4 shows asynchrony for small � values. However,
it should be noted that the evolution of the system for longer time (⇡ 300 sec) does lead to synchro-
nization. Approximate synchronization is achieved for moderate values of noise intensity � ⇡ 0.05
and the steady-state synchronization error is reduced. Thus, adding moderate heterogeneous noise
expedites convergence to achieve (approximate) synchronization. Further increase in � results in a
higher value of ⌘ and leads to a larger steady-state synchronization error.

Figure 4: Noise induced expedited approximate synchro-
nization of Van der Pol oscillators with small edge-coupling
(✏ = 0.2) and heterogeneous noise with K(X(i)) =

1+x
(i)
1 +sin(x

(i)
1 /10) 0

0 1+x
(i)
2 +sin(x

(i)
2 /10)

�
as described in Equa-

tion (12). No synchronization at � = 0 improves for approximate
synchronization for moderate values of �. For large �, while ap-
proximate synchronization is achieved, the associated value of ⌘
may be quite large. See Example 4.

5 Discussion

Typically it is assumed that noise plays a destructive role and desynchronizes a network of synchro-
nized oscillators (e.g. [36]). However, it has been observed both experimentally and theoretically
that adding noise not only does not destroy the already synchronized networks but also can aid
synchronization in non-synchronized networks; see [37] and [38] for a review.

In this paper, we studied the synchronization behavior of stochastic networks with nonlinear state-
dependent noise terms described in Equations (1) and (6). These equations represent a broad range
of network dynamics that can model many biological systems. For example, these frameworks cover
the interconnected Kuramoto phase oscillators that model the brain’s neural activity where the
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neural dynamics are subject to noise. The level of a functional connection between two regions
is proportional to synchronization between the oscillators’ phases associated with the two regions
[39]. These frameworks also cover neuronal models such as Hodgkin-Huxley, Morris-Lecar, and
FitzHugh-Nagumo which are connected through gap junctions. As another example, these frame-
works cover coupled bursting models [40, 41] that approximate the dynamics of coupled central
pattern generators (CPGs) [42, 43] which are complex networks of neurons that produce rhythmic
behaviors, such as walking. Synchronization properties and cluster formation of coupled CPGs
explain the generation of various gait patterns in animal locomotion [10, 11].

In Theorems 1 and 3 we studied destructive e↵ects of noise on networks’ synchronization proper-
ties: we identified a class of synchronized networks in which adding any additive noise or weak
multiplicative noise does not ruin (approximate) synchronization while adding strong multiplicative
noise desynchronizes the network. In Theorems 2 and 4, in contrast, we studied constructive e↵ects
of noise on networks’ synchronization properties. In Theorem 2, we identified a class of multiplica-
tive noise that can aid synchronization in desynchronized networks. Such behavior is reported for
example in [18] for a large-scale model of the human brain network. In Theorem 4, we showed
that heterogeneous multiplicative noise with a linear lower bound can mitigate desynchronization
to some extent. The conditions of our theorems are easy to check. The only extra condition that
we imposed to a noise term to foster synchronization was a linear lower bound (compare Theorems
1 and 2 or Theorems 3 and 4).

The ideas discussed in this paper can be further explored in several possible directions. First, we
studied the cases of independent intrinsic noise. An interesting avenue is to explore the case with
partially correlated noise. This is specifically interesting when the network is spatially embedded
and the intrinsic noise is correlated due to the spatial proximity of systems. Another interesting
direction of investigation is to understand the trade-o↵ between the robustness of noise-induced
synchronization and the precision of the oscillator. Specifically, adding common noise can make
synchronization behavior more robust at the cost of the precision in the oscillator timing. Un-
derstanding the class of cost functions that may underlie handling this tradeo↵ can provide rich
insights into biological systems.

6 Proofs of Theorems

Proof of Theorem 1. The proof has three main steps:

Step 1. Introducing a synchronization manifold. Let (�1, . . . ,�N )> be a solution of (1),
 (t) := 1

N

PN
i=1 �i(t) be the average of �i’s, and ei := �i �  be the corresponding error. The
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dynamics of (e1, . . . , eN , ) can be written as:
0

B@
de1
...

deN

1

CA =

0

B@
1� 1

N �
1
N · · · �

1
N

. . .
�

1
N �

1
N · · · 1� 1

N

1

CA

N⇥N

0

B@

0

B@
F(e1 +  , t)

...
F(eN +  , t)

1

CA+ ✏

0

B@
H1(e, )

...
HN (e, )

1

CA

1

CA dt (13a)

+

0

B@
1� 1

N �
1
N · · · �

1
N

. . .
�

1
N �

1
N · · · 1� 1

N

1

CA

N⇥N

0

B@
�K(e1 +  , t)dW

...
�K(eN +  , t)dW

1

CA (13b)

+

0

B@
1� 1

N �
1
N · · · �

1
N

. . .
�

1
N �

1
N · · · 1� 1

N

1

CA

N⇥N

�
C1(e, ) | · · · | CN (e, )

�
0

B@
dW1
...

dWN

1

CA , (13c)

d =
1

N

NX

i=1

(F(ei +  , t) + ✏Hi(e, )) dt+
�

N

NX

i,j=1

cjiC(ej , ei)dWij +
�

N

NX

i=1

K(ei +  , t)dW, (13d)

where in (13a), for i = 1, . . . , N ,

Hi(e, ) =
NX

j=1

cijH(ej +  , ei +  ),

and in (13c), Ci(e, ) is an N ⇥N matrix with its i�th row �(ci1C(e1 +  , ei +  ), . . . , ciNC(eN +  , ei +  )
and its other rows are zero row vectors, and dWi = (dWi1, . . . , dWiN )> is an N�dimensional Wiener
increment. We denote the N ⇥N matrix in (13a)-(13c) by A.

Let e = (e1, . . . , eN )> and y = (e1, . . . , eN , )>, and define V (y, t) = 1
2e

>
e. Note that the set of zeros of V

is
S :=

n
(e1, . . . , eN , , t)> 2 ⌦N

2 ⇥ ⌦1 ⇥ [0,1)
��� e1 = · · · = eN = 0, almost surely

o
.

This set is a candidate for the desired synchronization manifold. In the following two steps we show that if
c > 0, then S is an exponentially stable invariant set for (13a)-(13d) and therefore it is the synchronization
manifold.

Step 2. Invariant property of the synchronization manifold. Note that the Itô derivative of V is
equal to

dV (y, t) = LV (y, t)dt+ Vy(y, t)
>
g(y, t)dW,

where dW is a one dimensional Wiener increment and

LV (y, t) := Vt(y, t)+Vy(y, t)
>
f(y, t) +

1

2
tr
⇥
g
>(y, t)Vyy(y, t)g(y, t)

⇤
. (14)

The (N + 1)�dimensional vectors f(y, t) and g(y, t) are respectively the drift and di↵usion terms of (13a)-
(13d), Vt =

@V
@t = 0, Vy = @V

@y = (e>, 0)>, and Vyy(y, t) is the (N +1)⇥ (N +1) Hessian matrix of V which
is a diagonal matrix with all entries equal to 1 except the last diagonal entry which is equal to 0. The
trace operator is denoted by tr[·]. We show that there exists cL > 0 such that LV  �cLV . Then by [44,
Theorem 1] we conclude that S is an invariant set for (13a)-(13d).
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• Because e1 + · · ·+ eN = 0, e>A = e
>, and e

>

0

B@
F( , t)

...
F( , t)

1

CA = 0. Therefore, the second term of the right

hand side of (14) becomes:

Vy(y, t)
>
f(y, t) = (e>, 0)>f(e, , t)

= (e1, . . . , eN )

8
><

>:

0

B@
F(e1 +  , t)

...
F(eN +  , t)

1

CA�

0

B@
F( , t)

...
F( , t)

1

CA+ ✏

0

B@
H1(e, )

...
HN (e, )

1

CA

9
>=

>;

=
NX

i=1

ei(F(ei +  , t)� F( , t)) + ✏

NX

i=1

eiHi(e, )

The first sum satisfies
PN

i=1 ei(F(ei +  , t)� F( , t))  c̄F

PN
i=1 e

2
i = 2c̄FV (y, t), following condition (i)

and the definition of V . By condition (ii) and using cij = cji, the second sum satisfies

✏

NX

i=1

eiHi(e, ) = ✏

NX

i=1

ei

NX

j=1

cjiH(ej +  , ei +  )

=
✏

2

NX

i=1

NX

j=1

cji(eiH(ej +  , ei +  ) + ejH(ei +  , ej +  ))

= �
✏

2

NX

i=1

NX

j=1

cji(ei � ej)H(ei +  , ej +  ) condition (ii)

< �
✏

2

NX

i=1

NX

j=1

cjicH(ei � ej)
2 condition (ii)

= �✏c
H
e
>
L[c]e.

Since e
>
v1 = 0, where v1 = (1, . . . , 1)> is the eigenvector of L[c] corresponding to �1,[c] = 0, by min-max

theorem, �2,[c]e
>
e  e

>
L[c]e  �N,[c]e

>
e. Therefore, depending on the sign of c

H
, we have:

✏

NX

i=1

eiHi(e, ) < �✏c
H
e
>
L[c]e  �✏c

H
�2,[c]e

>
e = �2✏c

H
�2,[c]V (y, t) for c

H
> 0, or

✏

NX

i=1

eiHi(e, ) < �✏c
H
e
>
L[c]e  �✏c

H
�N,[c]e

>
e = �2✏c

H
�N,[c]V (y, t) for c

H
< 0.

Therefore, Vy(y, t)>f(y, t)  (2c̄F � 2✏c
H
�)V (y, t).

• Because A

0

B@
�K( , t)dW

...
�K( , t)dW

1

CA = 0, (13b) can be replaced by AK(e, , t)dW where

K(e, , t) =
⇣
�(K(e1 +  , t)�K( , t)), . . . ,�(K(eN +  , t)�K( , t))

⌘>
.

A straightforward matrix multiplication implies that the third term of LV satisfies:

1

2
tr
⇥
g
>(y, t)Vyy(y, t)g(y, t)

⇤
=
�
2

2

✓
1�

1

N

◆ NX

i=1

NX

j=1

c
2
ijC

2(ej +  , ei +  ) +
1

2
kAK(e, , t)k2,
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where by condition (iii)

�
2

2

✓
1�

1

N

◆ NX

i=1

NX

j=1

c
2
ijC

2(ej +  , ei +  ) 
�
2

2

✓
1�

1

N

◆
c̄
2
C

NX

i=1

NX

j=1

c
2
ij(ej � ei)

2

= �
2

✓
1�

1

N

◆
c̄
2
C
e
>
L[c2]e

 �
2

✓
1�

1

N

◆
c̄
2
C
�N,[c2]e

>
e

= 2�2
✓
1�

1

N

◆
c̄
2
C
�N,[c2]V (y, t).

Using A
>
A = A and simple multiplication, we can show that K

>
A

>
AK =

⇣
1 �

1
N

⌘
K

>
K. Then by

condition (iv)

1

2
kAK(e, , t)k2=

1

2

⇣
1�

1

N

⌘
kK(e, , t)k2

=
�
2

2

⇣
1�

1

N

⌘ NX

i=1

(K(ei +  , t)�K( , t))2


�
2

2

⇣
1�

1

N

⌘ NX

i=1

c̄
2
K
e
2
i

= �
2
⇣
1�

1

N

⌘
c̄
2
K
V (y, t).

Therefore, LV (y, t)  �cLV (y, t) where cL = c = �2c̄F + 2✏c
H
�� 2�2c̄2

C
(1� 1

N )�N,[c2] �

⇣
1� 1

N

⌘
�
2
c̄
2
K
. If

c > 0 then LV  �cV < 0, and by [44, Theorem 1], S becomes an invariant set for (13a)-(13d). In Step 3
below, we use ELV (y, t)  �cLEV (y, t).

Step 3. Stability of the synchronization manifold. As we discussed in Step 2, the Itô derivative of V
is dV (y, t) = L(V (y, t))dt+ V

>

y g(y, t)dW. By Dynkin’s formula [45, Theorem 7.4.1]:

EV (y(t), t)� EV (y(0), 0) = E
Z t

0
LV (y(⌧), ⌧) d⌧ Dynkin’s formula,

=

Z t

0
ELV (y(⌧), ⌧) d⌧ Fubini’s Theorem,

 �c

Z t

0
EV (y(⌧), ⌧) d⌧ Step 2.

The second equality holds because ELV (y(⌧), ⌧) is a continuous function of ⌧ and hence its integral on [0, t]
is finite. Let h(t) = EV (y(t), t), then for �t > 0

h(t+ �t)� h(t)  �c

Z t+�t

t
h(⌧) d⌧.

Dividing both sides by �t and letting �t ! 0+, we obtain

D
+
h(t)  �ch(t), (15)

where D
+ is the upper Dini derivative of h. Applying comparison lemma, [46, Lemma 3.4]:

h(t)  h(0)e�ct
.
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Hence,

EV (y(t), t)  EV (y(0), 0)e�ct
) Eke(t)k2  Eke(0)k2 e

�ct
,

or equivalently,

E
NX

i=1

|�i(t)�  (t)|2  E
NX

i=1

|�i(0)�  (0)|2 e
�ct

.

If c > 0, then S becomes exponentially stable. Since ei = �i �  = 0 almost surely, by the definition of
stochastic synchronization and Step 2, S becomes a synchronization manifold.

Note that Step 3 can also be followed from [33, Chapter 4, Theorem 4.4]. We provided Step 3, which contains
a di↵erent approach than [33, Chapter 4, Theorem 4.4], for a self-contained proof.

Proof of Theorem 2. To prove Theorem 2, we use the following lemma which is a modified
version of [33, Chapter 4, Corollary 4.6].

Lemma 1. Consider dx = f(x, t)dt+ g(x, t)dW and assume that there exist constants ↵1 and ↵2

such that for any t � 0,

x
>
f(x, t) +

1

2
tr[g>(x, t)g(x, t)]  ↵1x

>
x, and (16)

↵2x
>
x  kx

>
g(x, t)k. (17)

If 0  ↵1 < ↵
2
2, then the trivial solution of dx = f(x, t)dt+g(x, t)dW is p�th moment exponentially

stable for 0 < p < 2(1� ↵1
↵2
2
)  2 and ↵ := �p[(p2 � 1)↵2

2 + ↵1] > 0, i.e., 8t > 0

Ekx(t)kp < Ekx(0)kpe�↵t
.

Under the conditions of Theorems 1 and 2, we apply Lemma 1 to (13a). The left hand side of
(16) is equivalent to L(V (y, t)) which we showed L(V (y, t))  �cV (y, t) = �

c
2e

>
e. Therefore,
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↵1 = �c/2. Straightforward matrix multiplications yield:
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AK(e, , t)|2 + ke

>
A
�
C1(e, ) | · · · | CN (e, )

�
k
2

= |e
>
K(e, , t)|2 + ke

>
�
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4 and e
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2

�

 
(�cK)

2 +
�
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2,[c]
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!
(e>e)2.

The last inequality holds because of Hölder inequality
P

c
2
ij(ei � ej)4 =

P
(cij(ei � ej)2)2 �

1
N

�P
cij(ei � ej)2

�2
. Therefore, ↵2

2 = (�cK)
2 +

�
2c2

C
�
2
2,[c]

4N
. By Lemma 1, for p < 2� 2↵1/↵

2
2,

E
 

NX

i=1

|�i(t)�  (t)|2
!p/2

 E
 

NX

i=1

|�i(0)�  (0)|2
!p/2

e
�↵t

,

where ↵ := �p[(p2 � 1)↵2
2 + ↵1] > 0.

The proof of almost sure exponential stability is straightforward by [33, Chapter 4, Theorem
3.3].

Proof of Theorem 3. The proof is very similar to the proof of Theorem 1, except that (13b)
becomes

A

0

B@
�1K(e1 +  , t)dW1

...
�NK(eN +  , t)dWN

1

CA ,
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or equivalently, AK̂(e, , t)

0

B@
dW1
...

dWN

1

CA, where

K̂(e, , t) := diag
�
�iK(ei +  , t)

�
. (18)

Next, we compute 1
2tr
h
(AK̂)>AK̂

i
. Since A

>
A = A, elementary calculations show that

1

2
tr
h
(AK̂)>AK̂

i
=

1

2

⇣
1�

1

N

⌘ NX

i=1

�
2
i (K(ei +  , t))2 (19a)

=
1

2

⇣
1�

1

N

⌘ NX

i=1

�
2
i (K(ei +  , t)�K( , t) +K( , t))2 (19b)



⇣
1�

1

N

⌘⇣ NX

i=1

�
2
i (K(ei +  , t)�K( , t))2 +

NX

i=1

�
2
iK( , t)2

⌘
. (19c)

(19c) holds by elementary inequality 1
2(a+ b)2  a

2 + b
2. The first term of (19c) satisfies:

⇣
1�

1

N

⌘
E

NX

i=1

�
2
i (K(ei +  , t)�K( , t))2 

⇣
1�

1

N

⌘
E

NX

i=1

�
2
i c̄

2
Ke

2
i

 2
⇣
1�

1

N

⌘
c̄
2
K max

i
�
2
i EV (y, t),

where we use the Lipschitz property of K. The second term of (19c) satisfies:

⇣
1�

1

N

⌘
E

NX

i=1

�
2
iK( , t)2 

⇣
1�

1

N

⌘
E

NX

i=1

�
2
i (K( , t)�K(0, t) +K(0, t))2 (21a)



⇣
1�

1

N

⌘
E

NX

i=1

�
2
i (c̄K| |+K0)

2 (21b)



⇣
1�

1

N

⌘
E

NX

i=1

�
2
i (c̄

2
K| |

2 +K
2
0 + 2c̄KK0| |) (21c)



⇣
1�

1

N

⌘ NX

i=1

�
2
i (c̄K� +K0)

2
, (21d)

where we use Jensen’s inequality (E| |)2  E| |2  �
2. Therefore,

1

2
E tr

h
(AK̂)>AK̂

i
 2
⇣
1�

1

N

⌘
c̄
2
K max

i
�
2
i EV (y, t) +

⇣
1�

1

N

⌘ NX

i=1

�
2
i (c̄K� +K0)

2
.

Following the proof of Theorem 1, ELV (y, t)  �caEV (y, t) + ⌘̄ where

ca = �2c̄F + 2✏cH�� 2�2c̄2C

⇣
1�

1

N

⌘
�N,[c2] � 2

⇣
1�

1

N

⌘
c̄
2
K max

i
�
2
i ,
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and ⌘̄ =
⇣
1� 1

N

⌘PN
i=1 �

2
i (c̄K� +K0)2.

In what follows, we prove that if ELV (y, t)  �caEV (y, t) + ⌘̄, for some constants ca and ⌘̄, then

E
NX

i=1

|�i(t)�  (t)|2 

 
E

NX

i=1

|�i(0)�  (0)|2 �
⌘̄

ca

!
e
�cat +

⌘̄

ca
, 8t > 0,

which is a generalization of Step 3 in the proof of Theorem 1.

Equation (15) from Step 3 of Theorem 1 becomes D
+
h(t)  �cah(t) + ⌘̄. Multiplying both sides

by e
cat, we obtain D

+(ecath(t))  ⌘̄ e
cat. Note that since D

+ is subadditive [47, Appendix I], i.e.,
D

+(f + g)  D
+
f +D

+
g,

D
+

✓
e
cath(t)� e

cat ⌘̄

ca

◆
 D

+(ecath(t)) +D
+

✓
�e

cat ⌘̄

ca

◆

 ⌘̄e
cat � cae

cat ⌘̄

ca
= 0,

which implies that ecath(t)� e
cat ⌘̄

ca
is non-increasing:

e
cath(t)� e

cat ⌘̄

ca
 h(0)�

⌘̄

ca
,

and therefore (8) holds, as desired.

Proof of Theorem 4. The proof follows from a generalization of Lemma 1. Let W (e) = (e>e)
p
2 .

It is easy to verify that

LW = p(e>e)
p
2�1

✓
e
>
f +

1

2
tr[g>g]

◆
+ p

⇣
p

2
� 1
⌘
(e>e)

p
2�2

ke
>
gk

2
. (23)

In what follows, we show that ELW  �� EW + ⇣̄. Then, similar to the argument that we made
at the end of the proof of Theorem 3, we conclude our desired result.

Step 1. In Theorem 1, we showed that e>f  (2c̄F � 2✏cH�)e
>
e. Therefore,

E
h
p(e>e)

p
2�1

e
>
f

i
 p(c̄F � ✏cH�)E(e>e)

p
2 = p(c̄F � ✏cH�)EW. (24)

Step 2. In this step, we show that for some l1 and l2:

p

2
E(e>e)

p
2�1tr[g>g] 

p

2

⇣
1�

1

N

⌘
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2
K max
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�
2
i EW + l1E(e>e)

p
2�1 + l2E(e>e)

p�1
2 ,

where g = AK̂ and K̂ is as defined in (18).
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1
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+ 2
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1

N
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i (K(ei +  , t)�K( , t))2

⌘ 1
2
⇣ NX
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⌘ 1
2
, (25c)
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where we use (19a), expand (ai + bi)2, and apply Hölder inequality
P

i aibi  (
P

i a
2
i )

1
2 (
P

i bi)
1
2 .

The first term of (25b) satisfies:

E(e>e)
p
2�1

NX

i=1

�
2
i (K(ei +  , t)�K( , t))2  E(e>e)
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2
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2
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p
2 ,

where we use the Lipschitz property of K. The second term of (25b) satisfies:
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p
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2
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p
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NX
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2
i (c̄K� +K0)

2
.

We use the fact that e and  are independent and Jensen’s inequality (E| |)2  E| |2  �
2.

Therefore,

l1 =
p

2

⇣
1�

1

N

⌘ NX

i=1

�
2
i (c̄K� +K0)

2
.

Finally, (25c) satisfies:
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Therefore,
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Step 3. In this step, we show that
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for some constant l3.
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where we use e
>
A = e

> in (29a) and the fact that (a+ b)2 �
a2

2 � b
2 in (29c). (29d) follows from

Condition (ii) of Theorem 2 and (21b). (29e) follows using Hölder inequality. Multiplying above
inequality by p

�p
2 � 1

�
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p
2�2 and taking expectation
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where �22 = mini �2i
c2K
2N and l3 = �p

�p
2 � 1

�PN
i=1 �

2
i (c̄K� +K0)2 follows from (21d).

Combining Step1-Step3, we obtain:

ELW  ��EW + ⇣̄,

where

� = �p

✓
c̄F � ✏cH�+

1

2

⇣
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and ⇣̄ = l1E(e>e)
p
2�1 + l2E(e>e)

p�1
2 + l3E(e>e)

p
2�2

.

Since ⇣̄ comprises exponents of e>e that are smaller than p/2, for su�ciently large EW , the ��EW
term will dominate ⇣̄, which makes ELW non-positive. Thus, EW and ⇣̄ will remain bounded.

The remainder of the proof follows similar to Theorem 3 with h(t) = EW .
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