
Reducing Collision Checking for Sampling-Based

Motion Planning Using Graph Neural Networks

Chenning Yu
Computer Science and Engineering

UC San Diego
chy010@ucsd.edu

Sicun Gao
Computer Science and Engineering

UC San Diego
sicung@ucsd.edu

Abstract

Sampling-based motion planning is a popular approach in robotics for finding
paths in continuous configuration spaces. Checking collision with obstacles is the
major computational bottleneck in this process. We propose new learning-based
methods for reducing collision checking to accelerate motion planning by training
graph neural networks (GNNs) that perform path exploration and path smoothing.
Given random geometric graphs (RGGs) generated from batch sampling, the path
exploration component iteratively predicts collision-free edges to prioritize their
exploration. The path smoothing component then optimizes paths obtained from
the exploration stage. The methods benefit from the ability of GNNs of capturing
geometric patterns from RGGs through batch sampling and generalize better to
unseen environments. Experimental results show that the learned components can
significantly reduce collision checking and improve overall planning efficiency in
challenging high-dimensional motion planning tasks.

1 Introduction

Sampling-based planning is a popular approach to high-dimensional continuous motion planning in
robotics [32, 11, 27, 23, 16, 47, 31]. The idea is to iteratively sample configurations of the robots
and construct one or multiple exploration trees to probe the free space, such that the start and goal
states are eventually connected by some collision-free path through the sampled states, ideally with
path cost minimized. This motion planning problem is hard, theoretically PSPACE-complete [42],
and existing algorithms are challenged when planning motions of robots with a few degrees of
freedom [30, 12, 1, 35, 7, 12]. In particular, the planning algorithms need to repeatedly check whether
an edge connecting two sample states is feasible, i.e., that no state along the edge collides with any
obstacle. This collision checking operation is the major computational bottleneck in the planning
process and by itself NP-hard in general [24, 5]. For instance, consider the 7D Kuka arm planning
problem in the environment shown in Figure 1. The leading sampling-based planning algorithm
BIT* [16] spends about 28.6 seconds to find a complete motion plan for the robot, in which 20.2s
(70.6% of time) is spent on collision checking. In comparison, it only takes 0.06s (0.2% of time) for
sampling all the probing states needed for constructing random graphs for completing the search.

Learning-based approaches have become popular for accelerating motion planning. Many recent
approaches learn patterns of the configuration spaces to improve the sampling of the probing states,
typically through reinforcement learning or imitation learning [25, 21, 58, 41, 6]. For instance, Ichter
et al. [21] and motion planning networks [41] apply imitation learning on collected demonstrations to
bias the sampling process. The NEXT algorithm [6] provides a state-of-the-art design for embedding
high-dimensional continuous state spaces into low-dimensional representations, while balancing
exploration and exploitation in the sampling process. It has demonstrated clear benefits of using
learning-based components to reduce samples and accelerate planning. However, we believe two

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

[53] extend this approach for nontrivial graph by replacing CNN with GNN. However, the construction
of such graphs requires ground-truth collision status for every edge on the graph at inference time.

It should be noted that other than sampling-based approaches, trajectory optimization [26, 61, 51,
45, 60], and motion primitives [37, 59] are standard choices for more structured problems such
as for autonomous cars and UAVs, while sampling-based methods are important for navigating
high-dimensional cluttered spaces such as for manipulators and rescue robots.

Graph Neural Networks for Motion Planning. Graph neural networks are permutation invariant
to the orders of nodes on graph, which become a natural choice for learning patterns in graph
problems. They have been successfully applied in robotics applications such as decentralized
control [34]. For sampling-based motion planning, Khan et al. [29] utilizes GNN to identify critical
samples. We focus on the different aspect of collision checking with given random geometric
graphs, and can be combined with existing techniques without affecting probabilistic completeness.
More broadly, GNNs have been used for learning patterns in general graph-structured problems,
e.g. graph-based exploration [9, 46], combinatorial optimization [28, 13, 3], neural algorithm
execution [53, 54, 56, 52]. Other than to use GNN for high-dimensional planning, several works
propose to first learn neural metrics, then build explicit graphs upon the learned metric which is used
later to search the path [44, 15, 14, 57]. While sharing similar interests, our work specifically focus
on how to reduce the collision checking steps for sampling-based motion planning.

Informed Sampling for Motion Planning. A main focus in motion planning is on developing
problem-independent heuristic functions for prioritizing the samples or edges to explore. Approaches
include Randomized A* [11], Fast Marching Trees (FMT*) [23], Sampling-based A*(SBA*) [39],
Batch Informed Trees (BIT*) [16]. These methods are orthogonal to our learning-based approach,
which can further exploit the problem distribution and recognize patterns through offline training
to improve efficiency. Recent work in motion planning has made significant progress in reducing
collision checking through batch sampling and incremental search, such as in BIT* [16] and AIT *[47].
The idea is to start with batches of probing random samples in the free space, and focus on reducing
collision checking to edges that are likely on good paths to the goal, which also inspires our work.

3 Preliminaries

Motion Planning. We focus on motion planning in continuous spaces, where the configuration
space is C ⊆ R

n. The configuration space includes all degrees of freedom of a robot (e.g. all joints
of a robotic arm) and is different from the workspace where the robot physically resides in, which is
at most 3-dimensional. For planning problem on a graph G = 〈V,E〉, we denote the start vertex and
goal vertex as vs, vg ∈ C. A path from vs to vg is a finite set of edges π = {ei : (vi, v

′
i)}i∈[0,k] such

that v0 = vs, v′k = vg, and v′i = vi+1 for all i ∈ [0, k − 1]. An environment for a motion planning
problem consists of a set of obstacles Cobs ⊆ C and free space Cfree = C \ Cobs. Note that Cobs is
the projection of 3D objects in the higher-dimensional configuration space, and typically has complex
geometric structures that can not be efficiently represented. A sample state v ∈ C in the configuration
space is free if v ∈ Cfree, i.e., it is not contained in any obstacle. An edge connecting two samples is
free if e ⊆ Cfree. Namely, for every point v on the edge e, v ∈ Cfree. A path π is free if all its edges
are free. A random geometric graph (RGG) is a r-disc or k-nearest-neighbor (k-NN) graph G [17, 55],
where nodes are randomly sampled from the free space Cfree. In this paper we consider the RGG as
a k-NN graph. Given a random geometric graph G and a pair of start and goal configuration (vs, vg),
the goal of agent is to find a free path π from vs to vg. Without loss of generality, we consider the
cost of a path to be the total length over all edges in it.

Graph Neural Networks and Attention. Let G = 〈V,E〉 be a finite graph where each vertex vi
is labeled by data xi ∈ R

n. A graph neural network (GNN) learns the representation hi of node vi by
aggregating the information from its neighbors N (vi). Given fully-connected networks f and g, a

typical GNN encodes the representation h
(k+1)
i of the node vi after k aggregation as:

c
(k)
i = ⊕(k)(

{

f(h
(k)
i , h

(k)
j) | (vi, vj) ∈ E

}

) and h
(k+1)
i = g(h

(k)
i , c

(k)
i) (1)

where h
(1)
i = xi and ⊕ is some permutation-invariant aggregation function on sets, such as max,

mean, or sum. We will also use the attention mechanism when we need to encode a varied number of

3

with collision, and (iii) the special goal vertex. There are also 3 kinds of labels for the smoother: (i)
the vertices on the path, (ii) the vertices in the free space, and (iii) the vertices with collision.

The vertices and the edges are first embedded into a latent space with x ∈ R
|V |×dh , y ∈ R

|E|×dh ,
where dh is the size of the embedding. The embeddings for the GNN explorer and smoother are
different, which will be discussed later in this section. Taking the vertex and edge embedding x, y,
the GNN aggregates the local information for each vertex from the neighbors, by performing the
following operation with 2 two-layer MLPs fx and fy:

xi = g (xi,max{fx(xj − xi, xj , xi, yl) | el : (vi, vj) ∈ E}) , ∀vi ∈ V

yl = max(yl, fy(xj − xi, xj , xi)), ∀el : (vi, vj) ∈ E
(2)

Note that here we use max as the aggregation operator to gather the local geometric information,
due to its empirical robustness to achieve the order invariance [40]. The edge information is also
incorporated by adding yl as the input to fx. The update function g is implemented in two different
ways for the GNN explorer and smoother. Specifically, g equals to the max operator for the GNN
explorer, and g(mi, xi) = fg(mi) + xi as the residual connection for the GNN smoother, where fg
is a two-layer MLP. We choose max operator for the explorer, due to its inductive bias to imitate
the value iteration, as mentioned by Velickovic et al. [53]. The residual connection is applied to the
smoother, since intuitively the residual provides a direction for the improvement of each node on the
path in the latent space, which fits our purpose to generate a shorter path for the smoother.

We also note that Equation 2 directly updates on the x and y and is a homogeneous function similar
to Tang et al. [50], which allows us to self-iterate x and y over multiple loops without introducing
redundant layers. Both the GNN explorer and smoother leverage this property. After several iterations,
with two MLPs fη , fu, NE outputs the priority η = fη(y) for each edge, and NS outputs a potentially
shorter path π′ = {ui, u

′
i}, ui = fu(xi) for vi ∈ π.

Special design for the GNN path explorer. The path explorer uses the embedding of the vertices of
the form x = hx(v, vg, (v−vg)

2, v−vg), where hx is a two-layer MLP with batch normalization [22].
Here we append the L2 distance and the difference to the goal to the vertex embedding, which
serve as heuristics for the GNN to be more informed about which node is more valuable. The
yl is simply computed as yl = hy(vj − vi, vj , vi), where hy is also a two-layer MLP with batch
normalization. Optionally, it is helpful for the explorer to incorporate the configuration of obstacles

O = {o} ∈ R
|{o}|×2n as inputs, when embedding the vertices and edges. Since the obstacles of the

environment has variable numbers, we utilize the attention mechanism here to update the x and y,
named as obstacle encoding, as illustrated in Figure 2. Further details are provided in the Appendix.

Special design for GNN path smoother. The GNN smoother embeds vertices with x = hx(v),
where hx is a two-layer MLP with batch normalization. The yl is computed as yl = hy(vj−vi, vj , vi),
where hy is a two-layer MLP with batch normalization. Each time x and y are updated by Equation 2,
the GNN smoother will output a new smoother path π′ = {(ui, u

′
i)}i∈[0,k] , where ui = fu(xi), ∀vi ∈

π, given an MLP fu. The u0 and u′
k are manually replaced by vs and vg , to satisfy the path constraint.

We assume the π′ has the same number of nodes as π. Since the GNN smoother could gain novel local
geometric information with the changed vertices of the new path, we dynamically update G = 〈V,E〉,
via (i) replacing those nodes labeled as path nodes in V by the nodes on new path, (ii) replacing E by
generating a k-NN graph on the updated V . With the updated graph G, we repeat the above operation.
During training, the GNN smoother outputs π′, after a random number of iterations (between 1 and
10). During evaluation, the GNN smoother outputs π′ after only one loop for each calling.

5 Training the Path Explorer and Smoother

Due to space limitation we provide the pseudocode for all algorithms in the Appendix.

5.1 GNN Explorer NE: Training and Inference

The path explorer constructs a tree through sampled states with the hope of reaching the goal state in
a finite number of steps. We initialize the tree T0 with the start state vs as its root. Every edge eTi

in the tree Ti exists only if eTi
is in the free space Cfree. Given an RGG G = 〈V,E〉, Our goal is

to find a tree containing the goal configuration vg by adding edges from E to the tree, with as few

5

collision checks as possible. We write the edge on frontier of the tree as Ef (T) = {(vi, v
′
i) | vi ∈

VT , v
′
i 6∈ VT }. We denote the set of edges with unknown collision status at time step i as Ei.

Training procedures. Each training problem consists of a set of obstacles O, start vertex vs, goal
vertex vg, we sample a k-NN graph G = 〈V,E〉, where V is the random vertices sampled from the

free space combined with {vs, vg}. The goal is to train NE to predict exploration priority η ∈ R
|E|.

A straightforward way for supervision is to use the Dijkstra’s algorithm to compute the shortest
feasible path from vs to vg, and maximize the corresponding values of η at the edges of this path,
via cross entropy loss or Bayesian ranking [43]. However, it does not provide useful guidance when
the search tree deviates from the ideal optimal path at inference time. Instead, we first explore the
graph using η with i steps, which forms a tree Ti, where i is a random number. The oracle provides
the shortest feasible path πN in this tree and connects one of the nodes on Ti to the goal vertex vg.
We formulate this optimal path as πN = {eNi

: (vNi
, v′Ni

)}i∈[0,k], where vN0
∈ VTi

, v′Nk
= vg . We

train the explorer to imitate this oracle. Namely, the explorer will directly choose eN0
∈ πN as the

next edge to explore, among all possible edges on the frontier of Ti, i.e. Ei ∩ Ef (Ti). We maximize
the ηN0

among the values of {ηi | ei ∈ Ei ∩ Ef (Ti)} using the following cross entropy loss:

LNE
= − log γN0

, where γk =
eηk

∑

ej∈Ei∩Ef (Ti)
eηj

, ∀ek ∈ Ei ∩ Ef (Ti) (3)

Inference procedures. Given the GNN NE , the current explored tree Ti at step i, the RGG
G = 〈V,E〉 including vs and vg , environment configuration O, GNN path explorer aims to maximize
the probability of generating a feasible path by adding ei from Ei to tree Ti as:

ei = argmax
ek∈Ei∩Ef (Ti)

NE(ηk | V,E,O) (4)

where ηk is the output of NE for the edge ek. After ei is proposed by GNN using Equation 4, we
check the collision of ei. If ei is not in collision with the obstacles, we add the edge ei to the tree
Ti, and remove ei from Ei, i.e., ETi+1

= ETi
∪ {ei}, and Ei+1 = Ei \ {ei}. If ei is in collision

with obstacles, we query the path explorer for the next proposed edge using Equation 4, where Ei

is updated as Ei = Ei \ {ei}. The loop terminates when we find a collision-free edge, or when
Ei ∩Ef (Ti) = ∅. When the latter happens, we re-sample another batch of samples, add new samples
to vertices V , re-construct k-NN graph G, re-compute η, and continue to explore the path on this new
graph with the explored nodes and edges.

The exploration GNN only proposes an ordering on the candidate edges, and all possible edges may
still be collision checked in the worst case. Thus, if there exists any complete path in the RGG, the
algorithm always finds it. Therefore, the proposed learning-based component does not affect the
probabilistic completeness of sampling-based planning algorithms [8].

5.2 GNN Path Smoother NS: Training and Inference

The GNN NS for path smoothing takes an RGG and a path π proposed by the explorer, and aims to
produce a shorter path π′. Specifically, the input is a graph G = 〈V,E〉, where V = Vπ ∪ Vf ∪ Vc,
E = Eπ ∪ Efc. Here, Vf and Vc are reused as the same vertices in the GNN explorer, without
introducing extra sampling complexity. Eπ is composed of those pairs of the adjacent vertices on π,
and Efc connects each vertex in Vπ to their k-nearest neighbor in Vf ∪ Vc. Intuitively, aggregating
information from Vf∪Vc can allow GNN to identify local regions that provide promising improvement
on the current path, and avoid those that may yield potential collision.

Training procedures. We train the GNN path smoother NS by imitating a smoothing oracle S
similar to the approach of gradient-informed path smoothing proposed by Heiden et al. [18]. To
prepare the training set, we iteratively perform the following two operations on each training sample
path. Given a feasible path π predicted by NE , the smoothing oracle first tries to move the nodes
on the path π with perturbation within range ǫ. If the new path πM is feasible and has cost less
than π, then S will continue to smooth on πM . Otherwise, S will continue smoothing on π via
random perturbation. After several perturbation trials, the oracle further attempts to connect pairs of
nonadjacent nodes directly by a line segment. If such a segment is free of collision, then the original
intermediate nodes will be moved on this linear segment. Further details are in the Appendix.

6

Acknowledgments and Disclosure of Funding

This material is based upon work supported by the United States Air Force and DARPA under
Contract No. FA8750-18-C-0092, AFOSR YIP FA9550-19-1-0041, NSF Career CCF 2047034, and
NSF NRI 1830399.

References

[1] J. Barraquand and J. Latombe. Nonholonomic multibody mobile robots: Controllability and
motion planning in the presence of obstacles. Algorithmica, 10(2-4):121–155, 1993. doi:
10.1007/BF01891837. URL https://doi.org/10.1007/BF01891837.

[2] M. J. Bency, A. H. Qureshi, and M. C. Yip. Neural path planning: Fixed time, near-optimal
path generation via oracle imitation. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2019, Macau, SAR, China, November 3-8, 2019, pages 3965–3972.
IEEE, 2019. doi: 10.1109/IROS40897.2019.8968089. URL https://doi.org/10.1109/
IROS40897.2019.8968089.

[3] X. Bresson and T. Laurent. The transformer network for the traveling salesman problem. CoRR,
abs/2103.03012, 2021. URL https://arxiv.org/abs/2103.03012.

[4] J. Chase Kew, B. Ichter, M. Bandari, T.-W. E. Lee, and A. Faust. Neural collision clearance
estimator for batched motion planning. In S. M. LaValle, M. Lin, T. Ojala, D. Shell, and
J. Yu, editors, Algorithmic Foundations of Robotics XIV, pages 73–89, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-66723-8.

[5] B. Chazelle. Convex partitions of polyhedra: A lower bound and worst-case optimal algorithm.
SIAM J. Comput., 13(3):488–507, 1984. doi: 10.1137/0213031. URL https://doi.org/10.
1137/0213031.

[6] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song. Learning to plan in high dimensions via
neural exploration-exploitation trees. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rJgJDAVKvB.

[7] M. Cherif. Kinodynamic motion planning for all-terrain wheeled vehicles. In 1999 IEEE
International Conference on Robotics and Automation, Marriott Hotel, Renaissance Center,
Detroit, Michigan, USA, May 10-15, 1999, Proceedings, pages 317–322. IEEE Robotics and
Automation Society, 1999. doi: 10.1109/ROBOT.1999.769998. URL https://doi.org/10.
1109/ROBOT.1999.769998.

[8] H. M. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun, and
R. C. Arkin. Principles of robot motion: theory, algorithms, and implementation. MIT press,
2005.

[9] H. Dai, Y. Li, C. Wang, R. Singh, P. Huang, and P. Kohli. Learning transferable graph exploration.
In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 2514–2525, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/afe434653a898da20044041262b3ac74-Abstract.html.

[10] N. Das and M. Yip. Learning-based proxy collision detection for robot motion planning
applications. IEEE Transactions on Robotics, 36(4):1096–1114, 2020.

[11] R. Diankov and J. Kuffner. Randomized statistical path planning. In 2007 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, October 29 - November 2, 2007,
Sheraton Hotel and Marina, San Diego, California, USA, pages 1–6. IEEE, 2007. doi:
10.1109/IROS.2007.4399557. URL https://doi.org/10.1109/IROS.2007.4399557.

10

[12] B. R. Donald, P. G. Xavier, J. F. Canny, and J. H. Reif. Kinodynamic motion planning. J. ACM,
40(5):1048–1066, 1993. doi: 10.1145/174147.174150. URL https://doi.org/10.1145/
174147.174150.

[13] I. Drori, A. Kharkar, W. R. Sickinger, B. Kates, Q. Ma, S. Ge, E. Dolev, B. Dietrich, D. P.
Williamson, and M. Udell. Learning to solve combinatorial optimization problems on real-world
graphs in linear time. In M. A. Wani, F. Luo, X. A. Li, D. Dou, and F. Bonchi, editors, 19th
IEEE International Conference on Machine Learning and Applications, ICMLA 2020, Miami,
FL, USA, December 14-17, 2020, pages 19–24. IEEE, 2020. doi: 10.1109/ICMLA51294.2020.
00013. URL https://doi.org/10.1109/ICMLA51294.2020.00013.

[14] S. Emmons, A. Jain, M. Laskin, T. Kurutach, P. Abbeel, and D. Pathak. Sparse graph-
ical memory for robust planning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can, and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
385822e359afa26d52b5b286226f2cea-Abstract.html.

[15] B. Eysenbach, R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridg-
ing planning and reinforcement learning. In H. M. Wallach, H. Larochelle, A. Beygelz-
imer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
15220–15231, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
5c48ff18e0a47baaf81d8b8ea51eec92-Abstract.html.

[16] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Bit*: Batch informed trees for optimal
sampling-based planning via dynamic programming on implicit random geometric graphs.
CoRR, abs/1405.5848, 2014. URL http://arxiv.org/abs/1405.5848.

[17] E. N. Gilbert. Random plane networks. Journal of the society for industrial and applied
mathematics, 9(4):533–543, 1961.

[18] E. Heiden, L. Palmieri, S. Koenig, K. O. Arras, and G. S. Sukhatme. Gradient-informed path
smoothing for wheeled mobile robots. In 2018 IEEE International Conference on Robotics
and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pages 1710–1717. IEEE,
2018. doi: 10.1109/ICRA.2018.8460818. URL https://doi.org/10.1109/ICRA.2018.
8460818.

[19] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

[20] B. Ichter and M. Pavone. Robot motion planning in learned latent spaces. IEEE Robotics Autom.
Lett., 4(3):2407–2414, 2019. doi: 10.1109/LRA.2019.2901898. URL https://doi.org/10.
1109/LRA.2019.2901898.

[21] B. Ichter, J. Harrison, and M. Pavone. Learning sampling distributions for robot motion planning.
In 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane,
Australia, May 21-25, 2018, pages 7087–7094. IEEE, 2018. doi: 10.1109/ICRA.2018.8460730.
URL https://doi.org/10.1109/ICRA.2018.8460730.

[22] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456.
PMLR, 2015.

[23] L. Janson and M. Pavone. Fast marching trees: a fast marching sampling-based method for
optimal motion planning in many dimensions - extended version. CoRR, abs/1306.3532, 2013.
URL http://arxiv.org/abs/1306.3532.

[24] P. Jiménez, F. Thomas, and C. Torras. Collision detection algorithms for motion planning. In
Robot motion planning and control, pages 305–343. Springer, 1998.

11

[25] T. Jurgenson and A. Tamar. Harnessing reinforcement learning for neural motion planning.
In A. Bicchi, H. Kress-Gazit, and S. Hutchinson, editors, Robotics: Science and Systems
XV, University of Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019, 2019. doi:
10.15607/RSS.2019.XV.026. URL https://doi.org/10.15607/RSS.2019.XV.026.

[26] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic trajectory
optimization for motion planning. In 2011 IEEE international conference on robotics and
automation, pages 4569–4574. IEEE, 2011.

[27] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. Int.
J. Robotics Res., 30(7):846–894, 2011. doi: 10.1177/0278364911406761. URL https:
//doi.org/10.1177/0278364911406761.

[28] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 6348–6358, 2017. URL https://proceedings.neurips.
cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.

[29] A. Khan, A. Ribeiro, V. Kumar, and A. G. Francis. Graph neural networks for motion planning.
CoRR, abs/2006.06248, 2020. URL https://arxiv.org/abs/2006.06248.

[30] K. Kondo. Motion planning with six degrees of freedom by multistrategic bidirectional heuristic
free-space enumeration. IEEE Trans. Robotics Autom., 7(3):267–277, 1991. doi: 10.1109/70.
88136. URL https://doi.org/10.1109/70.88136.

[31] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006. ISBN 9780511546877.
doi: 10.1017/CBO9780511546877. URL http://planning.cs.uiuc.edu/.

[32] S. M. LaValle and J. J. K. Jr. Randomized kinodynamic planning. In 1999 IEEE International
Conference on Robotics and Automation, Marriott Hotel, Renaissance Center, Detroit, Michigan,
USA, May 10-15, 1999, Proceedings, pages 473–479. IEEE Robotics and Automation Society,
1999. doi: 10.1109/ROBOT.1999.770022. URL https://doi.org/10.1109/ROBOT.1999.
770022.

[33] L. Lee, E. Parisotto, D. S. Chaplot, E. P. Xing, and R. Salakhutdinov. Gated path planning
networks. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 2953–2961. PMLR, 2018.
URL http://proceedings.mlr.press/v80/lee18c.html.

[34] Q. Li, F. Gama, A. Ribeiro, and A. Prorok. Graph neural networks for decentralized multi-robot
path planning. CoRR, abs/1912.06095, 2019. URL http://arxiv.org/abs/1912.06095.

[35] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and planning. Int.
J. Robotics Res., 15(6):533–556, 1996. doi: 10.1177/027836499601500602. URL https:
//doi.org/10.1177/027836499601500602.

[36] Z. S. O. B. . S. S. Madaan, R. Learning adaptive sampling distributions for motion planning by
self-imitation. Workshop on Machine Learning in Robot Motion Planning, IEEE IROS, 2018.

[37] M. W. Mueller, M. Hehn, and R. D’Andrea. A computationally efficient motion primitive for
quadrocopter trajectory generation. IEEE Transactions on Robotics, 31(6):1294–1310, 2015.

[38] S. Niu, S. Chen, H. Guo, C. Targonski, M. C. Smith, and J. Kovacevic. Generalized value
iteration networks: Life beyond lattices. In S. A. McIlraith and K. Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 6246–6253. AAAI Press, 2018. URL https://www.aaai.org/
ocs/index.php/AAAI/AAAI18/paper/view/16552.

12

[39] S. M. Persson and I. Sharf. Sampling-based a* algorithm for robot path-planning. Int. J.
Robotics Res., 33(13):1683–1708, 2014. doi: 10.1177/0278364914547786. URL https:
//doi.org/10.1177/0278364914547786.

[40] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 77–85. IEEE Computer
Society, 2017. doi: 10.1109/CVPR.2017.16. URL https://doi.org/10.1109/CVPR.2017.
16.

[41] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip. Motion planning networks: Bridging the
gap between learning-based and classical motion planners. IEEE Transactions on Robotics, 37
(1):48–66, 2021. doi: 10.1109/TRO.2020.3006716.

[42] J. H. Reif. Complexity of the mover’s problem and generalizations. In 20th Annual Symposium
on Foundations of Computer Science (sfcs 1979), pages 421–427, 1979. doi: 10.1109/SFCS.
1979.10.

[43] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: bayesian per-
sonalized ranking from implicit feedback. In J. A. Bilmes and A. Y. Ng, editors,
UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial In-
telligence, Montreal, QC, Canada, June 18-21, 2009, pages 452–461. AUAI Press,
2009. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=
2&article_id=1630&proceeding_id=25.

[44] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-parametric topological memory for navigation.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL
https://openreview.net/forum?id=SygwwGbRW.

[45] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and
P. Abbeel. Motion planning with sequential convex optimization and convex collision checking.
The International Journal of Robotics Research, 33(9):1251–1270, 2014.

[46] D. Shah, B. Eysenbach, N. Rhinehart, and S. Levine. RECON: rapid exploration for open-world
navigation with latent goal models. CoRR, abs/2104.05859, 2021. URL https://arxiv.org/
abs/2104.05859.

[47] M. P. Strub and J. D. Gammell. Advanced bit* (abit*): Sampling-based planning with advanced
graph-search techniques. In 2020 IEEE International Conference on Robotics and Automation,
ICRA 2020, Paris, France, May 31 - August 31, 2020, pages 130–136. IEEE, 2020. doi:
10.1109/ICRA40945.2020.9196580. URL https://doi.org/10.1109/ICRA40945.2020.
9196580.

[48] R. A. M. Strudel, R. Garcia, J. Carpentier, J. Laumond, I. Laptev, and C. Schmid. Learning
obstacle representations for neural motion planning. CoRR, abs/2008.11174, 2020. URL
https://arxiv.org/abs/2008.11174.

[49] A. Tamar, S. Levine, P. Abbeel, Y. Wu, and G. Thomas. Value iteration networks.
In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2146–2154, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
c21002f464c5fc5bee3b98ced83963b8-Abstract.html.

[50] H. Tang, Z. Huang, J. Gu, B.-L. Lu, and H. Su. Towards scale-invariant graph-related problem
solving by iterative homogeneous gnns. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
15811–15822. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/b64a70760bb75e3ecfd1ad86d8f10c88-Paper.pdf.

[51] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined
task and motion planning. In IJCAI, pages 1930–1936, 2015.

13

[52] P. Velickovic, L. Buesing, M. C. Overlan, R. Pascanu, O. Vinyals, and C. Blundell.
Pointer graph networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
176bf6219855a6eb1f3a30903e34b6fb-Abstract.html.

[53] P. Velickovic, R. Ying, M. Padovano, R. Hadsell, and C. Blundell. Neural execution of graph
algorithms. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=SkgKO0EtvS.

[54] K. Xu, J. Li, M. Zhang, S. S. Du, K. Kawarabayashi, and S. Jegelka. What can neural networks
reason about? In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=rJxbJeHFPS.

[55] F. Xue and P. R. Kumar. The number of neighbors needed for connectivity of wireless networks.
Wireless networks, 10(2):169–181, 2004.

[56] Y. Yan, K. Swersky, D. Koutra, P. Ranganathan, and M. Hashemi. Neural execution en-
gines: Learning to execute subroutines. In H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can, and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c8b9abffb45bf79a630fb613dcd23449-Abstract.html.

[57] G. Yang, A. Zhang, A. S. Morcos, J. Pineau, P. Abbeel, and R. Calandra. Plan2vec: Unsupervised
representation learning by latent plans. In A. M. Bayen, A. Jadbabaie, G. J. Pappas, P. A. Parrilo,
B. Recht, C. J. Tomlin, and M. N. Zeilinger, editors, Proceedings of the 2nd Annual Conference
on Learning for Dynamics and Control, L4DC 2020, Online Event, Berkeley, CA, USA, 11-12
June 2020, volume 120 of Proceedings of Machine Learning Research, pages 935–946. PMLR,
2020. URL http://proceedings.mlr.press/v120/yang20b.html.

[58] C. Zhang, J. Huh, and D. D. Lee. Learning implicit sampling distributions for motion planning.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018,
Madrid, Spain, October 1-5, 2018, pages 3654–3661. IEEE, 2018. doi: 10.1109/IROS.2018.
8594028. URL https://doi.org/10.1109/IROS.2018.8594028.

[59] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen. Robust and efficient quadrotor trajectory
generation for fast autonomous flight. IEEE Robotics and Automation Letters, 4(4):3529–3536,
2019.

[60] Z. Zhu, E. Schmerling, and M. Pavone. A convex optimization approach to smooth trajectories
for motion planning with car-like robots. In 2015 54th IEEE conference on decision and control
(CDC), pages 835–842. IEEE, 2015.

[61] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A.
Bagnell, and S. S. Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 32(9-10):1164–1193, 2013.

14

