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Abstract

Sampling-based motion planning is a popular approach in robotics for finding
paths in continuous configuration spaces. Checking collision with obstacles is the
major computational bottleneck in this process. We propose new learning-based
methods for reducing collision checking to accelerate motion planning by training
graph neural networks (GNNs) that perform path exploration and path smoothing.
Given random geometric graphs (RGGs) generated from batch sampling, the path
exploration component iteratively predicts collision-free edges to prioritize their
exploration. The path smoothing component then optimizes paths obtained from
the exploration stage. The methods benefit from the ability of GNNs of capturing
geometric patterns from RGGs through batch sampling and generalize better to
unseen environments. Experimental results show that the learned components can
significantly reduce collision checking and improve overall planning efficiency in
challenging high-dimensional motion planning tasks.

1 Introduction

Sampling-based planning is a popular approach to high-dimensional continuous motion planning in
robotics [32, 11, 27, 23, 16, 47, 31]. The idea is to iteratively sample configurations of the robots
and construct one or multiple exploration trees to probe the free space, such that the start and goal
states are eventually connected by some collision-free path through the sampled states, ideally with
path cost minimized. This motion planning problem is hard, theoretically PSPACE-complete [42],
and existing algorithms are challenged when planning motions of robots with a few degrees of
freedom [30, 12, 1, 35, 7, 12]. In particular, the planning algorithms need to repeatedly check whether
an edge connecting two sample states is feasible, i.e., that no state along the edge collides with any
obstacle. This collision checking operation is the major computational bottleneck in the planning
process and by itself NP-hard in general [24, 5]. For instance, consider the 7D Kuka arm planning
problem in the environment shown in Figure 1. The leading sampling-based planning algorithm
BIT* [16] spends about 28.6 seconds to find a complete motion plan for the robot, in which 20.2s
(70.6% of time) is spent on collision checking. In comparison, it only takes 0.06s (0.2% of time) for
sampling all the probing states needed for constructing random graphs for completing the search.

Learning-based approaches have become popular for accelerating motion planning. Many recent
approaches learn patterns of the configuration spaces to improve the sampling of the probing states,
typically through reinforcement learning or imitation learning [25, 21, 58, 41, 6]. For instance, Ichter
et al. [21] and motion planning networks [41] apply imitation learning on collected demonstrations to
bias the sampling process. The NEXT algorithm [6] provides a state-of-the-art design for embedding
high-dimensional continuous state spaces into low-dimensional representations, while balancing
exploration and exploitation in the sampling process. It has demonstrated clear benefits of using
learning-based components to reduce samples and accelerate planning. However, we believe two
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aspects in NEXT can be improved, if we shift the focus from reducing sample complexity to reducing
collision checking. First, instead of taking the grid-based encoding of the entire workspace as input,
we can use the graphs formed by batches of samples from the free space to better capture the geometric
patterns of an environment. Second, having access to the entire graph formed by samples allows us to
better prioritize edge exploration and collision checking based on relatively global patterns, and avoid
getting stuck in local regions. In short, with reasonably relaxed budget of samples taken uniformly
from the space, we can better exploit global patterns to reduce the more expensive collision checking
operations instead. Figure 1 shows a typical example of how the trade-off benefits overall planning,
and more thorough comparisons are provided in the experimental results section.

We design two novel learning-based components that
utilize Graph Neural Networks (GNNs) to accelerate
the search for collision-free paths in batch sampling-
based motion planning algorithms. The first com-
ponent is the GNN Path Explorer, which is trained
to find collision-free paths given the environment
configuration and a random geometric graph (RGG)
formed by probing samples. The second component
is the GNN Path Smoother, which learns to Optimize Figure 1: Performance on 7D Kuka arm. Left:
the path obtained from the explorer. In both models, Trajectory generated by the proposed GNN-
we rely on the expressiveness and permutation invari- based approach. Right: NEXT getting stuck
ance of GNNs as well as attention mechanisms to gt a local region. Both methods were trained
identify geometric patterns in the RGGs formed by  on the same training set.

samples, and accelerate combinatorial search.

The proposed learning-based components can accelerate batch sampling-based planning algorithms
without compromising probabilistic completeness properties. The methods achieve higher success
rate, much lower rate of collision checking, and accelerate the overall planning compared to state-of-
the-art methods. We evaluate the proposed approach in a variety of planning environments from 2D
mazes to 14D dual KUKA arms. Experiments show that our method significantly reduces collision
checking, improves the overall planning efficiency, and scales well to high-dimensional tasks.

The paper is organized as follows. We review related work and preliminaries in Section 2 and 3. We
describe the detailed design of the GNN architectures in Section 4, followed by the training of GNN
explorer and smoother in Section 5. We discuss experimental results in Section 6.

2 Related Work

Learning-based Motion Planning. Learning-based approaches typically consider motion planning
as a sequential decision-making problem, which could be naturally incorporated with reinforcement
learning or imitation learning. With model-based reinforcement learning, DDPG-MP [25] integrates
the known dynamic of robots and trains a policy network. Strudel et al. [48] improves the obstacle
encoding with the position and normal vectors. OracleNet [2] learns via oracle imitation and encodes
the trajectory history by an LSTM [19]. Other than predicting nodes which are expected to greedily
form a trajectory, various approaches have been designed to first learn to sample vertices, then utilize
sampling-based motion planning for further path exploration through these samples. L2ZRRT [20]
first embeds high-dimensional configuration into low-dimensional representation, then performs
RRT [32] on top of that. Ichter et al. [21] uses conditional VAE to sample nodes. Zhang et al. [58§]
learns a rejection sampling distribution. Madaan [36] encodes the explored tree with an RNN. Motion
Planning Networks [41] utilizes the dropout-based stochastic auto-encoder for biased sampling.
NEXT [6] projects the high-dimensional planning spaces into low-dimensional embedding discrete
spaces, and further applies Gated Path Planning Networks [33] to predict the samples.

Existing learning-based approaches have considered improving collision detection. Fastron [10] and
ClearanceNet [4] learn function approximators as a proxy to collision detection, which is disparate
from our focus on reducing the steps that are needed to the collision checker, and can be improved
further potentially if combined together. Another recent line of work focuses on learning to explore
edges given fixed graph. Value Iteration Networks [49] and Gated Path Planning Networks [33]
apply convolutional neural networks (CNN) on discrete maps, then predict the policy with a weighted
attention sum over neighborhoods. Generalized Value Iteration Networks [38] and Velickovic et al.



[53] extend this approach for nontrivial graph by replacing CNN with GNN. However, the construction
of such graphs requires ground-truth collision status for every edge on the graph at inference time.

It should be noted that other than sampling-based approaches, trajectory optimization [26, 61, 51,
45, 60], and motion primitives [37, 59] are standard choices for more structured problems such
as for autonomous cars and UAVs, while sampling-based methods are important for navigating
high-dimensional cluttered spaces such as for manipulators and rescue robots.

Graph Neural Networks for Motion Planning. Graph neural networks are permutation invariant
to the orders of nodes on graph, which become a natural choice for learning patterns in graph
problems. They have been successfully applied in robotics applications such as decentralized
control [34]. For sampling-based motion planning, Khan et al. [29] utilizes GNN to identify critical
samples. We focus on the different aspect of collision checking with given random geometric
graphs, and can be combined with existing techniques without affecting probabilistic completeness.
More broadly, GNNs have been used for learning patterns in general graph-structured problems,
e.g. graph-based exploration [9, 46], combinatorial optimization [28, 13, 3], neural algorithm
execution [53, 54, 56, 52]. Other than to use GNN for high-dimensional planning, several works
propose to first learn neural metrics, then build explicit graphs upon the learned metric which is used
later to search the path [44, 15, 14, 57]. While sharing similar interests, our work specifically focus
on how to reduce the collision checking steps for sampling-based motion planning.

Informed Sampling for Motion Planning. A main focus in motion planning is on developing
problem-independent heuristic functions for prioritizing the samples or edges to explore. Approaches
include Randomized A* [11], Fast Marching Trees (FMT*) [23], Sampling-based A*(SBA*) [39],
Batch Informed Trees (BIT*) [16]. These methods are orthogonal to our learning-based approach,
which can further exploit the problem distribution and recognize patterns through offline training
to improve efficiency. Recent work in motion planning has made significant progress in reducing
collision checking through batch sampling and incremental search, such as in BIT* [16] and AIT *[47].
The idea is to start with batches of probing random samples in the free space, and focus on reducing
collision checking to edges that are likely on good paths to the goal, which also inspires our work.

3 Preliminaries

Motion Planning. We focus on motion planning in continuous spaces, where the configuration
space is C' C R™. The configuration space includes all degrees of freedom of a robot (e.g. all joints
of a robotic arm) and is different from the workspace where the robot physically resides in, which is
at most 3-dimensional. For planning problem on a graph G = (V| E), we denote the start vertex and
goal vertex as v, v, € C. A path from v, to v, is a finite set of edges ™ = {e; : (vs,v}) }ic[o,x] Such
that vg = v, v), = vy, and v, = v;4; forall ¢ € [0, k — 1]. An environment for a motion planning
problem consists of a set of obstacles Cyps C C' and free space Cpree = C'\ Cops. Note that Cps is
the projection of 3D objects in the higher-dimensional configuration space, and typically has complex
geometric structures that can not be efficiently represented. A sample state v € C'in the configuration
space is free if v € Cyyee, i.€., it is not contained in any obstacle. An edge connecting two samples is
free if e C C'tyc. Namely, for every point v on the edge e, v € C'¢ree. A path 7 is free if all its edges
are free. A random geometric graph (RGG) is a r-disc or k-nearest-neighbor (k-NN) graph G [17, 55],
where nodes are randomly sampled from the free space C'¢ycc. In this paper we consider the RGG as
a k-NN graph. Given a random geometric graph G and a pair of start and goal configuration (vs, vg),
the goal of agent is to find a free path 7 from v, to v,. Without loss of generality, we consider the
cost of a path to be the total length over all edges in it.

Graph Neural Networks and Attention. Let G = (V, E) be a finite graph where each vertex v;
is labeled by data x; € R™. A graph neural network (GNN) learns the representation h; of node v; by
aggregating the information from its neighbors A/(v;). Given fully-connected networks f and g, a
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typical GNN encodes the representation hEH of the node v; after k aggregation as:

o = &M ({1 1) | (i) € B}y and Y = g(n, o) M

1 . . . . . .
where hl( ) = x; and @ is some permutation-invariant aggregation function on sets, such as max,
mean, or sum. We will also use the attention mechanism when we need to encode a varied number of



obstacles as inputs. Suppose there are n keys each with dimension dq: K € R™* 4% each key corre-
sponding to a value V' € R”*% . Given m query vectors Q € R™*% a typical attention function
Att(K, Q, V) returns the representation for each query as Att(K, Q, V) = softmax(QK7T /\/d)V.
The function is also permutation-invariant so the order of obstacles does not affect the output.

4 GNN Architecture for Path Exploration and Smoothing

4.1 Overall Approach

At a high level, motion planning with batch sampling typically proceeds as follows [16]. We first
sample a batch of configurations in the free space, together with the start and goal states, and form
a random graph (RGG) by connecting neighbor states (such as k-NN). A tree is then built in this
graph from the start towards the goal via heuristic search. The tree can only contain collision-free
edges, so each connection requires collision checking. When a path from start to goal is found, it is
stored as a feasible plan, which can be later updated to minimize cost. After adding all collision-free
edges in the current batch in the tree, a new batch will be added and the tree is further expanded. The
algorithm keeps sampling batches and expanding the tree until the computation budget is reached. It
then returns the best path found so far, or failure if none has been found.

We use GNN models to improve two important steps in this planning procedure: path exploration and
path smoothing. The GNN path explorer finds a feasible path 7 from start to goal given a randomly
batch-sampled RGG, with the goal of reducing the number of edges that need to be checked for
collision. The GNN path smoother then takes the path found by the explorer and attempts to produce
another feasible path with less cost. In both tasks, the GNN models aim to recognize patterns and
learn solutions to the combinatorial problems and save computation. In Figure 2, we illustrate the
main steps for the overall algorithm. First, in (a-c), we generate an RGG composed of the vertices
randomly sampled from the free space without collision checking on edges. This graph will provide
patterns that the GNN explorer later uses to only prioritize certain edges for collision checking. In (d),
the graph is the input to the GNN path explorer, which predicts the priority of the edges to explore
and only the proposed edges are checked for collision. (e): We iteratively query the path explorer
with collision checking to expand a tree in the free space until the goal vertex is reached, and sample
new batches when no path is found in the current graph. (f): Once a path is provided by the path
explorer, it becomes the input (together with the current RGG) to the GNN path smoother component,
which outputs a new path that reduces path cost via local changes to the vertices in the input path.
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Figure 2: Left: GNN architecture shared by the path explorer and the path smoother. Right (a-f):
Main steps in planning with GNNS, as explained in Section 4.1.

4.2 GNN Architecture

We write the GNN path explorer as A’ and the GNN path smoother as Ng. Both models take in
a sampled random geometric graph G = (V, E'). For an n-dimensional configuration space, each
vertex v; € R™"3 contains an n-dimensional configuration component and a 3-dimensional one-hot
label. There are 3 kinds of labels for the explorer: (i) the vertices in the free space, (ii) the vertices



with collision, and (iii) the special goal vertex. There are also 3 kinds of labels for the smoother: (i)
the vertices on the path, (ii) the vertices in the free space, and (iii) the vertices with collision.

The vertices and the edges are first embedded into a latent space with z € RIVI*d ¢ ¢ RIEIxdn
where dj, is the size of the embedding. The embeddings for the GNN explorer and smoother are
different, which will be discussed later in this section. Taking the vertex and edge embedding x, y,
the GNN aggregates the local information for each vertex from the neighbors, by performing the
following operation with 2 two-layer MLPs f, and f:

x; = g (x5, max{ fo(x; — zi, x5, i, y1) | e : (vi,v5) € E}), Yo, € V )

Y = max(yl, fy(‘rj — i, Ty, xb))v vel : (’U’L'a UJ) er
Note that here we use max as the aggregation operator to gather the local geometric information,
due to its empirical robustness to achieve the order invariance [40]. The edge information is also
incorporated by adding y; as the input to f,. The update function g is implemented in two different
ways for the GNN explorer and smoother. Specifically, g equals to the max operator for the GNN
explorer, and g(m;, z;) = fy(m;) + x; as the residual connection for the GNN smoother, where f,
is a two-layer MLP. We choose max operator for the explorer, due to its inductive bias to imitate
the value iteration, as mentioned by Velickovic et al. [53]. The residual connection is applied to the
smoother, since intuitively the residual provides a direction for the improvement of each node on the
path in the latent space, which fits our purpose to generate a shorter path for the smoother.

We also note that Equation 2 directly updates on the x and y and is a homogeneous function similar
to Tang et al. [50], which allows us to self-iterate x and y over multiple loops without introducing
redundant layers. Both the GNN explorer and smoother leverage this property. After several iterations,
with two MLPs f,, f., N outputs the priority n = f,(y) for each edge, and N outputs a potentially
shorter path 7’ = {u;, u;}, u; = fu(x;) forv; € .

Special design for the GNN path explorer. The path explorer uses the embedding of the vertices of
the form x = hy (v, vy, (V—v,)?, v—1v,), where h,, is a two-layer MLP with batch normalization [22].
Here we append the L2 distance and the difference to the goal to the vertex embedding, which
serve as heuristics for the GNN to be more informed about which node is more valuable. The
y; is simply computed as y; = hy(v; — v;,v;,v;), where h,, is also a two-layer MLP with batch
normalization. Optionally, it is helpful for the explorer to incorporate the configuration of obstacles
O = {0} € RIHe}H*2" a5 inputs, when embedding the vertices and edges. Since the obstacles of the
environment has variable numbers, we utilize the attention mechanism here to update the x and y,
named as obstacle encoding, as illustrated in Figure 2. Further details are provided in the Appendix.

Special design for GNN path smoother. The GNN smoother embeds vertices with = h,(v),
where h,, is a two-layer MLP with batch normalization. The y; is computed as y; = hy (v; —v;, v5, v;),
where h,, is a two-layer MLP with batch normalization. Each time x and y are updated by Equation 2,
the GNN smoother will output a new smoother path 7’ = {(u;, u}) }ic[o,x] » Where u; = fo (i), Vv; €
, given an MLP f,,. The u, and ), are manually replaced by v, and v, to satisfy the path constraint.
We assume the 7’ has the same number of nodes as 7. Since the GNN smoother could gain novel local
geometric information with the changed vertices of the new path, we dynamically update G = (V, E),
via (i) replacing those nodes labeled as path nodes in V' by the nodes on new path, (ii) replacing E by
generating a k-NN graph on the updated V. With the updated graph GG, we repeat the above operation.
During training, the GNN smoother outputs 7/, after a random number of iterations (between 1 and
10). During evaluation, the GNN smoother outputs 7’ after only one loop for each calling.

5 Training the Path Explorer and Smoother
Due to space limitation we provide the pseudocode for all algorithms in the Appendix.

5.1 GNN Explorer Ng: Training and Inference

The path explorer constructs a tree through sampled states with the hope of reaching the goal state in
a finite number of steps. We initialize the tree 7 with the start state v, as its root. Every edge er;
in the tree 7; exists only if e; is in the free space C'fcc. Given an RGG G = (V, E), Our goal is
to find a tree containing the goal configuration v, by adding edges from E to the tree, with as few



collision checks as possible. We write the edge on frontier of the tree as E¢(T) = {(v;,v]) | v; €
Vr,vi & Vr}. We denote the set of edges with unknown collision status at time step ¢ as E;.

Training procedures. Each training problem consists of a set of obstacles O, start vertex v, goal
vertex vg, we sample a k-NN graph G = (V, E), where V' is the random vertices sampled from the

free space combined with {vs, v, }. The goal is to train Ny to predict exploration priority 7 € RIZI,

A straightforward way for supervision is to use the Dijkstra’s algorithm to compute the shortest
feasible path from v, to v4, and maximize the corresponding values of 7 at the edges of this path,
via cross entropy loss or Bayesian ranking [43]. However, it does not provide useful guidance when
the search tree deviates from the ideal optimal path at inference time. Instead, we first explore the
graph using 7 with ¢ steps, which forms a tree 7;, where ¢ is a random number. The oracle provides
the shortest feasible path 7 in this tree and connects one of the nodes on 7; to the goal vertex v,,.
We formulate this optimal path as 7y = {en;, : (vn,, V) bic[o,x], Where vy, € Vi, vy, = v,. We
train the explorer to imitate this oracle. Namely, the explorer will directly choose ey, € 7 as the
next edge to explore, among all possible edges on the frontier of 7;, i.e. E; N Ef(7;). We maximize
the 7, among the values of {n; | e; € E; N E¢(7;)} using the following cross entropy loss:
e'lk

Ly, = —logyn,, where v, = 5 o Ver € E; NE¢(T;) 3)
ejEEiﬂEf('Ti)

Inference procedures. Given the GNN N, the current explored tree 7; at step ¢, the RGG
G = (V, E) including v, and v, environment configuration O, GNN path explorer aims to maximize
the probability of generating a feasible path by adding e; from E; to tree 7; as:

e;= argmax Ng(n|V,E,O) 4)
ex€E;NEf(T;)

where n;, is the output of N'g for the edge e;. After e; is proposed by GNN using Equation 4, we
check the collision of e;. If e; is not in collision with the obstacles, we add the edge e; to the tree
7T, and remove e; from Ej, ie., E7,,, = E7, U{e;}, and Ej 1 = E; \ {e;}. If ¢; is in collision
with obstacles, we query the path explorer for the next proposed edge using Equation 4, where F;
is updated as F; = F; \ {e;}. The loop terminates when we find a collision-free edge, or when
E; N E¢(T;) = 0. When the latter happens, we re-sample another batch of samples, add new samples
to vertices V, re-construct k-NN graph G, re-compute 7, and continue to explore the path on this new
graph with the explored nodes and edges.

The exploration GNN only proposes an ordering on the candidate edges, and all possible edges may
still be collision checked in the worst case. Thus, if there exists any complete path in the RGG, the
algorithm always finds it. Therefore, the proposed learning-based component does not affect the
probabilistic completeness of sampling-based planning algorithms [8].

5.2 GNN Path Smoother Ns: Training and Inference

The GNN Ns for path smoothing takes an RGG and a path 7 proposed by the explorer, and aims to
produce a shorter path 7’. Specifically, the input is a graph G = (V, E), where V =V, UV; UV,
E = E; U FEy.. Here, Vy and V, are reused as the same vertices in the GNN explorer, without
introducing extra sampling complexity. £ is composed of those pairs of the adjacent vertices on T,
and E'y. connects each vertex in V; to their k-nearest neighbor in Vy U V.. Intuitively, aggregating
information from V; UV, can allow GNN to identify local regions that provide promising improvement
on the current path, and avoid those that may yield potential collision.

Training procedures. We train the GNN path smoother Ng by imitating a smoothing oracle S
similar to the approach of gradient-informed path smoothing proposed by Heiden et al. [18]. To
prepare the training set, we iteratively perform the following two operations on each training sample
path. Given a feasible path 7 predicted by Ng, the smoothing oracle first tries to move the nodes
on the path 7 with perturbation within range €. If the new path 7, is feasible and has cost less
than 7, then S will continue to smooth on ;. Otherwise, S will continue smoothing on 7 via
random perturbation. After several perturbation trials, the oracle further attempts to connect pairs of
nonadjacent nodes directly by a line segment. If such a segment is free of collision, then the original
intermediate nodes will be moved on this linear segment. Further details are in the Appendix.



After S reaches maximum iteration, the oracle will return the smoothed path 7y = {w;, w; }ieqo.1-
To generate training data, we first run our trained GNN explorer for each training problem to get the
initial path 7. Then the oracle path s and the predicted path 7’ are computed, and finally the GNN
is trained via minimizing the MSE loss Ly, = + Dicn K INs (u; | V, E) — w;|3.

Inference procedures. The GNN Ng for path smooth-

ing takes an explored path 7 : {(v;, v})}icjo,x), @ sam- Explored Pt Smooth Path it NN Sther
pled graph G, and outputs a potentially shorter path
7"+ {(us, w)) }iejo,x) Which has the same number of edges
as 7. It is not always guaranteed that 7' is collision-free.
However, such 7’ still indicates directions for shortening
the path, so we can improve 7 towards 7’ in an incremental
way. The GNN smoother will try to move every node v,
towards the target position u;, with a small step size e. For
each time that all the vertices are moved with a small step,
we check whether each edge still holds collision-free. If
not, then the vertices on the edge will undo the movement.
Otherwise, the new configuration of the vertex will replace
its old configuration on 7. This operation will be iterated over several times, until the maximum
iteration is reached, or no edges on 7 can be moved further. We can then repeat the process by feeding
the updated 7 back to the GNN N for further improvement. The intuition here is that there might
still be chances to improve upon the updated 7, by aggregating new information from its changed
neighborhoods. This has shown empirical advantage in our experiments.

Figure 3: GNN path smoother on the 2D
maze problem. It learns to improve the
explored path and achieves lower cost.

6 Experiments
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Figure 4: Demonstrations for some of our environments from URS to 13D.

6.1 Overall Performance

We compare our methods with the sampling-based planning baseline RRT* [27], the state-of-the-art
batch-sampling based method BIT* [16], and the state-of-the-art learning-based method NEXT [6].
NEXT has been shown in [6] to outperform competing learning-based approaches. We conduct the
experiments on the following environments: (i) a 2D point-robot in 2D workspace, (ii) a 6D URS
robot in a 3D workspace, (iii) a 7D snake robot in 2D workspace (the z-axis is fixed), (iv) a 7D
KUKA arm in a 3D workspace, (v) an extended 13D KUKA arm in 3D workspace, (vi) and a pair of
7DoF KUKA arms (14 DoF) in 3D workspace.

For each environment, we randomly generate 2000 problems for training and 1000 problems for
testing. Each problem contains a different set of random obstacles, and a pair of feasible v, and v,.
We run all experiments over 4 random seeds. The averaged results are illustrated in Figure 5. For the
2D environment, we directly take the training set provided by NEXT to train our GNN. We use two
test sets for the 2D environment: “Easy2D" is the original test set used for evaluating NEXT in the
original paper [6], and “Hard2D" is a new set of tests we generated by requiring the distance between
the start and goal to be longer than the easy environments. The goal is to test whether the learned
models can generalize to harder problems without changing the training set. Further details on the
environments and hyperparameters are provided in the Appendix.
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Figure 5: Comparison of performances on all environments from 2D to 14D, averaged over 4 random
seeds. From left to right: (a) Success rate. (b) Collision checks. (c) Path cost. (d) Total planning time.
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Figure 6: We test the generalization capability of GNN-based approaches and NEXT by constructing
pairs of problems that have small but important difference in connectivity. The GNN models find
paths on both environments quickly, while NEXT gets stuck in hard instances because of the lack of
access to the graph structure provided by probing samples. The explored vertices of GNN on URS
environment are colored in blue, and the edges on the path are colored in red.

Success rate. As shown in Figure 5 (a), our method finds complete paths at 100.0% problems on both
2D Easy and 2D Hard, and at 97.18%, 99.85%, 99.20%, 99.15%, and 99.15% problems from URS to
14D, which is comparable to handcrafted heuristics used in BIT* (100.0%, 100.0%, 99.25%, 99.85%,
99.65%, 99.92%, 99.82% on each environment). The learning-based planner NEXT performs well
on easy 2D problems (99.37% success rate), but drops slightly to 97.10% on harder 2D problem:s,
and 36.80%, 71.80%, 87.9%, 60.52%, 66.57% on environments in higher dimensions.

Collision checking. In Figure 5 (b), we see significant reduction of collision checking using the
proposed approaches, in comparison to other approaches especially in high-dimensional problems.
The average number of collision checks by the GNN explorer is 336.3, 715.7, 2474.0, 1602.2,
350.5, 521.7 and 487.0 on the given sets of environments, whereas BIT* needs 112%, 175%,
164%, 101%, 557%, 226%, 263% times as many collision checks as our method requires on each
environments. NEXT requires 270.23 checks on Easy2D and increases to 1206.1 on Hard2D. On the
14D environment, our method uses 17.4% of the collision checks of what is needed by NEXT.

Path cost. We show the average path cost over all problems where all algorithms successfully found
complete paths. With the smoother and obstacle encoding, our GNN approach provides the best
results from URS to 14D, and generates comparable results for the 2D Easy and 2D Hard, where
NEXTis 1.02, 1.71, and GNN is 1.18, 2.05. We find that although the GNN explorer does not yield
shorter path with obstacle encoding, these explored paths can be improved further with the smoother.
The reason may be that with additional obstacle encoding, the GNN explorer tends to explore edges
with less probability of collision and provides more space for the smoother to improve the paths.

Planning time. A common concern about learning-based methods is that their running cost due to
the frequent calling of a large neural network model at inference time (as seen for the NEXT curve).
We see in Figure5(d) that the wall clock time of using the GNN models is comparable to the standard
heuristic-based BIT* and RRT*, when all algorithms can find paths. The main reason is that the



reduction in collision checking significantly reduces the overall time. We believe the GNNs can be
further optimized to achieve faster inference as well.

In summary, experimental results show that the GNN-based approaches significantly reduce colli-
sion checking while maintaining high success rate, low path cost, and fast overall planning. The
performance scales well from low-dimensional to high-dimensional problems.

6.2 Generalizability of Collision Reduction

A major challenge of learning-based approaches for planning is that small changes of the geometry of
the environment can lead to abrupt change in the solutions, and thus lead the difficulty of generaliza-
tion. In Figure6, we provide evidence that the GNN approach can alleviate this problem because of
its access to the graph structures formed by samples uniformly taken from the space. In the 2D maze
environment, the top one is easy while the bottom one is much harder, although the difference is just
whether a narrow corridor is present to the left of the start state. For the URS with pads and poles, to
solve the hard one, the robot arm needs to first rotate itself around the z-axis to bypass the small pads,
and then rotate it back to fit the goal configuration. These problems are especially challenging for
generalizing learned results to unseen environments.

We observe that the GNN-based components can handle the transition from the easy to hard problems
consistently. In both environments, the GNN components find paths quickly, with 9 and 236 edges
explored for 2D maze, and with 1 and 256 edges explored for URS. In contrast, the NEXT model
trained on the same training sets, can quickly find a path in the easy problem, but gets stuck in the
hard one. Since the two problems are close to each other in the input space for NEXT, it is not
surprising to see this difficulty of generalization. In fact, the only case where NEXT can eventually
find a path on 2D Maze after more than 6K edge exploration is when the algorithm delegates 10%
operations to standard RRT*. Without delegating to RRT*, NEXT gets stuck in local regions after
10K exploration steps on 2D and 1K steps on URS.

6.3 Ablation Study: Probing Samples
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Figure 7: Comparison of performances for different probing samples from 2D to 14D problems.

We perform ablation studies of varying different parameters in our approach. The full details are
provided in the Appendix. For instance, we use RGGs with different number of vertices from the free
space, using 100, 200, 300, 500, 1000 samples, as illustrated in Figure 7. The success rate increases
when there are more probing samples, which is consistent with the resolution-complete property of
sampling-based planning. The path cost stays nearly the same for all settings, indicating robustness
of the smoother models. The collision checks and planning time grows linearly with the probing
samples. The reason is that the number of edges of k-NN RGG increments linearly with vertices, the
input to the GNN grows linearly, thus the computation cost increases linearly on both CPU and GPU.

7 Conclusion

We presented a new learning-based approach to reducing collision checking in sampling-based
motion planning. We train graph neural network (GNN) models to perform path exploration and path
smoothing given the random geometric graphs (RGGs) generated from batch sampling. We rely on
the ability of GNN for capturing important geometric patterns in graphs. The learned components
can significantly reduce collision checking and improve overall planning efficiency in complex and
high-dimensional motion planning environments.
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