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Abstract

Sampling-based motion planning is a popular approach in robotics for finding
paths in continuous configuration spaces. Checking collision with obstacles is the
major computational bottleneck in this process. We propose new learning-based
methods for reducing collision checking to accelerate motion planning by training
graph neural networks (GNNs) that perform path exploration and path smoothing.
Given random geometric graphs (RGGs) generated from batch sampling, the path
exploration component iteratively predicts collision-free edges to prioritize their
exploration. The path smoothing component then optimizes paths obtained from
the exploration stage. The methods benefit from the ability of GNNs of capturing
geometric patterns from RGGs through batch sampling and generalize better to
unseen environments. Experimental results show that the learned components can
significantly reduce collision checking and improve overall planning efficiency in
challenging high-dimensional motion planning tasks.

1 Introduction

Sampling-based planning is a popular approach to high-dimensional continuous motion planning in
robotics [32, 11, 27, 23, 16, 47, 31]. The idea is to iteratively sample configurations of the robots
and construct one or multiple exploration trees to probe the free space, such that the start and goal
states are eventually connected by some collision-free path through the sampled states, ideally with
path cost minimized. This motion planning problem is hard, theoretically PSPACE-complete [42],
and existing algorithms are challenged when planning motions of robots with a few degrees of
freedom [30, 12, 1, 35, 7, 12]. In particular, the planning algorithms need to repeatedly check whether
an edge connecting two sample states is feasible, i.e., that no state along the edge collides with any
obstacle. This collision checking operation is the major computational bottleneck in the planning
process and by itself NP-hard in general [24, 5]. For instance, consider the 7D Kuka arm planning
problem in the environment shown in Figure 1. The leading sampling-based planning algorithm
BIT* [16] spends about 28.6 seconds to find a complete motion plan for the robot, in which 20.2s
(70.6% of time) is spent on collision checking. In comparison, it only takes 0.06s (0.2% of time) for
sampling all the probing states needed for constructing random graphs for completing the search.

Learning-based approaches have become popular for accelerating motion planning. Many recent
approaches learn patterns of the configuration spaces to improve the sampling of the probing states,
typically through reinforcement learning or imitation learning [25, 21, 58, 41, 6]. For instance, Ichter
et al. [21] and motion planning networks [41] apply imitation learning on collected demonstrations to
bias the sampling process. The NEXT algorithm [6] provides a state-of-the-art design for embedding
high-dimensional continuous state spaces into low-dimensional representations, while balancing
exploration and exploitation in the sampling process. It has demonstrated clear benefits of using
learning-based components to reduce samples and accelerate planning. However, we believe two
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[53] extend this approach for nontrivial graph by replacing CNN with GNN. However, the construction
of such graphs requires ground-truth collision status for every edge on the graph at inference time.

It should be noted that other than sampling-based approaches, trajectory optimization [26, 61, 51,
45, 60], and motion primitives [37, 59] are standard choices for more structured problems such
as for autonomous cars and UAVs, while sampling-based methods are important for navigating
high-dimensional cluttered spaces such as for manipulators and rescue robots.

Graph Neural Networks for Motion Planning. Graph neural networks are permutation invariant
to the orders of nodes on graph, which become a natural choice for learning patterns in graph
problems. They have been successfully applied in robotics applications such as decentralized
control [34]. For sampling-based motion planning, Khan et al. [29] utilizes GNN to identify critical
samples. We focus on the different aspect of collision checking with given random geometric
graphs, and can be combined with existing techniques without affecting probabilistic completeness.
More broadly, GNNs have been used for learning patterns in general graph-structured problems,
e.g. graph-based exploration [9, 46], combinatorial optimization [28, 13, 3], neural algorithm
execution [53, 54, 56, 52]. Other than to use GNN for high-dimensional planning, several works
propose to first learn neural metrics, then build explicit graphs upon the learned metric which is used
later to search the path [44, 15, 14, 57]. While sharing similar interests, our work specifically focus
on how to reduce the collision checking steps for sampling-based motion planning.

Informed Sampling for Motion Planning. A main focus in motion planning is on developing
problem-independent heuristic functions for prioritizing the samples or edges to explore. Approaches
include Randomized A* [11], Fast Marching Trees (FMT*) [23], Sampling-based A*(SBA*) [39],
Batch Informed Trees (BIT*) [16]. These methods are orthogonal to our learning-based approach,
which can further exploit the problem distribution and recognize patterns through offline training
to improve efficiency. Recent work in motion planning has made significant progress in reducing
collision checking through batch sampling and incremental search, such as in BIT* [16] and AIT *[47].
The idea is to start with batches of probing random samples in the free space, and focus on reducing
collision checking to edges that are likely on good paths to the goal, which also inspires our work.

3 Preliminaries

Motion Planning. We focus on motion planning in continuous spaces, where the configuration
space is C ⊆ R

n. The configuration space includes all degrees of freedom of a robot (e.g. all joints
of a robotic arm) and is different from the workspace where the robot physically resides in, which is
at most 3-dimensional. For planning problem on a graph G = 〈V,E〉, we denote the start vertex and
goal vertex as vs, vg ∈ C. A path from vs to vg is a finite set of edges π = {ei : (vi, v

′
i)}i∈[0,k] such

that v0 = vs, v′k = vg, and v′i = vi+1 for all i ∈ [0, k − 1]. An environment for a motion planning
problem consists of a set of obstacles Cobs ⊆ C and free space Cfree = C \ Cobs. Note that Cobs is
the projection of 3D objects in the higher-dimensional configuration space, and typically has complex
geometric structures that can not be efficiently represented. A sample state v ∈ C in the configuration
space is free if v ∈ Cfree, i.e., it is not contained in any obstacle. An edge connecting two samples is
free if e ⊆ Cfree. Namely, for every point v on the edge e, v ∈ Cfree. A path π is free if all its edges
are free. A random geometric graph (RGG) is a r-disc or k-nearest-neighbor (k-NN) graph G [17, 55],
where nodes are randomly sampled from the free space Cfree. In this paper we consider the RGG as
a k-NN graph. Given a random geometric graph G and a pair of start and goal configuration (vs, vg),
the goal of agent is to find a free path π from vs to vg. Without loss of generality, we consider the
cost of a path to be the total length over all edges in it.

Graph Neural Networks and Attention. Let G = 〈V,E〉 be a finite graph where each vertex vi
is labeled by data xi ∈ R

n. A graph neural network (GNN) learns the representation hi of node vi by
aggregating the information from its neighbors N (vi). Given fully-connected networks f and g, a

typical GNN encodes the representation h
(k+1)
i of the node vi after k aggregation as:

c
(k)
i = ⊕(k)(

{

f(h
(k)
i , h

(k)
j ) | (vi, vj) ∈ E

}

) and h
(k+1)
i = g(h

(k)
i , c

(k)
i ) (1)

where h
(1)
i = xi and ⊕ is some permutation-invariant aggregation function on sets, such as max,

mean, or sum. We will also use the attention mechanism when we need to encode a varied number of
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with collision, and (iii) the special goal vertex. There are also 3 kinds of labels for the smoother: (i)
the vertices on the path, (ii) the vertices in the free space, and (iii) the vertices with collision.

The vertices and the edges are first embedded into a latent space with x ∈ R
|V |×dh , y ∈ R

|E|×dh ,
where dh is the size of the embedding. The embeddings for the GNN explorer and smoother are
different, which will be discussed later in this section. Taking the vertex and edge embedding x, y,
the GNN aggregates the local information for each vertex from the neighbors, by performing the
following operation with 2 two-layer MLPs fx and fy:

xi = g (xi,max{fx(xj − xi, xj , xi, yl) | el : (vi, vj) ∈ E}) , ∀vi ∈ V

yl = max(yl, fy(xj − xi, xj , xi)), ∀el : (vi, vj) ∈ E
(2)

Note that here we use max as the aggregation operator to gather the local geometric information,
due to its empirical robustness to achieve the order invariance [40]. The edge information is also
incorporated by adding yl as the input to fx. The update function g is implemented in two different
ways for the GNN explorer and smoother. Specifically, g equals to the max operator for the GNN
explorer, and g(mi, xi) = fg(mi) + xi as the residual connection for the GNN smoother, where fg
is a two-layer MLP. We choose max operator for the explorer, due to its inductive bias to imitate
the value iteration, as mentioned by Velickovic et al. [53]. The residual connection is applied to the
smoother, since intuitively the residual provides a direction for the improvement of each node on the
path in the latent space, which fits our purpose to generate a shorter path for the smoother.

We also note that Equation 2 directly updates on the x and y and is a homogeneous function similar
to Tang et al. [50], which allows us to self-iterate x and y over multiple loops without introducing
redundant layers. Both the GNN explorer and smoother leverage this property. After several iterations,
with two MLPs fη , fu, NE outputs the priority η = fη(y) for each edge, and NS outputs a potentially
shorter path π′ = {ui, u

′
i}, ui = fu(xi) for vi ∈ π.

Special design for the GNN path explorer. The path explorer uses the embedding of the vertices of
the form x = hx(v, vg, (v−vg)

2, v−vg), where hx is a two-layer MLP with batch normalization [22].
Here we append the L2 distance and the difference to the goal to the vertex embedding, which
serve as heuristics for the GNN to be more informed about which node is more valuable. The
yl is simply computed as yl = hy(vj − vi, vj , vi), where hy is also a two-layer MLP with batch
normalization. Optionally, it is helpful for the explorer to incorporate the configuration of obstacles

O = {o} ∈ R
|{o}|×2n as inputs, when embedding the vertices and edges. Since the obstacles of the

environment has variable numbers, we utilize the attention mechanism here to update the x and y,
named as obstacle encoding, as illustrated in Figure 2. Further details are provided in the Appendix.

Special design for GNN path smoother. The GNN smoother embeds vertices with x = hx(v),
where hx is a two-layer MLP with batch normalization. The yl is computed as yl = hy(vj−vi, vj , vi),
where hy is a two-layer MLP with batch normalization. Each time x and y are updated by Equation 2,
the GNN smoother will output a new smoother path π′ = {(ui, u

′
i)}i∈[0,k] , where ui = fu(xi), ∀vi ∈

π, given an MLP fu. The u0 and u′
k are manually replaced by vs and vg , to satisfy the path constraint.

We assume the π′ has the same number of nodes as π. Since the GNN smoother could gain novel local
geometric information with the changed vertices of the new path, we dynamically update G = 〈V,E〉,
via (i) replacing those nodes labeled as path nodes in V by the nodes on new path, (ii) replacing E by
generating a k-NN graph on the updated V . With the updated graph G, we repeat the above operation.
During training, the GNN smoother outputs π′, after a random number of iterations (between 1 and
10). During evaluation, the GNN smoother outputs π′ after only one loop for each calling.

5 Training the Path Explorer and Smoother

Due to space limitation we provide the pseudocode for all algorithms in the Appendix.

5.1 GNN Explorer NE: Training and Inference

The path explorer constructs a tree through sampled states with the hope of reaching the goal state in
a finite number of steps. We initialize the tree T0 with the start state vs as its root. Every edge eTi

in the tree Ti exists only if eTi
is in the free space Cfree. Given an RGG G = 〈V,E〉, Our goal is

to find a tree containing the goal configuration vg by adding edges from E to the tree, with as few
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collision checks as possible. We write the edge on frontier of the tree as Ef (T ) = {(vi, v
′
i) | vi ∈

VT , v
′
i 6∈ VT }. We denote the set of edges with unknown collision status at time step i as Ei.

Training procedures. Each training problem consists of a set of obstacles O, start vertex vs, goal
vertex vg, we sample a k-NN graph G = 〈V,E〉, where V is the random vertices sampled from the

free space combined with {vs, vg}. The goal is to train NE to predict exploration priority η ∈ R
|E|.

A straightforward way for supervision is to use the Dijkstra’s algorithm to compute the shortest
feasible path from vs to vg, and maximize the corresponding values of η at the edges of this path,
via cross entropy loss or Bayesian ranking [43]. However, it does not provide useful guidance when
the search tree deviates from the ideal optimal path at inference time. Instead, we first explore the
graph using η with i steps, which forms a tree Ti, where i is a random number. The oracle provides
the shortest feasible path πN in this tree and connects one of the nodes on Ti to the goal vertex vg.
We formulate this optimal path as πN = {eNi

: (vNi
, v′Ni

)}i∈[0,k], where vN0
∈ VTi

, v′Nk
= vg . We

train the explorer to imitate this oracle. Namely, the explorer will directly choose eN0
∈ πN as the

next edge to explore, among all possible edges on the frontier of Ti, i.e. Ei ∩ Ef (Ti). We maximize
the ηN0

among the values of {ηi | ei ∈ Ei ∩ Ef (Ti)} using the following cross entropy loss:

LNE
= − log γN0

, where γk =
eηk

∑

ej∈Ei∩Ef (Ti)
eηj

, ∀ek ∈ Ei ∩ Ef (Ti) (3)

Inference procedures. Given the GNN NE , the current explored tree Ti at step i, the RGG
G = 〈V,E〉 including vs and vg , environment configuration O, GNN path explorer aims to maximize
the probability of generating a feasible path by adding ei from Ei to tree Ti as:

ei = argmax
ek∈Ei∩Ef (Ti)

NE(ηk | V,E,O) (4)

where ηk is the output of NE for the edge ek. After ei is proposed by GNN using Equation 4, we
check the collision of ei. If ei is not in collision with the obstacles, we add the edge ei to the tree
Ti, and remove ei from Ei, i.e., ETi+1

= ETi
∪ {ei}, and Ei+1 = Ei \ {ei}. If ei is in collision

with obstacles, we query the path explorer for the next proposed edge using Equation 4, where Ei

is updated as Ei = Ei \ {ei}. The loop terminates when we find a collision-free edge, or when
Ei ∩Ef (Ti) = ∅. When the latter happens, we re-sample another batch of samples, add new samples
to vertices V , re-construct k-NN graph G, re-compute η, and continue to explore the path on this new
graph with the explored nodes and edges.

The exploration GNN only proposes an ordering on the candidate edges, and all possible edges may
still be collision checked in the worst case. Thus, if there exists any complete path in the RGG, the
algorithm always finds it. Therefore, the proposed learning-based component does not affect the
probabilistic completeness of sampling-based planning algorithms [8].

5.2 GNN Path Smoother NS: Training and Inference

The GNN NS for path smoothing takes an RGG and a path π proposed by the explorer, and aims to
produce a shorter path π′. Specifically, the input is a graph G = 〈V,E〉, where V = Vπ ∪ Vf ∪ Vc,
E = Eπ ∪ Efc. Here, Vf and Vc are reused as the same vertices in the GNN explorer, without
introducing extra sampling complexity. Eπ is composed of those pairs of the adjacent vertices on π,
and Efc connects each vertex in Vπ to their k-nearest neighbor in Vf ∪ Vc. Intuitively, aggregating
information from Vf∪Vc can allow GNN to identify local regions that provide promising improvement
on the current path, and avoid those that may yield potential collision.

Training procedures. We train the GNN path smoother NS by imitating a smoothing oracle S
similar to the approach of gradient-informed path smoothing proposed by Heiden et al. [18]. To
prepare the training set, we iteratively perform the following two operations on each training sample
path. Given a feasible path π predicted by NE , the smoothing oracle first tries to move the nodes
on the path π with perturbation within range ǫ. If the new path πM is feasible and has cost less
than π, then S will continue to smooth on πM . Otherwise, S will continue smoothing on π via
random perturbation. After several perturbation trials, the oracle further attempts to connect pairs of
nonadjacent nodes directly by a line segment. If such a segment is free of collision, then the original
intermediate nodes will be moved on this linear segment. Further details are in the Appendix.
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