


[9] and voxel-hashing [10], we employ a QuadTree (Octree

in 3D) data structure to reduce computation complexity, and

only update maps of the relevant regions when new sensor

observations are collected.

Furthermore, we focus on the case that individual plat-

forms seek to construct a probabilistic map, as uncertainty

quantification is important for collision avoidance. A Gaus-

sian Process (GP) is a non-parametric model that provides

a natural choice for tracking the posterior of the map while

providing uncertainty information [11]. However, the training

procedure of GP is cubic in the number of samples, and

various methods [12], [13] have been proposed to strike a

balance between computational effort and statistical accuracy

in GP inference. We develop an approach based off pseudo-

point approximations as in [14], which reduces the training

complexity from O(n3) to O(m2n), where n is the number

of training samples, m is the number of pseudo-points, and

whose convergence has recently been characterized [15].

When m ≪ n this could lead to significant computational

savings.

We further develop a weighted averaging scheme for

propagating distributions of TSDF estimated by individual

GPs across the network, inspired by consensus protocols

[16], [17]. While sub-optimal compared to approaches based

on Lagrangian relaxation of consensus constraints, such as

primal-dual [18], dual [19], and ADMM [20] methods, the

proposed approach is simple and efficient, making it suitable

for distributed probabilistic inference.

Thus, to achieve distributed, probablistic, online and ef-

ficient mapping with uncertainy information, we construct

an algorithm based upon incremental sparse Gaussian Pro-

cesses (GP) with pseudo-input approximations, which are

regressed over sequentially observed TSDF measurements

taken by each robot. Information mixing is executed through

a parametric representations of the GP mean and covariance

functions. A key point of departure of this work from our

prior work in [21] is the consideration of a time-varying

network. This is important in settings where communication

is intermittent and dependent both on the robot locations

and the environmental characteristics, e.g., common in un-

derwater and underground [6] environments. In summary, the

contributions of this paper are to:

• develop a distributed protocol for mixing incremental

pseudo-points GP posterior of TSDF over a time-

varying network,

• establish a convergence guarantee under suitable con-

ditions on the pseudo-points, communications network,

and input space,

• corroborate the proposed algorithm on two real-world

LiDAR datasets, one of which is large-scale.

We demonstrate both theoretically and empirically that the

proposed distributed mapping algorithm with time-varying

communication converges asymptotically to a centralized

estimator, which relies on the information of all robots.

II. PROBLEM STATEMENT

We consider the problem of mapping a d-dimensional

environment (d ∈ {2, 3} in practice) with occupied space

Ω ⊂ R
d and free space F ⊂ R

d. We aim to estimate a

truncated signed distance function (TSDF) [10] as a contin-

uous representation of the environment. The truncated signed

distance from a point x to the boundary ∂Ω of the occupied

space Ω is defined as:

g(x) =

{

min(d(x, ∂Ω), h), if x /∈ Ω,

−min(d(x, ∂Ω), h), if x ∈ Ω,
(1)

where h > 0 is a pre-defined truncation value and:

d(x, ∂Ω) = inf
y∈∂Ω

‖x− y‖2. (2)

The TSDF g(x) provides the (truncated) minimum distance

from x to the boundary of the occupied space and is negative

if x is within the occupied space.

We employ a team of n robots to gather observations of the

environment over a time horizon 0, . . . , T . The observation

of robot i at time t is a point-cloud Zi
t ⊂ R

d obtained,

e.g., from a LiDAR scanner, depth camera, or another range

sensor. We assume that the robot positions pit ∈ R
d and

orientations Ri
t ∈ SO(d) are known for all i, t from an

odometry algorithm, e.g. scan-matching [22] or pose graph

optimization [23]. The world-frame coordinates of a point

z ∈ Zi
t observed by the robot can be obtained via pit +Ri

tz.

We assume the the team of robots are able to exchange

the information over an undirected time-varying graph Gt =
(V, Et) with nodes V = {1, . . . , n}, corresponding to the

robots, and edges Et ⊆ V × V . If two robots i, j ∈ V are

able to communicate at time t, then an edge (i, j) ∈ Et is

present in the graph. The robots that robot i can communicate

with at time t are called its neighbors and will be denoted

by the set N i
t = {j ∈ V|(i, j) ∈ Et}. We aim to design

a fully distributed TSDF mapping approach, in which the

robots communicate only with their neighbors and place

minimal restrictions on the communication structure. We

consider time-varying networks, in which the graph Gt may

be instantaneously disconnected but the union of the graphs

over a period of time B is connected. This assumption is

much weaker than requiring the robots to be in constant

communication and is utilized for many results in multi-agent

coordination and distributed optimization [24], [25].

Assumption 1. The graph sequence Gt = (V, Et) is

uniformly connected, i.e., there exists an integer B > 0
(potentially unknown to the robots) such that the graph with

node set V and edge set EB
k =

⋃(k+1)B−1
t=kB Et is connected

for all k = 0, 1, . . ..

For each robot i, our goal is to incrementally infer a

posterior distribution over the TSDF representation g of

the environment, conditioned on the sequential observations

Zi
t of robot i as well as the information received from its

neighbors N i
t for t = 0, . . . , T . This amounts to an online

distributed Bayesian inference problem over a time-varying

network. Our approach to this problem is described in the

following section.

III. TECHNICAL APPROACH

We organize our technical approaches into the follow-

ing sections. Section III-A discusses the TSDF estimation



framework for a single agent, leveraging sparse pseudo-

point Gaussian Process. Section III-B presents the distributed

update protocol over time-varying network of robots, with

proposition and proof over the convergence of the algorithm.

A. Regressing TSDF via pseudo-point Gaussian Processes

To estimate a TSDF g(x) representation of the envi-

ronment using a single agent, we leverage pseudo-point

approximations of Gaussian Processes. This provides a way

to infer the distribution in a parametrically efficient manner.

Before doing so, we review the key steps of Gaussian Process

regression and sparse pseudo-point GP approximation.

Gaussian Processes. A Gaussian Process (GP) g(x) ∼
GP(µ0(x), k0(x, x

′)) is a stochastic process such that any

finite collection of its realizations [g(x1), . . . , g(xK)]⊤ is

jointly Gaussian with mean µ(x) = [µ0(x1), . . . , µ0(xK)]⊤

and covariance with elements k0(xk, xℓ). We employ this

nonparametric model to hypothesize that the robot’s obser-

vations are corrupted by zero-mean Gaussian noise: yi =
g(xi) + ǫi, where the noise satisfies ǫi ∼ N(0, σ2

i ). In

this work, {yi} are observations of the TSDF function g,

which we estimate from the point cloud observations Zi
t as

described at the end of this section.

In our setting, the robot collects observations D = (X , y),
where X = {xi} denotes the input vectors and y = {yi}
denotes the corresponding TSDF values. The posterior of

the GP is g(x)|D ∼ GP(µ(x), k(x, x′)). The associated

conditional mean and covariance functions of g, estimated

by the GP are:

µ(x) = µ0(x)+k0(x,X )(k0(X ,X )+σ2I)−1(y−µ0(X ))

k(x, x′) = k0(x, x
′)−k0(x,X )(k0(X ,X )+σ2I)−1k0(X , x′)

(3)

Complexity Reduction. The computational complexity of

the training procedure is O(n3) with sample size n = |D|,
due to the inversion of the kernel matrix k0(X ,X ) in (3).

We adopt an approximation based on a set of pseudo-points

P ⊂ X , where |P| = k ≪ n, as in [14]. The key is that

we parametrize the model with the pseudo-points P and g
evaluated at P , which we denote as pseudo targets ḡ. We

can then obtain the distribution of g, by integrating out the

derived distribution on ḡ and the likelihood of the model.

The distribution of g(x) conditioned on the input x, P and

ḡ, i.e. p(g(x)|ḡ) is Gaussian with parameters:

µ(x) = µ0(x)+k0(x,P)(k0(P,P) + σ2I)−1(ḡ−µ0(P))

k(x, x′) = k0(x, x
′)−k0(x,P)(k0(P,P) + σ2I)−1k0(P, x′)

(4)

Since we can assume the pseudo-targets come from the

same distribution as the dataset D, we place the same prior

on ḡ ∼ N (µ0, k0), and after using Bayes Rules on (4) and

the prior we can write ḡ|X , y,P ḡ|X , y as:

µ(P) = µ0(P)+ k0(P,P)(k0(P,P)+ Γ)−1γ

Σ(P) = k0(P,P)(k0(P,P)+ Γ)−1k0(P,P)
(5)

with weighting factors Γ = k0(P,X )(Λ+ σ2I)−1k0(X ,P),
Λ = k0(X ,X ) − k0(X ,P)k0(P,P)−1k0(P,X ), and γ =
k0(P,X )(Λ + σ2I)−1(y − µ0(X )).

Using the definition of info matrix Ω(P) = Σ(P)−1 and

information mean ω(P) = Ωµ(P), equivalently to (5) the

info mean and info matrix of P can be written as:

ω(P) = Ωµ0(P) + k0(P,P)−1γ

Ω(P) = k0(P,P)−1(k0(P,P) + Γ)k0(P,P)−1
(6)

Lastly, integrating out ḡ|X , y in (6) and g(x)|x,P, ḡ
g(x)|ḡ in (4), the TSDF posterior g(x)|X , y is distributed

as Gaussian N (µ(x), k(x, x′)) with parameters:

µ(x) = µ0(x)+ k0(x,P)k0(P,P)−1(Ω−1ω − µ0(P))

k(x, x′) = k0(x,P)k0(P,P)−1Ω−1k0(P,P)−1k0(P, x′)

+ k0(x, x
′)− k0(x,P)k0(P,P)−1k0(P, x′)

(7)

This is a key complexity reduction of GP posterior compu-

tations. In general, the pseudo-points P could be arbitrary

locations in the environment, and do not need to come

from the dataset X . However, in incremental and distributed

settings, the team of robots may encounter repeated obser-

vations of the same locations. To keep the complexity of

model proportional to complexity of environment, we pick

the pseudo points out of a fixed grid of the environment. We

incorporate the pseudo-point aggregation technique in [26] as

the pseudo-point values ḡ, which is proven to have the same

distribution as the pseudo-point GP mean and covariance in

(7). The GP using the aggregated statistics have mean and

covariance:

µ(x) = µ0(x) + k0(x,P)Q(ζ − µ0(P))

k(x, x′) = k0(x, x
′)− k0(x,P)Qk0(P, x′)

(8)

where Q−1 := k0(P,P) + σ2diag(m)−1

The locations of the pseudo-points are denoted by P ⊂ X ,

and ζ is a vector containing the arithmetic average of the

observations for p ∈ P , and m is the vector containing count

of observations for each p ∈ P .

Tree Data Structures. To keep the computational effort

under control, for each agent i we use one QuadTree Trit
(Octree in 3D) to keep track of the pseudo points at time

t. Let Li,k
t denote the kth QuadTree leaf node for tree Trit,

which may be the root when the tree has not been split,

or a child of Trit. When new pseudo-points are inserted,

if the number of pseudo-points in Li,k
t exceeds a threshold

maxLeafSize, the node Li,k
t is split recursively until all leaves

of Li,k
t have less than maxLeafSize pseudo-points.

Pseudo-point Placement. To place the pseudo-points in the

environment, we adopt a grid-approach, and place a local

frame M over the laser endpoints, as proposed by [26]. Since

the laser beams are hit where there are obstacles, we can

assume the endpoints of the laser beams have g(x) = 0.

As illustrated in Fig.2, a 3x3 frame is placed over the

laser endpoint, and the pseudo-points are selected from each

point within the frame M such that pseudo-points of both

positive and negative TSDF values are selected. Thus with

the observations Zi
t we locate the set of pseudo points P̃i

t .










