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Abstract

In this paper, we propose scalable methods for
maximizing a regularized submodular function
f, expressed as the difference between a mono-
tone submodular function g and a modular func-
tion £. Submodularity is related to the notions
of diversity, coverage, and representativeness. In
particular, finding the mode (most likely config-
uration) of many popular probabilistic models of
diversity, such as determinantal point processes
and strongly log-concave distributions, involves
maximization of (regularized) submodular func-
tions. Since a regularized function can potentially
take on negative values, the classic theory of sub-
modular maximization, which heavily relies on a
non-negativity assumption, is not applicable. We
avoid this issue by developing the first one-pass
streaming algorithm for maximizing a regularized
submodular function subject to a cardinality con-
straint. Furthermore, we give the first distributed
algorithm that (roughly) reproduces the guaran-
tees of state-of-the-art centralized algorithms for
the problem using only O(1/¢) rounds of MapRe-
duce. We highlight that our result, even for the
unregularized case where the modular term £ is
zero, improves over the memory and communica-
tion complexity of the state-of-the-art by a factor
of O(1/¢). We also empirically study the perfor-
mance of our scalable methods on real-life appli-
cations, including finding the mode of negatively
correlated distributions, vertex cover of social net-
works, and several data summarization tasks.

1. Introduction

Finding a diverse set of items, also known as data summa-
rization, is one of the central tasks in machine learning. It
usually involves either maximizing a utility function that

'Google, Ziirich, Switzerland 2Snap Inc *Department of Com-
puter Science, University of Haifa, Israel *Yale Institute for Net-
work Science, Yale University. Correspondence to: Ehsan Kazemi
<ehsankazemi @google.com>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

promotes coverage and representativeness (Wei et al., 2015)
(we call this an optimization perspective) or sampling from
discrete probabilistic models that promote negative correla-
tions and show repulsive behaviors (Gotovos et al., 2015)
(we call this a sampling perspective). Celebrated examples
of probabilistic models that encourage negative dependency
include determinantal point processes (Kulesza & Taskar,
2012), strongly Rayleigh measures (Borcea et al., 2009)
strongly log-concave distributions (Gurvits, 2009), and prob-
abilistic submodular models (Djolonga & Krause, 2014; Iyer
& Bilmes, 2015). In fact, the two above views are related
in the sense that often the mode (most likely configuration)
of a diversity promoting distribution is a simple variant of
a (regularized) submodular function. For instance, determi-
nantal point processes are log-submodular. Or, as we show
later, a strongly log-concave distribution is a regularized
log-submodular plus a log quadratic term. This paper aims
to show how such optimization tasks can be done at scale.

From the optimization perspective, to effectively select a
diverse subset of items, we need to define a measure that
captures the representativeness that lies within a selected
subset. Often, such a measure naturally has the diminishing
returns property, and thus, is formally captured by submod-
ularity. Given a finite ground set AV of size n, consider a
set function g: 2V — R assigning a utility g(A) to every
subset A C A. We say that g is submodular if for any
pair of subsets A C B C N and element u ¢ B, we have
g(AU{u})—g(A) > g(BU{u})— g(B), which intuitively
means that the increase in “representativeness” following
the addition of « to a set is smaller when « is added to a
larger set. For shorthand, we write the marginal gain of an
element as g(e | S) = g(S U {e}) — g(S) and the marginal
gain of adding an entire set as g(A | S) £ g(SUA) — g(9).
Additionally, a set function is said to be monotone if
g(A) < g(B) forall A C B C N that is, adding more
data can only increase the representativeness. Many of the
previous works in data summarization and diverse subset
selection that take an optimization perspective simply aim to
maximize a monotone submodular function (Mirzasoleiman
et al., 2013). Monotonicity has the advantage of promoting
coverage, but it also enhances the danger of over-fitting to
the data as adding more elements can never decrease the
utility. To address this issue, as is often done in machine
learning, we need to add a simple penalty, or a regular-
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izer, term. Formally, we get an instance of the regularized
submodular maximization problem, which is defined as
follows. Given an objective function f(S) = g(S) — £(S),
where g is a non-negative monotone submodular function
and / is a non-negative modular function, solve

argmax f(5) = argmax [g(S)—4(S)] , (1)
SCN,|S|<k SCN,|S|<k
i.e., find a set S of size at most k maximizing the function f

(A function ¢: 2V — R is modular if there is a value ¢,, for

every u € £ such that £(S) = > o/, forevery S C N.)

Example Applications. Strongly Rayleigh (SR) measures
(Borcea et al., 2009) (including determinantal point pro-
cesses (Kulesza & Taskar, 2012)) or the more general class
of strongly log-concave (SLC) distributions (Gurvits, 2009)
provide strong negative dependence among sampling items.
Robinson et al. (2019) showed that the logarithm of an SLC
distribution enjoys a variant of approximate submodularity
referred to as y-additively weak.! In Lemma 8, we show that
a y-additively weak submodular function can be roughly
rewritten as the difference between a non-negative monotone
submodular function and a modular function. Therefore, an
efficient and scalable algorithm for maximizing regularized
submodular functions could be instrumental for finding the
mode of SLC distributions. Diversity is another trait of a
good summary, and there are several ways to quantify it.
In this regard, while submodularity is still quite a natural
property, monotonicity sometimes is not (Tschiatschek et al.,
2014). As a result, to encourage diversity, a natural way is
to add a modular regularization term (Tschiatschek et al.,
2014). Moreover, regularized submodular functions arise
in cases with a required balance between coverage and cost
such as team formation (Iyer & Bilmes, 2013; Ene et al.,
2020).

Why Do We Need a New Theory? It is easy to show that
f & g—{is still a submodular function. However, it may no
longer be non-negative, an assumption that is essential for
deriving competitive algorithms with constant-factor approx-
imation guarantees (for more information, see the survey by
Buchbinder & Feldman (2018)). A natural way to bypass
this issue is to shift the submodular function to make it non-
negative, and then use an algorithm designed for optimizing
a classic submodular maximization problem. More specifi-
cally, given an c-approximation algorithm for non-negative
submodular function f and a shift C' making it non-negative,
the guarantee we getis f(S) > «- f(OPT) - (1 —«a) - C,
where OPT is an optimal solution for the problem. As
can be seen from this forumla, the approximation guaran-
tee obtained in this way depends on the size of shift, and
unfortunately becomes useless when the necessary shift is
large (which can be the case even when ¢(OPT) is rela-

'Note that strong log-concavity does not imply log-
submodularity (Gotovos, 2019).

tively small). We also note that, even though maximizing
a regularized submodular function has been proposed in
the past as a more faithful model of diverse data selection
(Tschiatschek et al., 2014), a formal treatment of this prob-
lem has only recently been done (Sviridenko et al., 2017;
Feldman, 2021; Harshaw et al., 2019).

Streaming and Distributed Settings. In many practical
scenarios, random access to the entire data is not possible as
only a small fraction of the data can be loaded to the main
memory and the data arrives at a very fast pace allowing it
to be read only once. Furthermore, the amount of collected
data is often too large to solve the optimization problem on
a single machine. Indeed, with the unprecedented increase
in the data size in recent years, scalable data summarization
algorithms able to handle such scenarios have gained a lot
of attention with far-reaching applications (Lin & Bilmes,
2011; Das & Kempe, 2011; Tschiatschek et al., 2014; Gygli
et al., 2015; Elenberg et al., 2017; 2018; Feldman et al.,
2018; Mitrovic et al., 2018; Kazemi et al., 2018; Haba et al.,
2020).

Handling similar scenarios in our setting requires the use of
streaming and distributed algorithms for Problem (1), but
no such algorithms were known prior to this work. Based
on ideas from (Sviridenko et al., 2017; Feldman, 2021),
Harshaw et al. (2019) proposed DISTORTED-GREEDY, an
efficient offline algorithm to (approximately) solve this prob-
lem. This algorithm iteratively and greedily finds elements
that maximize a distorted objective function. As a central-
ized algorithm, DISTORTED-GREEDY requires a memory
that grows linearly with the size of the data, and it needs
to make multiple passes (©(n) in the worst case) over the
data; therefore it fails to satisfy the above-mentioned re-
quirements of modern applications.

Our Results. In the following, we briefly explain our
main theoretical results. In Section 3, we introduce the
first one-pass streaming algorithm (called THRESHOLD-
STREAMING) for maximizing a regularized submodular
function subject to a k-cardinality constraint, where the the-
oretical guarantee (see Theorem 4) depends on an input
parameter r > 0 to the algorithm.? The value for r yielding
the strongest guarantee for Problem (1) depends on the un-
known ratio g(OPT')/¢(OPT), but we manage to simulate
knowing it using an efficient guessing scheme (see Algo-
rithm 2). Theorem 1 gives the guarantee that we obtain in
this way. We note that most previous works did not work
out the details of finding the best choice for their parameter
corresponding to r, and just give the result for r = 1.

2Technically, this algorithm is a semi-streaming algorithm, as
its space complexity is nearly linear in the size of the solution
(rather than poly-logarithmic as in true streaming algorithms).
Since this is unavoidable for algorithms that output the solution
itself (rather than just estimate its value), we ignore the distinction
between the two types of algorithms in this paper.
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Theorem 1. Given parameters €, > 0, DISTORTED-
STREAMING (Algorithm 2) outputs a set S obeying

9(8)—L(S) = ((1 -
where 6’ = §/2, &' =

' )¢opr — &) (9(OPT)—L(OPT))

. .
Sorr and (opr is

g(OPT) — \/U(OPT) - [29(OPT) — £{(OPT)]
2[g(op )fé(OPT)] ‘

In Fig. 1, we plot the approximation factor (popr as
a function of g(OPT)/¢(OPT). We observe that, as
g(OPT)/¢(OPT) grows, (opr approaches 1/2. The last
value is optimal for large values of g(OPT')/¢(OPT) since
such values imply that the modular cost function / is negli-
gable compared to the utility function g, and Feldman et al.
(2020) proved that the /2 approximation ratio is optimal
when / is missing altogether. Based on this evidence, we
conjecture that our streaming algorithm for (1) is optimal.
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Figure 1. (opr as a function of g(OPT)/¢(OPT).

In Section 4, we develop DISTORTED-DISTRIBUTED, the
first distributed algorithm for regularized submodular maxi-
mization in a MapReduce model of computation. This algo-
rithm allows us to distribute data across several machines
and use their combined computational resources. The ap-
proximation guarantee of DISTORTED-DISTRIBUTED is
given in Theorem 2.3

Theorem 2. DISTORTED-DISTRIBUTED (Algorithm 3) re-
turns a set D C N of size at most k such that

Elg(D)~£(D)] > (1-2)[(1 — e ")g(OPT) — €(OPT)].

Interestingly, even for the classic case of an unregulated
monotone submodular function, our technique improves

3We should mention that it is possible to extend the idea we
used in the streaming algorithm to the distributed scenario and
provide the final guarantee for the distributed setting in the form of
Theorem 1 (i.e., multiplicative approximation ratio of g(OPT) —
£(OPT) that depends on g(OPT)/¢(OPT)). Alternatively, one
can get a similar result by exploiting a recent result from (Feldman,
2021) which provides such a guarantee in the offline setting. We
leave this extension to the future work.

over the space and communication complexity of the ex-
isting work (Barbosa et al., 2016) by a factor of ©(1/¢)
under a several constraints including: cardinality, ma-
troids and p-systems. Since stating most of the results
of (Barbosa et al., 2016) requires many terms that are unre-
lated to the main topic of the current paper, we state here
only one out of the multiple results that can be obtained by
combining our technique with that of Barbosa et al. (2016).

Theorem 3. Given a hereditary set system (N, T) of rank
R (ie, R = maxgez |S|). If the greedy algorithm obtains
a-approximation for the problem of finding a set S € T
maximizing a given non-negative monotone submodular
Sfunction f: 2N R0, then, for every ¢ > 0 and number
m of machines, there exists a MapReduce algorithm for this
problem that (i) uses 0(6’1) MapReduce rounds, (ii) has a
space complexity of O(|N'|/m + mR/e) per machine (with
high probability) and O(|N'| +m?R/¢) in total, and (iii)
has an approximation ratio of o — €.

In Section 5, we show how finding the mode of a class of
strongly log-concave (SLC) distributions can be reduced
to the maximization of a regularized submodular function.
Finally, in Section 6 and Appendices D.2 and E, we explore
the power of the regularized submodular maximization ap-
proach and our algorithms in several real-world applications
through an extensive set of experiments. Most of the proofs
are deferred to the Supplementary Material.

2. Related Work

Finding the optimal solution for a submodular maximization
problem is computationally hard even in the absence of a
constraint (Feige et al., 2011). However, a long list of works
has suggested approximation algorithms for such problems
with many kinds of constraints (see, e.g., (Nemhauser et al.,
1978; Lee et al., 2010; Feldman et al., 2011; Badanidiyuru
& Vondrak, 2014; Feldman et al., 2017)). Nevertheless,
up until very recently, all the existing works required the
objective function to take only non-negative values, an as-
sumption that may not hold in many applications (Harshaw
et al., 2019). The first work to handle submodular objec-
tive functions that might take negative values was done
by Sviridenko et al. (2017), who studied the maximiza-
tion of submodular functions that can be decomposed as a
sum g + ¢, where g is a non-negative monotone submodu-
lar function and c is an (arbitrary) modular function. For
this problem, Sviridenko et al. (2017) gave two randomized
polynomial-time algorithms producing a set .S roughly obey-
ing g(S) +¢(S) > (1 —1/e) - g(OPT) + ¢(OPT). Both
algorithms, however are malnly of theoretical interest, as
their computational complexity is prohibitive. Using ideas
due to Feldman (2021), Harshaw et al. (2019) showed that
in the case of a cardinality constraint (and a non-negative
c) much of the complexity can be avoided, yielding the first
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practical algorithm for such functions, named DISTORTED-
GREEDY. They also extended their results to v-weakly
submodular functions and the unconstrained setting.

Due to the massive volume of current data sets, scalable
methods have gained a lot of interest in machine learning
applications. One appealing approach towards this goal is
to design streaming algorithms. Badanidiyuru et al. (2014)
were the first to consider a single-pass streaming algorithm
for maximizing a monotone submodular function under a
cardinality constraint. Their result was later improved and
extended to non-monotone functions (Alaluf et al., 2020;
Kazemi et al., 2019) and more involved constraints (Buch-
binder et al., 2015; Chekuri et al., 2015; Feldman et al.,
2018). Another scalable approach is the development of
distributed algorithms through the MapReduce framework,
where the data is split amongst several machines and pro-
cessed in parallel (Mirzasoleiman et al., 2016b; Barbosa
et al., 2015; Mirrokni & Zadimoghaddam, 2015; Barbosa
et al., 2016; Liu & Vondrak, 2019).

3. Streaming Algorithm

In this section, we present our proposed streaming algo-
rithm for Problem (1). To explain our algorithm, let us
first define T to be a subset of NV of size at most & such that
T € argmaxgc v |s)<k[(h(r)—€)-g(S)—7-£(S)], where r
is some positive real value to be discussed later, and h(r) =
% VAr®+1 A basic version of our proposed algorithm,
named THRESHOLD-STREAMING, is given as Algorithm 1.
We note that this algorithm guesses, in the first step, a value
7 > 0 which obeys kT < h(r)-g(T)—r-0(T) < (1+¢)kT.
In Algorithm 1, to avoid unnecessary technicalities, we sim-
ply assume that the algorithm can guess such a value. In
Appendix B, we explain how a technique from (Badani-
diyuru et al., 2014) can be used to implement this step
at the cost of increasing the space complexity of the al-
gorithm by a factor of O(e~!(logk + logr—1)). Algo-
rithm 1 starts with an empty set S. While the size of set
S is still smaller than k, for every incoming element w,
the value of g(u | S) — a(r) - £({u}) is calculated, where
a(r) = 2Elayarsl VAr*+1 If this value is at least 7, then u is
added to S by the algorithm. The theoretical guarantee of
Algorithm 1 is provided in Theorem 4.4

Theorem 4. For everye,r > 0, THRESHOLD-STREAMING
produces a set S C N of size at most k for Problem (1),

obeying g(S) —£(S) > maxpcn,r|<k[(h(r) —€)-g(T) —
r - £(T)], where h(r) = %

*The formulas for h(r) and a(r) are, unfortunately, quite un-
intuitive. However, it is interesting to note that the ratio h(r)/r
between the coefficients of g and ¢ in the guarantee of Theorem 4
is equal to the ratio 1/a(r) between the coefficients of these two
functions in Line 6 of Algorithm 1.

We should point out that previous studies of Problem (1), for
various theoretical and practical reasons, have only focused
on the case in which = 1 and 7 is the set O PT of size at
most k maximizing g(T") — ¢(T") (Sviridenko et al., 2017;
Harshaw et al., 2019). In this case, we get the following
corollary from the result of Theorem 4.

Corollary 5. For every € > 0, THRESHOLD-STREAMING
produces a set S C N of size at most k for Problem (1)
obeying g(S) —£(S) > (¢7% —¢) - g(OPT) — ({(OPT),
where ¢ is the golden ratio (and thus, $~2 ~ 0.382).

Algorithm 1: THRESHOLD-STREAMING

1 Guess a value 7 such that
kr <h(r)-g(T)—r-4T) < (1+¢e)kr.
Let a(r) 7%“"’5/@.
Let S + @.
while |S| < k and there are more elements do
Let u be the next elements in the stream.
ifg(u|S)—a(r) -£({u}) > T then
| Add u to the set S.

RO N7 I O &)

>

return the better solution among S and .

Next, we study the effect of the parameter r on the perfor-
mance of Algorithm 1 under different settings. First note
that the bound given by Corollary 5 reduces to a trivial lower
bound of 0 when ¢=2 - g(OPT) < £(OPT). A similar phe-
nomenon happens for the bound of (Harshaw et al., 2019,
Theorem 3) when (1—e~1)-g(OPT) < ¢(OPT). Namely,
in this regimen their bound (i.e., (1 — e™') - g(OPT) —
¢(OPT)) becomes trivial. We now explain how a carefully
chosen value for r can be used to prevent this issue.

For a set S, let S5 denote the ratio between the utility of
S and its linear cost, i.e., g = %. Using this ter-
minology, we get that the guarantees of Corollary (5) and
(Harshaw et al., 2019, Theorem 3) become trivial when
Borr < ¢* —1=¢and Bopr < 1/(e—1), respectively. In
Corollary 6, we show that by knowing the value of 5o pr
we can find a value for r in Algorithm 1 which makes
Theorem 4 yield the strongest guarantee for (1), and more-
over, this guarantee is non-trivial as long as Sopr > 0 (if
Bopr < 0, then the empty set is a trivial optimal solution).’

Corollary 6. Assume the value of Bopr is given, and let
BopT

¢’ =e-(1+1/Bopr). Settingr = ropr = 5 57—

SThe value Bopr is undefined when L(OPT) = 0. We im-
plicitly assume in this section that this does not happen. However,
if this assumption is invalid for the input, one can handle the case
of £(OPT) = 0 by simply dismissing all the elements whose
linear cost is positive and then using an algorithm for unregulated
submodular maximization on the remaining elements.
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makes Algorithm 1 return a solution S with the guarantee

9(9) = 4S) 1+ Porr —VI+280rr
g(OPT) —¢(OPT) = 280pT '

In order to get the strongest guarantee using Corollary 6,
we need access to the set OPT (and consequently Sopr
and ropr); but, unfortunately, none of these is known a
priori. It turns out, however, that by trying a relatively
small number of guesses for 5o pr and 7o pr, One can get
a guarantee that is almost as good as the one that can be
obtained by knowing these exact values. The full version of
our proposed algorithm, named DISTORTED-STREAMING,
is based on this idea. Its pseudocode is given as Algorithm 2,
and assumes that § > 0 is an accuracy parameter.

Algorithm 2: DISTORTED-STREAMING

1A {e(1+0)"|0<i < [logy5(Y2))]}-
2 for every ( € A in parallel do

3 Calculate 3 < ﬁ.
4 Calculate r + ﬁ // This is the

formula from Corollary 6.
5 Run THRESHOLD-STREAMING (Algorithm 1)
with 7.
6 return the best among the solutions found by all the
copies of THRESHOLD-STREAMING executed.

One can see that the value of r passed to every copy of
THRESHOLD-STREAMING by DISTORTED-STREAMING is
at least £/3, and thus, the number of elements kept by each
such copy is at most O (e~ ! (log k+1log e~1)). Furthermore,
the number of elements kept by DISTORTED-STREAMING
is larger than that by a factor of at most 1+4-log; | 5(1/(2¢)) =
O(671 -log(¢71)). Theorem 1, given in Section 1, studies
the approximation guarantee of DISTORTED-STREAMING.

4. Distributed Algorithm

The exponential growth of data makes it difficult to process,
or even store, the entire data on a single machine. For this
reason, there is an urgent need to develop distributed or par-
allel computing methods to process massive datasets. Dis-
tributed algorithms in the Map-Reduce model have shown
promising results in several problems related to submodu-
lar maximization (Mirzasoleiman et al., 2013; Mirrokni &
Zadimoghaddam, 2015; Barbosa et al., 2015; 2016). In this
section, we present a distributed solution for Problem (1),
named DISTORTED-DISTRIBUTED, which appears as Al-
gorithm 3. Our algorithm uses DISTORTED-GREEDY pro-
posed by Harshaw et al. (2019) as a subroutine.

Our distributed solution is based on a framework suggested
by Barbosa et al. (2016) for converting greedy-like sequen-

tial algorithms into distributed ones. However, its analy-
sis is a generalization of ideas from (Barbosa et al., 2015)
rather than being a direct adaptation of the analysis given
by (Barbosa et al., 2016). This allows us to get an algorithm
which uses asymptotically the same number of computa-
tional rounds as the algorithm of (Barbosa et al., 2016), but
does not need to keep multiple copies of the data as is done
by the last algorithm. We would also like to point out that
Barbosa et al. (2016) have proposed a variant of their algo-
rithm that avoids data replication, but it does so at the cost of
increasing the number of rounds from ©(1/¢) to ©(1/?).

DISTORTED-DISTRIBUTED is a distributed algorithm
within the Map-Reduce framework using [1/e]| rounds of
computation, where € € (0,1/2] is a parameter controlling
the quality of the algorithm’s output. In the first round of
computation, DISTORTED-DISTRIBUTED distributes the el-
ements among m machines by independently sending each
element u € N to a uniformly random machine. Each
machine 7 then runs DISTORTED-GREEDY on its data and
forwards the resulting solution S ; to all other machines
(in general, we denote by S, ; the solution calculated by
machine ¢ in round 7). The next rounds repeat this opera-
tion, except that the data of each machine now includes also
the elements included in any solution calculated (by any
machine) during the previous rounds. At the end of the last
round, machine number 1 outputs the final solution, which
is the best solution among the solution computed by this ma-
chine in the last round and the solutions computed by all the
machines in the previous rounds. Theorem 2 analyzes the
approximation guarantee of DISTORTED-DISTRIBUTED.

Algorithm 3: DISTORTED-DISTRIBUTED

1 forr =1to [¢71] do

2 | foreachu € N do

3 Assign element v to a machine chosen
uniformly at random (and independently)
among m machines.

4 Let NV, ; denote the elements assigned to
machine 7 in this round.

5 fori =1tomdo

6 Run DISTORTED-GREEDY on the set

N U (UL um ) S, i) to get the
solution S, ; of size at most k .

7 if 7 < £~ ! then Forward the solutions Sy, for
every integer 1 < ¢ < m, to all the machines.
8 else return a ser D maximizing g(D) — ¢(D)
among all sets in {S, 1} U{S, ;v |1 <r' <
rand1 <i <m}.
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5. Mode Finding of SLC Distributions

In Section 1, we discussed the power of sampling from
discrete probabilistic models (specifically, strongly log-
concave distributions), which encourage negative correla-
tion, for data summarization. In this regard, recently, Robin-
son et al. (2019) established a notion of y-additively weak
submodularity for strongly log-concave (SLC) functions.
Using this newly defined property, we can apply our algo-
rithms to obtain a performance guarantee for mode finding
of a class of distributions derived from SLC. Following is
the definition of y-additively weak submodular functions.

Definition 7 (Definition 1, (Robinson et al., 2019)). A set
function p: 2N — R is y-additively weak submodular if for
any S C N and u,v € N'\ S with u # v, we have

p(S) + p(S U {u,v}) <7+ p(S U{u}) + p(S U {v}) -

In order to maximize a ~y-additively weak submodular func-
tion p, we show that, with a little modification, p can be
converted to a submodular function A (defined in Lemma 8).
We then show that A, in its turn, can be rewritten as the
difference between a non-negative monotone submodular
function and a modular function (Lemma 9), which allows
us to optimize A using the results of Theorem 4 and The-
orem 2. Finally, we show that even though we use these
algorithms to optimize A, the solution they provide has
a good guarantee with respect to the original vy-additively
weak submodular function p. With this new formulation, we
improve the theoretical guarantees of Robinson et al. (2019)
in the offline setting and provide streaming and distributed
solutions for the mode finding problem under a cardinality
constraint. Specifically, by using either our proposed stream-
ing or distributed algorithms (depending on the setting), we
can get a scalable solution with a guarantee with respect
to p, and in particular, a guarantee for the task of finding
the mode of an SLC distribution. We should also point out
that the distorted greedy algorithm (Harshaw et al., 2019,
Algorithm 1) can be used in a similar way to optimize p in
the offline setting.

Lemma 8. For a y-additively weak submodular function p,
the function A(S) £ p(S)— 2% -|S|-(|S| —1) is submodular.

Now, let us define the modular function £(S) = >, ¢ Cu,
where £, = max{A(N \ u) — A(N),0} = max{p(N \
u) = pN) +7- (IN]=1),0}.

Lemma 9. The function g(S) = A(S) + £(S) is monotone
and submodular. Furthermore, if p(&) > 0, then g(S) is
also non-negative because £(&) = 0.

As promised, we now show that by optimizing A under a car-
dinality constraint using either of our proposed algorithms
yields a scalable solution with a guarantee with respect to p.

Corollary 10. Assume p: 2V — R is a y-additively weak
submodular function obeying p(&) > 0. Then, when given
A as the objective function, DISTORTED-DISTRIBUTED
(Algorithm 3) returns a solution R such that

E[p(R)] > (1<) [(1 e )p(0PT) — e~ - (0P T)]
oyl e U - 1) ~E|RI(R - )]
: ,

where OPT € arg max,g|<, p(S) and | = |OPT| < k.

The following corollary shows the guarantee obtained by
THRESHOLD-STREAMING as a function of the input param-
eter r. When the best choice for 7 is unknown, DISTORTED-
STREAMING roughly obtains this guarantee for the best
value of r, as discussed in Section 3.

Corollary 11. Assume p: 2N S Risa y-additively weak
submodular function obeying p(&) > 0. Then, when given
A as the objective function, THRESHOLD-STREAMING (Al-
gorithm 1) returns a solution R such that p(R) is at least

(h(r) —e) - p(OPT) — (ax(r) —r — 1 +¢€) - £(OPT)

2 lh(r) —e)-1-(1=1) = |R[- (R = 1)]
5 ,

where OPT € arg maxg|<j, p(S) and | = |OPT| < k.

Note that in (Robinson et al., 2019, Theorem 12) and Corol-
lary 10, if the value of the linear function is considerably
larger than the values of functions 7 or p, then the bounds
given by these results can be negative (and thus, trivial). The
main explanation for this phenomenon is that the distorted
greedy algorithm does not take into account the relative im-
portance of g and ¢ to the value of the optimal solution. On
the other hand, the distinguishing feature of our streaming
algorithm is that, by guessing the value of Sopz, it can assign
weights to the importance of the submodular and modular
terms in the best possible way. Therefore, DISTORTED-
STREAMING, even in the scenarios where the linear cost is
large, can find solutions with a non-trivial provable guar-
antee. In the experiments presented in Appendix D.2, we
showcase that: (i) DISTORTED-STREAMING could be used
for mode finding of strongly log-concave distributions with
a provable guarantee, and (ii) choosing an accurate estima-
tion of Bopr plays an important role in this optimization
procedure. In Appendix D.2, we compare the performance
of DISTORTED-STREAMING with several other algorithms
on the problem of mode finding for an SLC distribution.

6. Experiments

In this section, we present the experimental studies we have
performed to show the applicability of our approach. In
the first set of experiments (Section 6.1), we compare the
performance of our proposed streaming algorithm with that
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of DISTORTED-GREEDY (Harshaw et al., 2019), vanilla
greedy, and sieve-streaming (Badanidiyuru et al., 2014).
The main message of the first experiments is that our
proposed distorted-streaming algorithm outperforms both
vanilla greedy and sieve streaming, and performs compara-
bly with respect to the distorted-greedy algorithm in terms
of the objective value—despite the fact that our proposed
algorithm makes only a single pass over the data, while
distorted-greedy has to make k passes (which can be as
large as ©(n) in the worst case).

In the second set of experiments (Section 6.2), we compare
DISTORTED-DISTRIBUTED with distributed greedy. In the
final experiments (Section 6.3), we demonstrate the power
of our proposed regularized model by comparing it with the
alternative approach of maximizing a submodular function
subject to cardinality and single knapsack constraints. In
the latter case, the goal of the knapsack constraint is to
limit the linear function ¢ to a pre-specified budget while
the algorithm tries to maximize the submodular function
g. For supplementary experimental evaluations refer to
Appendices D.2 and E.

6.1. How Effective is DISTORTED-STREAMING?

In this experiment, we compare DISTORTED-STREAMING
with distorted-greedy, greedy, and sieve-streaming in the
setting studied in (Harshaw et al., 2019, Section 5.2). In this
setting, there is a submodular function f over the vertices
of a directed graph G = (V, E)). To define this function, we
first need to have a weight function w: V' — R>( on the
vertices. For a given vertex set S C V, let N(.S) denote
the set of vertices which are pointed to by S, i.e., N(S) £
{v € V | Ju € S such that (u,v) € E}. Then, we have
f(S) £ g(S) = £(S) = > ueN(s)us Wu = Xoyeg Lu- Fol-
lowing Harshaw et al. (2019), we assigned a weight of 1 to
all nodes and set ¢,, = 1 + max{0,d,, — ¢}, where d, is
the out-degree of node  in the graph G(V, E) and ¢ is a pa-
rameter. In our experiment, we used real-world graphs from
(Leskovec & Krevl, 2014), set ¢ = 6, and ran the algorithms
for varying cardinality constraint k. In Fig. 2, we observe
that for all four networks, distorted greedy, which is an
offline algorithm, achieves the highest objective values. Fur-
thermore, we observe that DISTORTED-STREAMING consis-
tently outperforms both greedy and sieve-streaming, which
demonstrates the effectiveness of our proposed method.

SWe note that some algorithms from the literature improve over
vanilla greedy in terms of speed (Stochastic greedy (Mirzasoleiman
etal.,2015) and FAST (Breuer et al., 2019)) or over sieve streaming
in terms of the memory complexity (Sieve-streaming++ (Kazemi
et al., 2019)). However, in all these cases the improved algorithm
is no better than the original algorithm in terms of the approxima-
tion quality (which is the main purpose of our experiments), and
therefore, it suffices for us to compare against the algorithms that
we have listed.

In Section 1, we discussed how shifting the function f £
g — ¢ by a constant value of C' and making it non-negative
would affect the approximation factors of the existing al-
gorithms (including vanilla greedy) for maximizing non-
negative submodular functions. We showed that different
values of C result in different theoretical approximation
guarantees from running vanilla greedy over the function
f + C. On the other hand, shifting a function by a constant
value does not change the marginal gains of the elements.
Therefore, the solution returned by the vanilla greedy is the
same for all different values of C'. As a result, the improve-
ment we gain over the vanilla greedy in this experiment
confirms the need for an approach (from both theoretical
and practical perspectives) beyond applying existing algo-
rithms for non-negative submodular functions to shifted
versions of f.

6.2. Distributed Setting

In this section, we compare DISTORTED-DISTRIBUTED
with the distributed greedy algorithm of Barbosa et al.
(2016). We evaluate the performance of these algorithms
over several large graphs (Leskovec & Krevl, 2014) in
the setting of Section 6.1 under a cardinality constraint
k = 1,000, where we set ¢ = 50. For both algorithms, we
set the number of computational rounds to 10. The first
graph is the Amazon product co-purchasing network with
n = 334,863 vertices; the second one is the DBLP collabo-
ration network with n = 317,080 vertices; the third graph
is Youtube with n = 1,134,890 vertices; and the last graph
we consider is the Pokec social network, the most popu-
lar online social network in Slovakia, with n = 1,632,803
vertices. For each graph, we set the number of machines
to m = [7/4000]. In Fig. 3, we can see that the objective
values of DISTORTED-DISTRIBUTED exceed the results of
distributed greedy for all four graphs.

6.3. Regularized Data Summarization

In this section and Appendix E, through an extensive set
of experiments, we answer the following two questions: (i)
How does DISTORTED-STREAMING perform with respect
to sieve-streaming and distorted greedy on real-world data
summarization tasks? (ii) Is our proposed modeling ap-
proach (maximizing diversity while considering costs of
items as a regularization term) favorable to methods which
try to maximize a submodular function subject to a knapsack
constraint? To do this, we consider three state-of-the-art
algorithms for solving the problem of submodular maxi-
mization with a cardinality and a knapsack constraint: FAN-
TOM (Mirzasoleiman et al., 2016a), Fast (Badanidiyuru
& Vondrak, 2014) and Vanilla Greedy Dynamic Program
(Mizrachi et al., 2019). For the sake of fairness of exper-
iments, we used these three algorithms to maximize the
submodular function g under 50 different knapsack capaci-
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Figure 3. Comparison of DISTORTED-DISTRIBUTED with the
distributed greedy algorithm subject to a cardinality constraint
k = 1,000. The number of computational rounds is set to 10.

ties cin the interval 0.1 < ¢ < 100 and reported the solution
maximizing g(S) — £(.S). For the computational complex-
ities of these algorithms, we report the number of oracle
calls used by a single one out of their 50 runs (even though
we report the best output in any of these runs), giving these
offline algorithms a considerable edge in the comparison.

We consider in this section an online video summarization
application, where a stream of video frames comes, and
one needs to provide a set of representative frames as the
summary of the whole video. More formally, the objective
is to select a subset of frames in order to maximize a utility
function ¢(S) (representing diversity), while minimizing
a non-negative modular function ¢(S) capturing the total
entropy of the selection (the entropy of the set S could be
interpreted as a proxy of the storage size of S).

We used the pre-trained ResNet-18 model (He et al., 2016)
to extract features from frames of each video. Then,
given a set of frames, we defined a matrix M such that
M;; = e 9U@25) where dist(z;, ;) denotes the distance
between the feature vectors of the i-th and j-th frames,
respectively. One can think of M as a similarity ma-
trix among different frames of a video. The utility of a
set S C V is defined as a non-negative monotone sub-
modular function g(S) = logdet(I + aMg), where I is

the identity matrix, « is a positive scalar and Mg is the
principal sub-matrix of the similarity matrix M indexed
by S. Informally, this function measures the diversity
of the vectors in S. To sum-up, we want to maximize
the following function under a cardinality constraint k:
£(S) 2 g(S) — £(S) = logdet(I + aMs) — Y, cq Ha,
where H,, is the entropy of frame w.

In the first experiment, we summarized the frames of videos
13 and 15 from the VSUMM dataset (De Avila et al., 2011),”
and compared the above-mentioned algorithms based on
their objective values and number of oracle values for vary-
ing cardinality constraint k. From Figs. 4a and 4b we
conclude that (i) the quality of the solutions returned by
DISTORTED-STREAMING is as good as the quality of the
results of distorted greedy, (ii) distorted greedy clearly out-
performs sieve-streaming, and (iii) the objective values of
DISTORTED-STREAMING and distorted greedy are both
larger than the corresponding values produced by Greedy
Dynamic Program, Fast and FANTOM. This confirms that
directly maximizing the function f provides higher utili-
ties versus maximizing the function g and setting a knap-
sack constraint over the modular function ¢. In Figs. 4c
and 4d, we observe that the computational complexity of
DISTORTED-STREAMING and sieve streaming is several or-
ders of magnitudes better than the computation complexity
of the other algorithms, which is consistent with their need
to make only a single pass over the data.

Next, we study the effect of the linear cost function (in other
words, the importance we give to the entropy of frames)
on the set of selected frames. For this reason, we ran
DISTORTED-STREAMING on the frames from video num-
ber 14. The objective function is f(S) = g(S) — X - £(S)
for A € {0,0.5,1.0}. In this experiment, we set the cardi-
nality constraint to £ = 6. In Fig. 4e, we observe that by
increasing A the entropy of the selected frames decreases.
This is evident from the fact that the color diversity of pixels
in each frame reduces for larger values of \. Consequently,
the representativeness of the selected subset decreases. In-

"https://sites.google.com/site/vsummsite/
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Figure 4. Movie frame summarization: For each frame w the linear cost ¢, is the entropy of that frame. (a) and (b) compare the objective
values. (c) and (d) compare the computational complexities based on the number of oracle calls. In experiment (e), the input function is
F(S) 2 g(S) — X-£(S) for A € {0,0.5,1.0}, where we set the cardinality constraint to k = 6.

deed, while it is easy to understand the whole story of this
animation from the output produced for A = 0, some parts
of the story are definitely missing if we set A to 1.0.

7. Conclusion

In this paper, we proposed scalable methods for maximiz-
ing a regularized submodular function expressed as the
difference between a non-negative monotone submodular
function g and a modular function ¢. We developed the first
one-pass streaming algorithm for maximizing a regularized
submodular function subject to a cardinality constraint with
a theoretical performance guarantee, and also presented a
distributed algorithm matching the guarantees of state-of-
the-art offline algorithms using only O(1/¢) rounds of Map-
Reduce computation. Moreover, even for the unregularized
case, our distributed algorithm improves the memory and
communication complexity of the existing work by a factor
of ©(1/¢). We also empirically studied the performance of
our scalable methods on a set of real-world applications.
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