


roadway. The paths through each subregion can then be solved

independently and unconstrained for which efficient methods

exist. Second, we apply our proposed Diffusion Heuristic to

perform local search and exchange between subregions in

order to meet fuel constraints. The Diffusion Heuristic can

be easily tuned between greedy and random behavior through

the adjustment of several parameters. We compare CAR-Diff

against the existing state-of-the-art [18], [24] and report an

improvement of 7.8% avg. (25.6% max.) in monitoring time

and more efficient rendezvous for real-world examples.

II. RELATED WORK

Our specific problem of remote sensing with a fuel-

constrained UAV initially stems from two related research

areas: trajectory planning for an MRV for an already prescribed

set of UAV trajectories [25] and trajectory planning for a fuel-

constrained UAV traveling between static refuelling stations

[13], [14]. The combined problem forms the mobile-depot VRP

(MoD-VRP), a known NP-hard problem [18].

A common approach is to constrain rendezvous to a set of

discretized locations along the path, converting the problem

from a Mobile-Depot VRP to a Multi-Depot VRP. Early work

solved for a single path and a single MRV-UAV pair using a

genetic algorithm to maximizing POIs visited [26] or iterative

heuristics to improve upon an initial approximation [22]. Others

solved with a split heuristic problem, which creates a single

UAV tour and splits it into feasible ones given the UAV’s range

[19]. Maini et al. [18] follow a similar approach with their cut-

and-repair heuristic.

The addition of more autonomous agents beyond a single

UAV-MRV team dramatically increases the solution space. For

situations that do not have constraints on MRV travel, heuristics

based on genetic algorithms have shown promise [20], [21],

[24], but while a solution can be generated, the solution quality

is typically worse, requiring additional heuristics to fix pathing,

and the solution is very dependent on hyperparameters.

The closest works to our problem of remote sensing are

by Maini et al. [18] and Li et al. [24]. Maini [18] proposes

two exact formulations to solve a VRP with MRV-UAV ren-

dezvous, which can be solved exactly for small problem sizes.

For refuelling rendezvous, the MRV is constrained to a road

network while UAV is only constrained by a inter-rendezvous

travel distance. To solve larger problems, the authors propose

a cut-and-repair heuristic (Repair 2019) that solves for an

approximate path with no constraints and applies constraints

afterwards in an iterative greedy process. Li [24] utilizes a

genetic algorithm termed the memetic algorithm (Memetic

2021). Due to the high complexity of the problem, the algorithm

first attempts to cluster the POIs into subregions, enabling the

memetic algorithm to better explore the solutions space.

The Repair algorithm suffers from an inherent assumption

that the cost of traveling from any POI to a valid roadway

will be minimal due to the greedy nature of selecting return

paths. CAR-Diff addresses the issue by representing rendezvous

locations by a supernode when generating paths with costs

equivalent to the minimum required to travel from a POI to

any rendezvous location. The Memetic algorithm clusters the

POIs but each cluster can be far away from a valid rendezvous

location. CAR-Diff remedies this by creating subregions that

are aligned with the MRV path.

III. PROBLEM FORMULATION

Consider a problem where a set of N POIs Gq :=
{q1, . . . , qN} where qi ∈ R

2 must all be visited in minimal

time by a UAV equipped with appropriate sensors. The UAV

is limited by maximum velocity Vu and fuel F , and we are

interested in the scenario where the region to be covered

exceeds the capacity of a UAV for a single flight cycle and

the UAV must rendezvous with a MRV for refuelling.

The MRV is limited by a maximum velocity Vg but has

unlimited fuel, and during each rendezvous, the UAV energy is

replenished through a battery swap, which requires a constant

time of τr. MRV travel is constrained to a path represented by

the set of Np points and linear interpolation between successive

points Gp := {λpi + (1 − λ)pj | 0 ≤ λ < 1, j = i + 1 ∀ i =
{1, . . . Np − 1} } where pi ∈ R

2. We model the MRV path as

a supernode, which has full connectivity to all POIs with the

edge cost equal to the fuel cost between the POI and the closest

point in Gp.

The POIs and rendezvous supernode form a graph {G, E}
with vertices representing sensing and refuelling locations

G := Gq ∪ Gp and edges E representing fuel cost for traveling

between those locations. Note: to simplify notation, we use a

generic index i when referencing a vertex of the graph, such

that i ∈ G can represent either qi or the closest point within

the supernode Gp.

The path between two recharge rendezvous locations is

termed a cycle, and the set of all cycles is denoted as C :=
{1, . . . ,Kc}. In order to achieve complete coverage, a single

drone must travel multiple cycles or multiple drones can travel

one or more cycles, depending on the drone availability. The

continuity constraints ensure that each POI is visited once:
∑

i∈G\{j}

x
(c)
ij =

∑

i∈G\{j}

x
(c)
ji ∀j ∈ G, c ∈ C

∑

c∈C

∑

i∈G

x
(c)
ij = 1 ∀ j ∈ Gp (1)

Fuel costs for a given cycle are tracked using the variable z
(c)
i ,

which is the cost of reaching POI i during cycle c.

z
(c)
i =

∑

j∈G

(z
(c)
j + fj→i)x

(c)
ji 0 ≤ z

(c)
i ≤ F ∀ i ∈ G

z
(c)
k = 0 ∀ k ∈ Gp (2)

For this work, we assume a linear relationship between fuel

consumption and flight time:

fj→i = kf tj→i (3)

where fj→i is the fuel consumed, kf is a constant relating fuel

consumption, and tj→i is travel time between POIs j and i. As

discussed in Sec. IV, our algorithm solves an unconstrained

TSP and then checks for fuel constraint violations during the

Diffusion Heuristic, allowing other more complex models of

energy consumption [27] to be applied without issue.



To ensure a continuous path for each route, a subtour elimi-

nation constraint should be applied each time the optimization

is run and a subtour is found. For a subset of vertices υ ⊂ G,

we can define the set of edges leaving the subgroup as follows:

∑

(i,j)∈N (υ)

x
(d)
ij ≥ 1 , N (υ) = {(i, j) : i ∈ υ, j /∈ υ} (4)

Problem 1: The objective is to visit every POI while minimiz-

ing the mission total time, which includes the time required to

travel between all POIs and the time for each refuel rendezvous,

and being subject to a fuel constraint.

min
xij

∑

c∈C,i,j∈G

ti→jx
(c)
ij + |C|τr (5)

s.t. Eqs. (1) - (4)

where x
(c)
ij ∈ [0, 1]N×N indicate if an edge was travelled on

a given cycle c, ti→j is the time cost to travel between qi
and qj , and τr is the time required for a battery swap during

rendezvous.

IV. CAR-DIFF ALGORITHM

To generate a solution for the Problem 1, we propose

the Clustering Aligned to Roadways with Diffusion Heuristic

(CAR-Diff) algorithm with an overview presented in Alg. 1.

CAR-Diff is an iterative two-stage algorithm that first clusters

the POIs based on distance to a set of subregion generator

points that balance road travel with the density of nearby

points (Sec. IV-A). Each cluster represents a single cycle of

travel for the UAV and a shortest path is found using existing

TSP solvers without fuel constraints (Sec. IV-B). Then, our

Diffusion Heuristic is applied to balance the fuel costs of

each subregion (Sec. IV-C). If fuel constraints are met for all

subregions, the set of paths is returned. Otherwise, the number

of generator points is incremented and the process repeats.

A. Path-Aligned Clustering

Voronoi tessellation (VT) is an efficient method to subdivide

a region based on a set of generator points V := {vc | c ∈
C} where vc ∈ Gp where the union of subregions cover the

entire space. Each generator point vc defines one subregion

Rc that consists of the area closest to the generator point as

defined by the L2-norm, such that Rc = {p | ‖p− vm‖2 ≤
‖p− vn‖2 ∀ m 6= n}. All POIs are assigned to exactly one

unique subregion corresponding to a generator point and all

points in the subregion must be visited in a single cycle.

When clustering, special attention must be given to the

distance of the cluster to the nearest rendezvous location. Un-

necessary distance between clusters and rendezvous locations

can have a significant impact on fuel consumption. To enforce

that each cycle can form an efficient path, CAR-Diff selects

generator points along the MRV path distributed evenly across

the values of an objective function J , which balances the

number of nearby POIs and the distance traveled by the MRV.

Prior to calculating the objective function, the minimum-fuel

rendezvous location p̃i ∈ Gp and required fuel di to reach p̃i

Algorithm 1 CAR-Diff Algorithm Overview

Input: POIs, Fuel Constraint, MRV Path Constraint, Initial

Subregion Count

Output: UAV Paths, MRV Path

1: Compute clustering objective function (Sec. IV-A, Eq. (6))

2: for Kc in Kc0 to N do

3: Create Kc subregions (Sec. IV-A)

4: Compute TSP path for each subregion (Sec. IV-B)

5: while Subregion cost not stabilized and H > 1 do

6: Perform Diffusion Heuristic (Sec. IV-C, Alg. 2)

7: Recompute TSP path for each subregion (Sec. IV-B)

8: if Subregion cost stabilized then

9: Reduce H by decay factor

10: end if

11: end while

12: if All subregions meet fuel constraint (Eq. (2)) then

13: break

14: end if

15: end for

16: return UAV Paths, MRV Path

are calculated for each POI (Alg. 1, Line 1). The values are

used to compute J as defined per unit MRV path length l as:

J(l) =
wj

L
l +

(1− wj)∑
i di

∑

i

xi(l)di (6)

where wj balances placement of generator points along the

road with placement dependent on nearby point density, L is

the total length of the road, l is the travel distance from the

the first MRV point p1 to the current linearized position on the

path, xi(l) is a binary indicator if the nearest road intersection

point p̃i has been passed, and di is the distance from POI

at qi to the nearest rendezvous point. Setting wj = 1 places

generator points evenly along the MRV path while wj = 0
places generator points in proportion to nearby POIs. In our

experimentation, setting 0 < wj < 1 is appropriate as including

both terms balances the increased cycles for servicing dense

regions with the added distance required visit sparse points.

From the objective function J , Kc generator points are

selected to evenly divide the range of J , resulting in subregions

that are aligned with the road. Note that the computation to

form the objective function is only performed once and J
does not change for successive iterations. An example of the

process is provided in Figure 2, which illustrates the initial POI

distribution, the assignment of each POI to a nearest rendezvous

location, the formation of the objective function J , and the

final subregion divisions derived from Kc generator points. The

Kc subregions are passed to a TSP solver, which generates a

minimum-cost path for all POIs within each subregion.

B. Pathing

For each subregion, a path is generated that services all points

and begins and ends along the MRV path using OR-Tools [28].

The path starts and ends at the road supernode with actual

rendezvous locations p̃i generated as the closest road locations

to the first and last POI in the sequence. CAR-Diff solves for

the optimal path without applying fuel constraints, enabling the







POIs in the Cedar Fire loop, Memetic 2021 required an average

of 12.2 refuel rendezvous compared to 7.8 and 8.4 for Repair

2019 and CAR-Diff, respectively. The effect of the design

decisions of Repair 2019, Memetic 2021, and CAR-Diff can

be viewed in Fig. 4, which shows a set of example paths for

the Cedar Fire monitoring example. Note the small clusters

generated by Mimemtic 2021 and the difference in path quality

formed without (Repair 2019) and with (CAR-Diff) clustering.

Computation time for the algorithms is not critical for the

operational tempo of typical surveying missions as this can be

done offline, but it does offer insight into how the clustering of

CAR-Diff results in competitive computation times for larger

problem sizes. For 1000 POIs, the average computation time for

Repair 2019 was 46 s, nearly all on computing an initial path for

repair and average time for CAR-Diff was 117 s (random), 114

s (balanced), and 111 s (greedy). The time to compute CAR-

Diff approaches Repair 2019 for larger problem sizes due to

the exponential complexity of solving the TSP in Fig. 3(bot).

CAR-Diff solves the TSP many more times than Repair 2019,

but each problem instance is smaller and can be computed

in parallel due to the road-aligned clustering. Memetic 2021

was unable to generate a solution within the allotted time for

any problem size greater than 100 POIs, which required 5000-

7500x the time required by Repair 2019.

VI. CONCLUSION

We proposed CAR-Diff, a two-stage algorithm to plan tra-

jectories for UAV remote sensing with refuelling rendezvous.

By aligning clustering with the mobile recharging vehicle

path, CAR-Diff can generate subregions with low-cost paths

to rendezvous locations. The proposed algorithm can be con-

figured for a tradeoff between computation time and solution

quality with the adjustment of two parameters. CAR-Diff was

compared against existing works [18], [24] and showed up to

25.6% improvement in monitoring time, enabling more efficient

surveying of the environment.
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