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Abstract

This paper explores the generalization loss of linear regression in variably param-
eterized families of models, both under-parameterized and over-parameterized.
We show that the generalization curve can have an arbitrary number of peaks,
and moreover, locations of those peaks can be explicitly controlled. Our results
highlight the fact that both classical U-shaped generalization curve and the recently
observed double descent curve are not intrinsic properties of the model family.
Instead, their emergence is due to the interaction between the properties of the data
and the inductive biases of learning algorithms.

1 Introduction

The main goal of machine learning methods is to provide an accurate out-of-sample prediction,
known as generalization. For a fixed family of models, a common way to select a model from this
family is through empirical risk minimization, i.e., algorithmically selecting models that minimize
the risk on the training dataset. Given a variably parameterized family of models, the statistical
learning theory aims to identify the dependence between model complexity and model performance.
The empirical risk usually decreases monotonically as the model complexity increases, and achieves
its minimum when the model is rich enough to interpolate the training data, resulting in zero (or
near-zero) training error. In contrast, the behaviour of the test error as a function of model complexity
is far more complicated. Indeed, in this paper we show how to construct a model family for which
the generalization curve can be fully controlled (away from the interpolation threshold) in both
under-parameterized and over-parameterized regimes. Classical statistical learning theory supports a
U-shaped curve of generalization versus model complexity [31, 33]. Under such a framework, the best
model is found at the bottom of the U-shaped curve, which corresponds to appropriately balancing
under-fitting and over-fitting the training data. From the view of the bias-variance trade-off, a higher
model complexity increases the variance while decreasing the bias. A model with an appropriate
level of complexity achieves a relatively low bias while still keeping the variance under control. On
the other hand, a model that interpolates the training data is deemed to over-fit and tends to worsen
the generalization performance due to the soaring variance.

Although classical statistical theory suggests a pattern of behavior for the generalization curve up
to the interpolation threshold, it does not describe what happens beyond the interpolation threshold,
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commonly referred to as the over-parameterized regime. This is the exact regime where many modern
machine learning models, especially deep neural networks, achieved remarkable success. Indeed,
neural networks generalize well even when the models are so complex that they have the potential to
interpolate all the training data points [61, 10, 32, 34].

Modern practitioners commonly deploy deep neural networks with hundreds of millions or even
billions of parameters. It has become widely accepted that large models achieve performance
superior to small models that may be suggested by the classical U-shaped generalization curve
[13, 38, 55, 35, 36]. This indicates that the test error decreases again once model complexity grows
beyond the interpolation threshold, resulting in the so called double-descent phenomenon described
in [9], which has been broadly supported by empirical evidence [49, 48, 29, 30] and confirmed
empirically on modern neural architectures by Nakkiran et al. [46]. On the theoretical side, this
phenomenon has been recently addressed by several works on various model settings. In particular,
Belkin et al. [11] proved the existence of double-descent phenomenon for linear regression with
random feature selection and analyzed the random Fourier feature model [50]. Mei and Montanari
[44] also studied the Fourier model and computed the asymptotic test error which captures the
double-descent phenomenon. Bartlett et al. [8], Tsigler and Bartlett [56] analyzed and gave explicit
conditions for “benign overfitting” in linear and ridge regression, respectively. Caron and Chretien
[16] provided a finite sample analysis of the nonlinear function estimation and showed that the
parameter learned through empirical risk minimization converges to the true parameter with high
probability as the model complexity tends to infinity, implying the existence of double descent. Liu
et al. [42] studied the high dimensional kernel ridge regression in the under- and over-parameterized
regimes and showed that the risk curve can be double descent, bell-shaped, and monotonically
decreasing.

Among all the aforementioned efforts, one particularly interesting question is whether one can observe
more than two descents in the generalization curve. d’Ascoli et al. [21] empirically showed a sample-
wise triple-descent phenomenon under the random Fourier feature model. Similar triple-descent
was also observed for linear regression [47]. More rigorously, Liang et al. [41] presented an upper
bound on the risk of the minimum-norm interpolation versus the data dimension in Reproducing
Kernel Hilbert Spaces (RKHS), which exhibits multiple descent. However, a multiple-descent upper
bound without a properly matching lower bound does not imply the existence of a multiple-descent
generalization curve. In this work, we study the multiple descent phenomenon by addressing the
following questions:

 Can the existence of a multiple descent generalization curve be rigorously proven?
* Can an arbitrary number of descents occur?
* Can the generalization curve and the locations of descents be designed?

In this paper, we show that the answer to all three of these questions is yes. Further related work is
presented in Section 2.

Our Contribution. We consider the linear regression model and analyze how the risk changes as
the dimension of the data grows. In the linear regression setting, the data dimension is equal to the
dimension of the parameter space, which reflects the model complexity. We rigorously show that the
multiple descent generalization curve exists under this setting. To our best knowledge, this is the first
work proving a multiple descent phenomenon.

Our analysis considers both the underparametrized and overparametrized regimes. In the over-
parametrized regime, we show that one can control where a descent or an ascent occurs in the
generalization curve. This is realized through our algorithmic construction of a feature-revealing
process. To be more specific, we assume that the data is in R”, where D can be arbitrarily large
or even essentially infinite. We view each dimension of the data as a feature. We consider a linear
regression problem restricted on the first d features, where d < D. New features are revealed by
increasing the dimension of the data. We then show that by specifying the distribution of the newly
revealed feature to be either a standard Gaussian or a Gaussian mixture, one can determine where an
ascent or a descent occurs. In order to create an ascent when a new feature is revealed, it is sufficient
that the feature follows a Gaussian mixture distribution. In order to have a descent, it is sufficient
that the new feature follows a standard Gaussian distribution. Therefore, in the overparametrized
regime, we can fully control the occurrence of a descent and an ascent. As a comparison, in the un-
derparametrized regime, the generalization loss always increases regardless of the feature distribution.
Generally speaking, we show that we are able to design the generalization curve.



On the one hand, we show theoretically that the generalization curve is malleable and can be
constructed in an arbitrary fashion. On the other hand, we rarely observe complex generalization
curves in practice, besides carefully curated constructions. Putting these facts together, we arrive at
the conclusion that realistic generalization curves arise from specific interactions between properties
of typical data and the inductive biases of algorithms. We should highlight that the nature of these
interactions is far from being understood and should be an area of further investigations.

2 Related Work

Our work is directly related to the recent line of research in the theoretical understanding of the
double descent [11, 34, 60, 44] and the multiple descent phenomenon [41, 39]. Here we briefly
discuss some other work that is closely related to this paper.

Least Square Regression. In this paper we focus on the least square linear regression with no
regularization. For the regularized least square regression, De Vito et al. [22] proposed a selection
procedure for the regularization parameter. Advani and Saxe [1] analyzed the generalization of neural
networks with mean squared error under the asymptotic regime where both the sample size and model
complexity tend to infinity. Richards et al. [52] proved for least square regression in the asymptotic
regime that as the dimension-to-sample-size ratio d/n grows, an additional peak can occur in both
the variance and bias due to the covariance structure of the features. As a comparison, in this paper
the sample size is fixed and the model complexity increases. Rudi and Rosasco [53] studied kernel
ridge regression and gave an upper bound on the number of the random features to reach certain risk
level. Our result shows that there exists a natural setting where by manipulating the random features
one can control the risk curve.

Over-Parameterization and Interpolation. The double descent occurs when the model complex-
ity reaches and increases beyond the interpolation threshold. Most previous works focused on proving
an upper bound or optimal rate for the risk. Caponnetto and De Vito [15] gave the optimal rate for
least square ridge regression via careful selection of the regularization parameter. Belkin et al. [12]
showed that the optimal rate for risk can be achieved by a model that interpolates the training data.
In a series of work on kernel regression with regularization parameter tending to zero (a.k.a. kernel
ridgeless regression), Rakhlin and Zhai [51] showed that the risk is bounded away from zero when
the data dimension is fixed with respect to the sample size. Liang and Rakhlin [40] then considered
the case when d < n, showed empirically the multiple descent phenomenon and proved a risk upper
bound that can be small given favorable data and kernel assumptions. Instead of giving a bound, our
paper presents an exact computation of risk in the cases of underparametrized and overparametrized
linear regression, and proves the existence of the multiple descent phenomenon. Wyner et al. [59]
analyzed AdaBoost and Random Forest from the perspective of interpolation. There has also been a
line of work on wide neural networks [4-6, 23, 3, 58, 14, 2, 18, 62, 54].

Sample-wise Double Descent and Non-monotonicity. There has also been recent development
beyond the model-complexity double-descent phenomenon. For example, regarding sample-wise
non-monotonicity, Nakkiran et al. [46] empirically observed the epoch-wise double-descent and
sample-wise non-monotonicity for neural networks. Chen et al. [19] and Min et al. [45] identified
and proved the sample-wise double descent under the adversarial training setting, and Javanmard
et al. [37] discovered double-descent under adversarially robust linear regression. Loog et al. [43]
showed that empirical risk minimization can lead to sample-wise non-monotonicity in the standard
linear model setting under various loss functions including the absolute loss and the squared loss,
which covers the range from classification to regression. We also refer the reader to their discussion
of the earlier work on non-monotonicity of generalization curves. Dar et al. [20] demonstrated the
double descent curve of the generalization errors of subspace fitting problems. Fei et al. [28] studied
the risk-sample tradeoff in reinforcement learning.

3 Preliminaries and Problem Formulation

Notation. For x € RP and d < D, we let z[1 :d] € R denote a d-dimensional vector with
z[l : d; = x; forall 1 < i < d. For a matrix A € R"*?, we denote its Moore-Penrose
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is the Euclidean norm for vectors. If v is a vector, its spectral norm ||v|| agrees with the Euclidean
norm ||v||2. Therefore, we write ||v|| for ||v||2 to simplify the notation. We use the big O notation
O and write variables in the subscript of O if the implicit constant depends on them. For example,
Oh,4,0(1) is a constant that only depends on n, d, and o. If f(o) and g(o) are functions of o, write

f(o) ~ g(o) if lim % = 1. It will be given in the context how we take the limit.

pseudoinverse by AT € R?*™ and denote its spectral norm by || A|| £ Sup,._o

, where || - |2

Distributions. Let N'(p1,02) (i, 0 € R) and N (i1, ) (1 € R", ¥ € R™"*") denote the univariate
and multivariate Gaussian distributions, respectively, where € R™ and ¥ € R™*" is a positive
semi-definite matrix. We define a family of trimodal Gaussian mixture distributions as follows

N 2 IN(0,0%) 4 SN (p,0%) + TN (1,07).

For an illustration, please see Fig. 1.
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Figure 1: Density functions of the A/(0, 1) and /™ feature. A new entry is independently sampled

from the 1-dimensional distribution being either a standard Gaussian or trimodal Gaussian mixture.
Smaller o leads to higher concentration around each modes.

Let x2(k, \) denote the noncentral chi-squared distribution with %k degrees of freedom and the
non-centrality parameter \. For example, if X; ~ N (p;,1) (fori = 1,2,..., k) are independent

Gaussian random variables, we have 7 X2 ~ y2(k, A), where A = 37| 112, We also denote

by x?(k) the (central) chi-squared distribution with k degrees and the F'-distribution by F'(dy, d)
where d; and ds are the degrees of freedom.

Problem Setup. Let 21, ...,7, € R be column vectors that represent the training data of size
n and let 2. € R be a column vector that represents the test data. We assume that they are all
independently drawn from a distribution

iid
T1ye-y Ty Lrest ™~ D

Let us consider a linear regression problem on the first d features, where d < D for some arbitrary
large D. Here, d can be viewed as the number of features revealed. Then the feature vectors are
Z1y...,Tpn, where ; = z;[1: d] € R¢ denotes the first d entries of ;. The corresponding response
variable y; satisfies

~T .
Y=, B+e, i=1,...,n,

where the noise £; ~ N(0, 772). We use the same setup as in [34] (see Equations (1) and (2) in [34]).
Moreover, in another closely related work [41], if the kernel is set to the linear kernel, it is equivalent
to our setup.

Next, we introduce the estimate B of 3 and its excess generalization loss. Lete = (g1,...,6,)" € R"
denote the noise vector. The design matrix A equals [Z1,...,Z,]T € R™¥% Let 2 = xq[l : d]
denote the first d features of the test data. For the underparametrized regime where d < n, the
least square solution on the training data is AT (AS + ¢). For the overparametrized regime where
d > n, AT (AB + ¢) is the minimum-norm solution. In both regimes we consider the solution
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AT (AP + ¢). The excess generalization loss on the test data is then given by

Li2E ( - wTB)Q ~ (- xTﬂf]

=E (xT ) }

—E[(a7 (A" A= D)8+ A*e))’]

[ T (ATA-1)B)?] +E [(z" ATe)?]

E[@7 (A" A= D8] +°E | (A7) s, M
where y = 27 8 + et and gt ~ N(0,7?). We call the term E [(xT (ATA - I)ﬂ)z] the bias and
call the term n°E || (AT)+.%‘||2 the variance.

(
(x

The next remark shows that in the underparametrized regime, the bias vanishes. The vanishing bias in
the underparametrized regime is also observed by Hastie et al. [34] and shown in their Proposition 2.

Remark 1. In the underparametrized regime, if D is a continous distribution (our construction
presented later satisfies this condition), the matrix A has independent column almost surely. In this
case, we have AT A = [ and therefore the bias E [(z T (AT A — I)$)?] vanishes irrespective of 3. In

other words, in the underparametrized regime, Lq equals n°E||(AT) ¥ x|

According to Remark 1, we have Ly = n?E|[(A")*z|? in the underparametrized regime. It also
holds in the overparametrized regime when 5 = 0. Without loss of generality, we assume n = 1 in
the underparametrized regime (for all /3). In the overparametrized regime, we also assume 7 = 1 for
the 8 = 0 case. In this case, we have

La=E|(AT) x| )

We assume a general 7 (i.e., not necessarily being 1) in the overparametrized regime when [ is
non-zero.

We would like to study the change in the loss caused by the growth in the number of features revealed.
Recall Ly = E|[(AT)*z|%. Once we reveal a new feature, which adds a new row b' to AT and a

«|[5) )]

Local Maximum and Multiple Descent. Throughout the paper, we say that a local maximum occurs
at a dimensiond > 1if Ly_1 < Lg and Ly > Lg41. Intuitively, a local maximum occurs if there is
an increasing stage of the generalization loss, followed by a decreasing stage, as the dimension d
grows. Additionally, we define Ly £ —oo. If the generalization loss exhibits a single descent, based
on our definition, a unique local maximum occurs at d = 1. For a double-descent generalization
curve, a local maximum occurs at two different dimensions. In general, if we observe local maxima
at multiple dimensions, we say there is a multiple descent.

new component a; to x, we have Ly =

4 Underparametrized Regime

First, we present our main theorem for the underparametrized regime below, whose proof is deferred
to the end of Section 4. It states that the generalization loss L is always non-decreasing as d grows.
Moreover, it is possible to have an arbitrarily large ascent, i.e., Lg11 — Lqg > C for any C > 0.
Theorem 1 (Proof in Section 4.1). If d < n, we have Ly > L irrespective of the data distribution.
Moreover, for any C > 0, there exists a distribution D such that Ly, — Lg > C.

Remark 2 (D can be a product distribution). The first part of Theorem 1 holds irrespective of the
data distribution. For the second part of the theorem ( i.e., for any C' > 0 there exists a distribution
such that L;11 — Lg > C) to hold, one extremely snnple and elegant choice of the distribution D
is a product distribution D = D; x --- X Dp such that x; ; i Dj forall 1 < ¢ < n, where D; is
a Gaussian mixture N, ;.1 for some o > 0. Since the second part of Theorem 1 is of 1ndependent
interest, the result is summarized by Theorem 4.



Remark 3 (Kernel regression on Gaussian data). In light of Remark 2, D can be chosen to be a
product distribution that consists ./\/:‘;‘j"‘. Note that one can simulate N™* with A'(0, 1) through

the inverse transform sampling. To see this, let Fiar(o,1) and FNg]i)]& be the cdf of N(0,1) and
mix, respectively. If X ~ N(0,1), we have Fy(o,1)(X) ~ Unif((0,1)) and therefore ¢, (X) £

FJ@%(FN(OJ)(X)) ~ N¥. In fact, we can use a multivariate Gaussian D' = N(0,Ipxp)

and a sequence of non-linear kernels k!4 (z,2') £ (o4 (z), 14 (")), where the feature map
is (b Bdl(z) £ [¢1(21), ¢2(22), ..., ¢a(xa)]T € R Here is a simple rule for defining ¢;: if

= NMX we set ¢ 10 ps;. Thus, the problem becomes a kernel regression problem on the
standard Gau551an data.

The first part of Theorem 1, which says that L is increasing (or more precisely, non-decreasing),
agrees with Figure 1 of [11] and Proposition 2 of [34]. In [34], they proved that the risk increases
with v = d/n. Note that, at first glance, Theorem | may look counterintuitive since it does not obey
the classical U-shaped generalization curve. However, we would like to emphasize that the U-shaped
curve does not always occur. In Figure 1 and Proposition 2 of these two papers respectively, there is
no U-shaped curve. The intuition behind Theorem 1 is that in the underparametrized setting, the bias
is always zero and as d approaches n, the variance keeps increasing.

Coming to the second part of Theorem 1, we now discuss how we will construct such a distribution
D inductively to satisfy Lg11 — Lg > C. We fix d. Again, denote the first d features of xg by

T 2 Tyl : d]. Let us add an additional component to the training data 21 [1 : dJ, ..., z,[1 : d] and
test data = so that the dimension d is incremented by 1. Let b; € R denote the additional component
that we add to the vector z; (so that the new vector is given as [z;[1 : d]T,b;]T. Similarly, let
a1 € R denote the additional component that we add to the test vector . We form the column vector
b=[b1,...,b,]" € R" that collects all additional components that we add to the training data.

We consider the change in the generalization loss as follows

Eild

Note that the components by, . .., by, a1 are i.i.d. The proof of Theorem 1 starts with Lemma 2 which

AT [z ’
]
into multiple terms for further careful analysis in the proofs hereinafter.
Lemma 2 (Proof in Appendix B.1). Let A € R" % and 0 # b € R™, where n. > d + 1.

Additionally, let P = AAY and Q = bb™ = %, and define z = W. If z # 0 and the

columnwise partitioned matrix [A, b] has linearly independent columns, we have
AT oo T AATBLT T (I—AAT)
{bT:| = [(I - W) (I+ Hb”z,bTAAﬂ,) (A+) ) HbHZbeAA*b}
I-P)b
(1= QU + =) (A1), 4705

(1= QI+ 22)(at)T, 4728,

2
Liy1—La=E ‘ — At 2| 3)

relates the pseudo-inverse of [A4, b] " to that of AT. In this way, we can decompose

In our construction of D, the components D; are all continuous distributions. The matrix I — P is an
orthogonal projection matrix and therefore rank(I — P) = n — d. As a result, it holds almost surely
that b # 0, z # 0, and [A4, b] has linearly independent columns. Thus the assumptions of Lemma 2
are satisfied almost surely. In the sequel, we assume that these assumptions are always fulfilled.

Theorem 3 guarantees that if Ly = E || (A+)T.’L‘H2 is finite and the (d + 1)-th features by, ..., b,, a;

| [ )l

are i.i.d. sampled from (0, 1) or N, Ly =

o is also finite.




Theorem 3 (Proof in Appendix B.2). Let z be as defined in Lemma 2. If by, ..., by, a; are i.i.d. and
follow a distribution with mean zero, conditioned on A and x, we have

2
AT [ 1 T 2 a?
[bT] {“1] ‘ = B [z 1A =™+ =5

In particular, ifd+ 2 <nand by, ..., by, a1 i N(0,1), conditioned on A and x, we have

el

iid ‘mix

Ifd+2<nandby,...,bn,a1 ~ NJT,

A P SR

n—d—2
Using Theorem 3, we can show inductively (on d) that L is finite for every d. Provided that we are
able to guarantee finite L;, Theorem 3 implies that L, is finite for every d if the components are
always sampled from N'(0, 1) or N0

o,l-

‘2 _ =) Tel 1
- n—d—2

conditioned on A and x, we have

]Eb,al

Making a large L, can be achieved by adding an entry sampled from (‘7‘“1" when the data dimension

increases from d — 1 to d in the previous step. Theorem 4 shows that adding a N/ (‘,mlx feature can
increase the loss by arbitrary amount, which in turn implies the second part of Theorem 1.

Theorem 4 (Proof in Appendix B.4). For any C > 0 and E || (A*)Tx||2 < 400, there exists a

. iid ;
o > 0 such that if by, ... by, a1 ~ o1, we have

E ‘ — H(A*'f%”Q >C.

ST

We are now ready to prove Theorem 1.

4.1 Proof of Theorem 1

Proof. We follow the notation convention in (3):
AT 2
] L]

} is of size (d + 1) x n. Both matrices B’ and B £ AT are

2
Loy — Ly =E ‘ — ATy

-
Recall d < n and the matrix B’ = {?‘r

fat matrices. As a result, if 2/ £ L;ﬂ , we have
B2 |” = min |lz[]*, [B*z|]*= min |z]*.
z:B'z=x z:Bz=x

Since {z | B’z = 2/} C {2z | Bz = z}, we get |[B'"2’||*> > ||BTz||?>. Therefore, we obtain
Lg4+1 > Lg. The second part follows from Theorem 4. O]

Remark 4. Remark 2 and the proof of Theorem 4 indicate that D = D; x --- x Dp is a product
distribution. The construction in the proof also shows that the generalization curve is determined by
the specific choice of the D;’s. Note that permuting the order of D;’s is equivalent to changing the
order by which the features are being revealed (i.e., permuting the entries of the data x;’s). Therefore,
given the same data points x1, - - - , z,, € R, one can create different generalization curves simply
by changing the order of the feature-revealing process.
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Figure 2: Illustration of the multiple descent phenomenon for the generalization loss L4 versus the
dimension of data d in the overparametrized regime starting from d = n+8. One can fully control the
generalization curve to increase or decrease as specified by the sequence A = {|, 1, ], |, 1,4, ... }.
Adding a new feature with Gaussian mixture distribution increases the loss, while adding one with
Gaussian distribution decreases the loss.

5 Overparametrized Regime

In this section, we study the multiple decent phenomenon in the overparametrized regime. Note that
as stated in Section 3, we consider the minimum-norm solution here. We first consider the case where
the model 8 = 0 and L is as defined in (2). Then we discuss the setting 5 # 0.

As stated in the following theorem, we require d > n + 8. This is merely a technical requirement and
we can still say that d starts at roughly the same order as n. In other words, the result covers almost
the entire spectrum of the overparametrized regime.

Theorem 5 (Overparametrized regime, 8 = 0). Let n < D — 9. Given any sequence
Apts, Anto, ..., Ap_1 where Ay € {1,]}, there exists a distribution D such that for every
n+8<d<D-—1, wehave

> Ld7 lfAd = T

< Ld7 lfAd = \L .
In Theorem 5, the sequence A, yg, Ay, - -+, Ap_1 is just used to specify the increasing/decreasing
behavior of the L, sequence for d > n + 8. Compared to Theorem 1 for the underparametrized

regime, where L, always increases, Theorem 5 indicates that one is able to fully control both ascents
and descents in the overparametrized regime. Fig. 2 is an illustration.

We now present tools for proving Theorem 5. Lemma 6 gives the pseudo-inverse of A when d > n.

Lemma 6 (Proof in Appendix C.1). Let A € R"*? and b € R™*!, where n < d. Assume that
matrix A and the columnwise partitioned matrix B = [A, b] have linearly independent rows. Let

G & (AAT) L e R™ " and u & % € RY*™, We have

.
| =TT

Lemma 7 establishes finite expectation for several random variables. These finite expectation
results are necessary for Theorem 8 and Theorem 9 to hold. Technically, they are the dominating
random variables needed in Lebesgue’s dominated convergence theorem. Lemma 7 indicates that to
guarantee these finite expectations, it suffices to set the first n 4 8 distributions to the standard normal
distribution and then set D, 1, . . ., Dp to either a Gaussian or a Gaussian mixture distribution. In
fact, in Theorem 8 and Theorem 9, we always add a Gaussian distribution or a Gaussian mixture.

Lemma 7 (Proof in Appendix C.2). Let D = D; X --- X Dp be a product distribution where
(a) Dg=N(0,1)ifd=1,...,n+8; and
(b) Dy is either N'(0,02) or N™*  ford > n + 8.

Od;Md



Let Dyy.q) denote Dy X - - x Dy. Assume that every row of A € R™ % gnd 2 € R are i.i.d. and
follow Dyy.q). For any d such that n + 8 < d < D, all of the followings hold:

E[(A%) "2]*] < + o0, EX G (AAT) ] < + 00,
Emax(AAT)TH(AT) 2] < + 00, EXGu(AAT) (AT Ta|’] < +o0.

max

“4)

Theorems 8 and 9 are the key technical results for constructing multiple descent in the over-
parametrized regime. One can create a descent (L4411 < Lg) by adding a Gaussian feature (Theo-
rem 8) and create an ascent (L441 > Lg) by adding a Gaussian mixture feature (Theorem 9).

Theorem 8 (Proof in Appendix C.3). IfE[||(AT A)*z||?] > 0 and all equations in (4) hold, there
exists o > 0 such that if ay,by, ..., by, i N(0,02), we have

AT ’
T

- se=s|[§] [

Theorem 9 shows that adding a Gaussian mixture feature can make Lg11 > Lg.

Theorem 9 (Proof in Appendix C.4). Assume E||(A*)Tz||? < +o00. For any C > 0, there exist i,

. iid i
o > 0 such that if a1, by, ..., by ~ NJ%, we have

‘ ~E|4H) 72| <0.

Lyy1—Lg=E

BNl

The proof of Theorem 5 immediately follows from Theorem 8 and Theorem 9.

‘ —E|4H) 7|’ > C.

Proof of Theorem 5. We construct the product distribution D = HdD:1 Dg4. Weset Dy = N (0, 1) for
d=1,...,n+8 Forn+8 < d < D, Dy is either N'(0,03) or N, depending on A4 being
either | or 1.

First we show that for each step d, the assumption E[||(AT A)*z||?] > 0 of Theorem 8 is satisfied. If
E[||[(AT A)*z||?] = 0, we know that (AT A)*2 = 0 almost surely. Since D is a continuous distribu-
tion, the matrix A has full row rank almost surely. Therefore, rank((AT A)*) = rank(AT A) = n
almost surely. Thus dim ker(AT A)* = d—n < d—1 almost surely, which implies = ¢ ker(AT A)*.
In other words, (AT A)*x # 0 almost surely. We reach a contradiction. Moreover, by Lemma 7, the
assumption E||(AT) Tz||? < 400 of Theorem 9 is also satisfied.

If Ay_1 = |}, by Theorem 8, there exists oy > 0 such that if Dy = N (0, 03), then Ly < Lg—1.
Similarly if Ag_; = 1, by Theorem 9, there exists o4 and pg such that Dy = N, (‘,n;"# , guarantees
Lg>Lg 1. ’

O

Gaussian S setting. In what follows, we study the case where the model /3 is non-zero. In particular,
we consider a setting where each entry of 3 is i.i.d. A/(0, p?). Recalling (1), define the biases

e @A 09, £ & (a4t -0 [4])

and the expected risks

2
€X] 2 €X] AT +
(e I AN ER] [F
where § ~ N(0, p*I3) and 81 ~ N(0, p*). The second term in L7;* and L3, is the variance term.
Note that szp is the expected value of Ly in (1) and averages over $. Theorem 10 shows that one

can add a Gaussian mixture feature in order to make sz_ﬁl > L3, and add a Gaussian feature in
order to make L3T, < L3".

d+1

‘ ; S



Theorem 10 (Proof in Appendix C.5). Let aj,$; € R, z € R¥*!, 3 € R A € R™? qnd
b € R, where n < d. Assume that x,ay,B1,[3,A,b are jointly independent, [BT,3]" ~
N(0, p*1441). Moreover, assume that the matrix [A, b] has linearly independent rows almost surely.
The following statements hold:

(a) Ifa1,b1,...,0, 4 p\mix for any C > 0, there exist ji, o such that LZX_El - L5 > C.

o,
(b) Ifai,b1,...,b, i N(0,0?), there exists o > 0 such that for all

< [EILAT )]
- E|A+Tz||2+1 "’

exp exp
we have Ld+1 <L

Theorem 10 indicates that for 5 obeying a normal distribution, one can still construct a generalization
curve as desired by adding a Gaussian or Gaussian mixture feature properly. We make this con-
struction explicit for any desired generalization curve in (the proof of) Theorem 11. Similar to the
construction in the underparametrized regime (for all 5) and overparametrization regime (for 5 = 0),
the distribution D can be made a product distribution.

Theorem 11 (Overparametrized regime, 3 being Gaussian). Let n < D — 9. Given any sequence
Apis, Anto, ..., Ap_1 where Ay € {1,1}, there exists p > 0 and a distribution D such that for
B~ N(0,p%) and everyn + 8 < d < D — 1, we have

op [>LYY, ifAg=1
d+1 < L‘ZZXP7 lfAd — \L

Proof of Theorem 11. Define the design matrix Ay = [z1[1 : d],...,x,[1:d]]T € R"*%. Similar to
the proof of Theorem 5, we construct the product distribution D = H5:1 Dgy. We set Dg = N(0,1)
ford=1,...,n+8. Forn+8 < d < D, Dy is either N'(0,07) or N depending on A being
either | or 1.

If Ay—1 = 1, by Theorem 10, there exists o and j4 such that Dg = N guarantees Ly" > Lg®,.
If Ay_1 =, define

pa N " E[”(A;zr—lAdflﬁxlest[l cd—1])1%]
Bl A} e[l : d — 1]]2 + 1

By Theorem 10, there exists o4 > 0 such that if p < pg and Dy = N(0,032), then L5 < LTP,. We
take

= min d -
P diAdﬂle

6 Conclusion

Our work proves that the expected risk of linear regression can manifest multiple descents when
the number of features increases and sample size is fixed. This is carried out through an algorith-
mic construction of a feature-revealing process where the newly revealed feature follows either a
Gaussian distribution or a Gaussian mixture distribution. Notably, the construction also enables us
to control local maxima in the underparametrized regime and control ascents/descents freely in the
overparametrized regime. Overall, this allows us to design the generalization curve away from the
interpolation threshold.

We believe that our analysis of linear regression in this paper is a good starting point for explaining
non-monotonic generalization curves observed in machine learning studies. Extending these results
to more complex problem setups would be a meaningful future direction.
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