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Abstract

It has been well established that first order optimization methods can converge
to the maximal objective value of concave functions and provide constant factor
approximation guarantees for (non-convex/non-concave) continuous submodular
functions. In this work, we initiate the study of the maximization of functions
of the form F (x) = G(x) + C(x) over a solvable convex body P , where G is a
smooth DR-submodular function and C is a smooth concave function. This class
of functions is a strict extension of both concave and continuous DR-submodular
functions for which no theoretical guarantee is known. We provide a suite of
Frank-Wolfe style algorithms, which, depending on the nature of the objective
function (i.e., if G and C are monotone or not, and non-negative or not) and
on the nature of the set P (i.e., whether it is downward closed or not), provide
1−1/e, 1/e, or 1/2 approximation guarantees. We then use our algorithms to get a
framework to smoothly interpolate between choosing a diverse set of elements from
a given ground set (corresponding to the mode of a determinantal point process)
and choosing a clustered set of elements (corresponding to the maxima of a suitable
concave function). Additionally, we apply our algorithms to various functions in
the above class (DR-submodular + concave) in both constrained and unconstrained
settings, and show that our algorithms consistently outperform natural baselines.

1 Introduction

Despite their simplicity, first-order optimization methods (such as gradient descent and its variants,
Frank-Wolfe, momentum based methods, and others) have shown great success in many machine
learning applications. A large body of research in the operations research and machine learning
communities has fully demystified the convergence rate of such methods in minimizing well behaved
convex objectives [Bubeck, 2015, Nesterov, 2018]. More recently, a new surge of rigorous results has
also shown that gradient descent methods can find the global minima of specific non-convex objective
functions arisen from non-negative matrix factorization [Arora et al., 2012], robust PCA [Netrapalli
et al., 2014], phase retrieval [Chen et al., 2019b], matrix completion [Sun and Luo, 2016], and the
training of wide neural networks [Du et al., 2019, Jacot et al., 2018, Allen-Zhu et al., 2019], to name
a few. It is also very well known that finding the global minimum of a general non-convex function is
indeed computationally intractable [Murty and Kabadi, 1987]. To avoid such impossibility results,
simpler goals have been pursued by the community: either developing algorithms that can escape
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saddle points and reach local minima [Ge et al., 2015] or describing structural properties under which
reaching a local minimizer ensures optimality [Sun et al., 2016, Bian et al., 2017b, Hazan et al., 2016].
In the same spirit, this paper quantifies a large class of non-convex functions for which first-order
optimization methods provably achieve near optimal solutions.

More specifically, we consider objective functions that are formed by the sum of a continuous DR-
submodular function G(x) and a concave function C(x). Recent research in non-convex optimization
has shown that first-order optimization methods provide constant factor approximation guarantees
for maximizing continuous submodular functions Bian et al. [2017b], Hassani et al. [2017], Bian
et al. [2017a], Niazadeh et al. [2018], Hassani et al. [2020a], Mokhtari et al. [2018a]. Similarly, such
methods find the global maximizer of concave functions. However, the class of F (x) = G(x)+C(x)
functions is strictly larger than both concave and continuous DR-submodular functions. More
specifically, F (x) is not concave nor continuous DR-submodular in general (Figure 1 illustrates
an example). In this paper, we show that first-order methods provably provide strong theoretical
guarantees for maximizing such functions.

The combinations of continuous submodular and concave functions naturally arise in many ML
applications such as maximizing a regularized submodular function [Kazemi et al., 2020a] or finding
the mode of distributions [Kazemi et al., 2020a, Robinson et al., 2019]. For instance, it is common
to add a regularizer to a D-optimal design objective function to increase the stability of the final
solution against perturbations [He, 2010, Derezinski et al., 2020, Lattimore and Szepesvari, 2020].
Similarly, many instances of log-submodular distributions, such as determinantal point processes
(DPPs), have been studied in depth in order to sample a diverse set of items from a ground set
[Kulesza, 2012, Rebeschini and Karbasi, 2015, Anari et al., 2016]. In order to control the level of
diversity, one natural recipe is to consider the combination of a log-concave (e.g., normal distribution,
exponential distribution and Laplace distribution) [Dwivedi et al., 2019, Robinson et al., 2019]
and log-submodular distributions [Djolonga and Krause, 2014, Bresler et al., 2019], i.e., Pr(x) ∝
exp(λC(x) + (1− λ)G(x)) for some λ ∈ [0, 1]. In this way, we can obtain a class of distributions
that contains log-concave and log-submodular distributions as special cases. However, this class of
distributions is strictly more expressive than both log-concave and log-submodular models, e.g., in
contrast to log-concave distributions, they are not uni-modal in general. Finding the mode of such
distributions amounts to maximizing a combination of a continuous DR-submodular function and a
concave function. The contributions of this paper are as follows.

• Assuming first-order oracle access for the function F , we develop the algorithms: GREEDY
FRANK-WOLFE (Algorithm 1) and MEASURED GREEDY FRANK-WOLFE (Algorithm
2) which achieve constant factors approximation guarantees between 1 − 1/e and 1/e
depending on the setting, i.e. depending on the monotonicity and non-negativity of G and
C, and depending on the constraint set having the down-closeness property or not.

• Furthermore, if we have access to the individual gradients of G and C, then we are able to
make the guarantee with respect to C exact using the algorithms: GRADIENT COMBINING
FRANK-WOLFE (Algorithm 3) and NON-OBLIVIOUS FRANK-WOLFE (Algorithm 4). These
results are summarized and made more precise in Table 1 and Section 3.

• We then present experiments designed to use our algorithms to smoothly interpolate between
contrasting objectives such as picking a diverse set of elements and picking a clustered set
of elements. This smooth interpolation provides a way to control the amount of diversity in
the final solution. We also demonstrate the use of our algorithms to maximize a large class
of (non-convex/non-concave) quadratic programming problems.

Related Work. The study of discrete submodular maximization has flourished in the last decade
through far reaching applications in machine learning and and artificial intelligence including viral
marketing [Kempe et al., 2003], dictionary learning [Krause and Cevher, 2010], sparse regression
[Elenberg et al., 2016], neural network interoperability [Elenberg et al., 2017], crowd teaching [Singla
et al., 2014], sequential decision making [Alieva et al., 2021], active learning [Wei et al., 2015], and
data summarization [Mirzasoleiman et al., 2013]. We refer the interested reader to a recent survey by
Tohidi et al. [2020] and the references therein.

Recently, Bian et al. [2017b] proposed an extension of discrete submodular functions to the continuous
domains that can be of use in machine learning applications. Notably, this class of (non-convex/non-
concave) functions, so called continuous DR-submodular, contains the continuous multilinear ex-
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Figure 1: LEFT: (continuous) DR-submodular softmax extension. MIDDLE: concave quadratic
function. RIGHT: sum of both.

tension of discrete submodular functions Călinescu et al. [2011] as a special case. Continuous
DR-submodular functions can reliably model revenue maximization [Bian et al., 2017b], robust bud-
get allocation [Staib and Jegelka, 2017], experimental design [Chen et al., 2018], MAP inference for
DPPs [Gillenwater et al., 2012, Hassani et al., 2020b], energy allocation [Wilder, 2018b], classes of
zero-sum games [Wilder, 2018c], online welfare maximization and online task assignment [Sadeghi
et al., 2020], as well as many other settings of interest.

The research on maximizing continuous DR-submodular functions in the last few years has established
strong theoretical results in different optimization settings including unconstrained [Niazadeh et al.,
2018, Bian et al., 2019], stochastic Mokhtari et al. [2018a], Hassani et al. [2017], online [Chen
et al., 2018, Zhang et al., 2019, Sadeghi and Fazel, 2019, Raut et al., 2021], and parallel models of
computation [Chen et al., 2019a, Mokhtari et al., 2018b, Xie et al., 2019, Ene and Nguyen, 2019].

A different line of works study the maximization of discrete functions that can be represented as
the sum of a non-negative monotone submodular function and a linear function. The ability to do
so is useful in practice since the linear function can be viewed as a soft constraint, and it also has
theoretical applications as is argued by the first work in this line [Sviridenko et al., 2017] (for example,
the problem of maximization of a monotone submodular function with a bounded curvature can be
reduced to the maximization of the sum of a monotone submodular function and a linear function).
In terms of the approximation guarantee, the algorithms suggested by Sviridenko et al. [2017] were
optimal. However, more recent works improve over the time complexities of these algorithms
[Feldman, 2021, Harshaw et al., 2019, Ene et al., 2020], generalize them to weakly-submodular
functions [Harshaw et al., 2019], and adapt them to other computational models such as the data
stream and MapReduce models [Kazemi et al., 2020b, Ene et al., 2020].

2 Setting and Notation

Let us now formally define the setting we consider. Fix a subset X of Rn of the form
∏n

i=1 Xi, where
Xi is a closed range in R. Intuitively, a function G : X → R is called (continuous) DR-submodular if
it exhibits diminishing returns in the sense that given a vector x ∈ X , the increase in G(x) obtained
by increasing xi (for any i ∈ [n]) by ε > 0 is negatively correlated with the original values of the
coordinates of x. This intuition is captured by the following definition. In this definition ei denotes
the standard basis vector in the ith direction.
Definition 2.1. A function G : X → R is DR-submodular if for every two vectors a,b ∈ X , positive
value k and coordinate i ∈ [n] we have G(a+ kei)−G(a) ≥ G(b+ kei)−G(b) whenever a ≤ b
and a+ kei,b+ kei ∈ X .1

It is well known that when G is continuously differentiable, then it is DR-submodular if and only
if∇G(a) ≥ ∇G(b) for every two vectors a,b ∈ X that obey a ≤ b. Furthermore, for the sake of
simplicity we assume in this work that X = [0, 1]n.

We are interested in the problem of finding the point in some convex body P ⊆ [0, 1]n that maximizes
a given function F : [0, 1]n → R that can be expressed as the sum of a DR-submodular function
G : [0, 1]n → R and a concave function C : [0, 1]n → R. To get meaningful results for this problem,
we need to make some assumptions. Here we describe three basic assumptions that we make
throughout the paper. The quality of the results that we obtain improves if additional assumptions are
made, as is described in Section 3.

1Throughout the paper, inequalities between vectors should be understood as holding coordinate-wise.
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ALGORITHM G C P α β

GREEDY MONOTONE MONOTONE
GENERAL 1− 1/e 1− 1/eFRANK-WOLFE & NON-NEG. & NON-NEG.

MEASURED GREEDY MONOTONE
NON-NEG. DOWN-CLOSED 1− 1/e 1/eFRANK-WOLFE & NON-NEG.

MEASURED GREEDY
NON-NEG. MONOTONE

DOWN-CLOSED 1/e 1− 1/eFRANK-WOLFE & NON-NEG.
MEASURED GREEDY MONOTONE MONOTONE

DOWN-CLOSED 1− 1/e 1− 1/eFRANK-WOLFE & NON-NEG. & NON-NEG.
MEASURED GREEDY

NON-NEG. NON-NEG. DOWN-CLOSED 1/e 1/eFRANK-WOLFE

GRADIENT COMBINING MONOTONE GENERAL GENERAL 1/2− ε 1FRANK-WOLFE & NON-NEG.
NON-OBLIVIOUS MONOTONE

NON-NEG. GENERAL
1− 1/e− ε 1− εFRANK-WOLFE & NON-NEG.

Table 1: Summary of algorithms, settings, and guarantees (“NON-NEG.” is a shorthand for “non-
negative”). All of the conditions are in addition to the continuity and smoothness of G and C, and
the convexity of P . α and β are the constants preceding G(o) and C(o) respectively in the lower
bound on the output of the algorithm.

Our first basic assumption is that G is non-negative. This assumption is necessary since we obtain
multiplicative approximation guarantees with respect to G, and such guarantees do not make sense
when G is allowed to take negative values.2 Our second basic assumption is that P is solvable, i.e.,
that one can efficiently optimize linear functions subject to it. Intuitively, this assumption makes sense
because one should not expect to be able to optimize a complex function such as F subject to P if
one cannot optimize linear functions subject to it (nevertheless, it is possible to adapt our algorithms
to obtain some guarantee even when linear functions can only be approximately optimized subject
to P ). Our final basic assumption is that both functions G and C are L-smooth, which means that
they are differentiable, and moreover, their graidents are L-Lipschitz, i.e., ‖∇f(a) −∇f(b)‖2 ≤
L‖a− b‖2 ∀ a,b ∈ [0, 1]n .

We conclude this section by introducing some additional notation that we need. We denote by
o an arbitrary optimal solution for the problem described above, and define D = maxx∈P ‖x‖2.
Additionally, we denote by 0̄ and 1̄ the all-zeros and all-ones vector, respectively; and given two
vectors a,b ∈ Rn, we denote by a + b their coordinate-wise multiplication, and by 〈a,b〉 their
standard Euclidean inner product.

3 Main Algorithms and Results

In this section we present our (first-order) algorithms for solving the problem described in Section 2.
In general, these algorithms are all Frank-Wolfe type algorithms, but they differ in the exact linear
function which is maximized in each iteration (step 1 of the while/for loop), and in the formula used
to update the solution (step 2 of the while/for loop). As mentioned previously, we assume everywhere
that G is a non-negative L-smooth DR-submodular function, C is an L-smooth concave function,
and P is a solvable convex body. Some of our algorithms require additional non-negativity and/or
monotonicity assumptions on the functions G and C, and occasionally they also require a downward
closed assumption on P . A summary of which settings each algorithm is applicable to can be found
in Table 1. Each algorithm listed in the table outputs a point x ∈ P which is guaranteed to obey
F (x) ≥ α ·G(o) + β · C(o)− E for the constants α and β given in Table 1 and some error term E.

Remark: An anonymous referee introduced us to a newly named class of functions called “up-
concave” functions, which includes functions that are concave along non-negative directions
(see [Wilder, 2018a]). It is known that both DR-submodular and concave functions are up-concave,

2We note that almost all the literature on submodular maximization of both discrete and continuous functions
assumes non-negativity for the same reason.
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Algorithm 1:
GREEDY FRANK-WOLFE (ε)

Let t← 0 and y(t) ← 0̄
while t < 1 do
s(t) ← argmaxx∈P

〈

∇F (y(t)),x
〉

y(t+ε) ← y(t) + ε · s(t)

t← t+ ε
end while
return y(1)

Algorithm 2:
MEASURED GREEDY FRANK-WOLFE (ε)

Let t← 0 and y(t) ← 0̄
while t < 1 do
s(t) ← argmaxx∈P 〈(1̄− y(t))+∇F (y(t)),x〉
y(t+ε) ← y(t) + ε · (1̄− y(t))+ s(t)

t← t+ ε
end while
return y(1)

and therefore, the function F we optimize also belongs to this class. More interestingly, all our results
can be generalized (without any modification) to the case in which the function G is an arbitrary
non-negative up-concave function (rather than a non-negative DR-submodular function).

3.1 Greedy Frank-Wolfe Algorithm

In this section we assume that both G and C are monotone and non-negative functions (in addition to
their other properties). Given this assumption, we analyze the guarantee of the greedy Frank-Wolfe
variant appearing as Algorithm 1. This algorithm is related to the Continuous Greedy algorithm for
discrete objective functions due to Călinescu et al. [2011], and it gets a quality control parameter
ε ∈ (0, 1). We assume in the algorithm that ε−1 is an integer. This assumption is without loss of
generality because, if ε violates the assumption, then it can be replaced with a value from the range
[ε/2, ε] that obeys it. Most of the proofs of this section are deferred to Appendix A.1.

One can observe that the output y(1) of Algorithm 1 is within the convex body P because it is a
convex combination of the vectors s(0), s(ε), s(2ε), . . . , s1−ε, which are all vectors in P . Let us now
analyze the value of the output of Algorithm 1. The next lemma is the first step towards this goal. It
provides a lower bounds on the increase in the value of y(t) as a function of t.

Lemma 3.1. For every 0 ≤ i < ε−1, F (y(ε(i+1)))− F (y(εi)) ≥ ε · [F (o)− F (y(εi))]− ε2LD2.

The corollary below follows by showing (via induction) that the inequality F (y(εi)) ≥
[

1−(1− ε)i
]

·
F (o)− i · ε2LD2 holds for every integer 0 ≤ i ≤ ε−1, and then plugging in i = ε−1. The inductive
step is proven using Lemma 3.1.

Corollary 3.2. F (y(1)) ≥ (1− e−1) · F (o)−O(εLD2).

We are now ready to summarize the properties of Algorithm 1 in a theorem.

Theorem 3.3. Let S be the time it takes to find a point in P maximizing a given liner function, then
Algorithm 1 runs in O(ε−1(n+ S)) time, makes O(1/ε) calls to the gradient oracle, and outputs a
vector y such that F (y) ≥ (1− 1/e) · F (o)−O(εLD2).

Proof. The output guarantee of Theorem 3.3 follows directly from Corollary 3.2. The time and
oracle complexity follows by observing that the algorithm’s while loop makes ε−1 iterations, and
each iteration requires O(n+ S) time, in addition to making a single call to the gradient oracle.

3.2 Measured Greedy Frank-Wolfe Algorithm

In this section we assume that P is a down-closed body (in addition to being convex) and that G
and C are both non-negative. Given these assumptions, we analyze the guarantee of the variant of
Frank-Wolfe appearing as Algorithm 2, which is motivated by the Measured Continuous Greedy
algorithm for discrete objective functions due to Feldman et al. [2011]. We again have a quality
control parameter ε ∈ (0, 1), and assume (without loss of generality) that ε−1 is an integer.

The properties of Algorithm 2 are summarized in Theorem 3.4. Since the proof of this theorem can
be viewed as a generalization of the proof of Theorem 3.3, we defer it to Appendix A.2.
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Theorem 3.4. Let S be the time it takes to find a point in P maximizing a given liner function, then
Algorithm 2 runs in O(ε−1(n+ S)) time, makes O(1/ε) calls to the gradient oracle, and outputs a
vector y such that

F (y) ≥

{

1− e−1 if G is monotone
e−1 otherwise

}

·G(o)+

{

1− e−1 if C is monotone
e−1 otherwise

}

·C(o)−O(εLD2) .

3.3 Gradient Combining Frank-Wolfe Algorithm

Algorithm 3: GRADIENT COMBINING FRANK-WOLFE (ε)

Let y(0) be a vector in P maximizing C up to an error of η ≥ 0.
for i = 1 to ε−3 do
s(i) ← argmaxx∈P

〈

∇G(y(i−1)) + 2∇C(y(i−1)),x
〉

y(i) ← (1− ε2) · y(i−1) + ε2 · s(i)

end for
return the vector maximizing F among {y(0), . . . ,y(ε−3)}

Up to this point, the guarantees
of the algorithms that we have
seen had both α and β that are
strictly smaller than 1. How-
ever, since concave functions
can be exactly maximized, it
is reasonable to expect also al-
gorithms for which the coeffi-
cient β associated with C(o)
is equal to 1. In Sections 3.3
and 3.4, we describe such algo-
rithms.

In this section, we assume that G is a monotone and non-negative function (in addition to its other
properties). The algorithm we study in this section is Algorithm 3, and it again takes a quality control
parameter ε ∈ (0, 1) as input. This time, however, the algorithm assumes that ε−3 is an integer. As
usual, if that is not the case, then ε can be replaced with a value from the range [ε/2, ε] that has this
property. Most of the proofs of this section are deferred to Appendix A.3.

Firstly, note that for every integer 0 ≤ i ≤ ε−3, y(i) ∈ P ; and therefore, the output of Algorithm 3
also belongs to P . For i = 0 this holds by the initialization of y(0). For larger values of i, this follows
by induction because y(i) is a convex combination of y(i−1) and the point s(i) (y(i−1) belongs to P
by the induction hypothesis, and s(i) belongs to P by definition).

Our next objective is to lower bound the value of the output point of Algorithm 3. For that purpose, it
will be useful to define F̄ (x) = G(x) + 2C(x) and H(i) = F̄ (o)− F̄ (y(i)). To get a bound on the
value of the output of Algorithm 3, we first show that H(i) is small for at least some i value. We do
that using the next lemma, which shows that H(i) decreases as a function of i as longs as it is not
already small compared to G(yi). Then, Corollary 3.6 guarantees the existence of a good iteration i∗.

Lemma 3.5. For every integer 1 ≤ i ≤ ε−3, H(i− 1)−H(i) ≥ ε2 · [G(o)− 2G(y(i−1))] + 2ε2 ·
[C(o)− C(y(i−1))]− 6ε4LD2 = ε2 · [H(i− 1)−G(y(i−1))]− 6ε4LD2.

Corollary 3.6. There is an integer 0 ≤ i∗ ≤ ε−3 obeying H(i∗) ≤ G(y(i∗))+ε·[G(o)+2η+6LD2].

We are now ready to summarize the properties of Algorithm 3 in a theorem.

Theorem 3.7. Let S1 be the time it takes to find a point in P maximizing a given liner function and
S2 be the time it takes to find a point in P maximizing C(·) up to an error of η, then Algorithm 2 runs
in O(ε−3 · (n+ S1) + S2) time, makes O(1/ε3) gradient oracle calls, and outputs a vector y such
that

F (y) ≥ 1
2 (1− ε) ·G(o) + C(o)− ε ·O(η + LD2) .

Proof. We begin the proof by analyzing the time and oracle complexities of Algorithm 3. Every
iteration of the loop of Algorithm 3 takes O(n+S1) time. As there are ε−3 such iterations, the entire
algorithm runs in O(ε−3(n + S1) + S2) time. Also note that each iteration of the loop requires 2
calls to the gradient oracles (a single call to the oracle corresponding to G, and a single call to the
oracle corresponding to C), so the overall oracle complexity of the algorithm is O(1/ε3).
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Consider now iteration i∗, whose existence is guaranteed by Corollary 3.6. Then,

H(i∗) ≤ G(y(i∗)) + ε · [G(o) + 2η + 6LD2]

=⇒ [G(o) + 2C(o)]− [G(y(i∗)) + 2C(y(i∗))] ≤ G(y(i∗)) + ε · [G(o) + 2η + 6LD2]

=⇒ F (y(i∗)) ≥ 1
2 (1− ε) ·G(o) + C(o)− ε · [η + 3LD2] .

The theorem now follows since the output of Algorithm 2 is at least as good as y(i∗).

3.4 Non-oblivious Frank-Wolfe Algorithm

Algorithm 4: NON-OBLIVIOUS FRANK-WOLFE (ε)

Let y(0) be an arbitrary vector in P , and let β(ε)← e(1− ln ε).
for i = 0 to 0e−1 · β(ε)/ε21 do

s(i) ← argmaxx∈P

〈

e−1 ·∇Ḡ(y(i)) +∇C(y(i)),x
〉

y(i+1) ← (1− ε) · y(i) + ε · s(i)

end for

return the vector maximizing F among {y(0), ...,y($e−1· β(ε)

ε2
%)}

As mentioned in the beginning
of Section 3.3, our objective
in this section is to present an-
other algorithm that has β =
1 (i.e., it maximizes C “ex-
actly” in some sense). In Sec-
tion 3.3, we presented Algo-
rithm 3, which achieves this
goal with α = 1/2. The algo-
rithm we present in the current
section achieves the same goal
with an improved value of 1 − 1/e for α. However, the improvement is obtained at the cost of
requiring the function C to be non-negative (which was not required in Section 3.3). Additionally,
like in the previous section, we assume here that G is a monotone and non-negative function (in
addition to its other properties).

The algorithm we study in this section is a non-oblivious variant of the Frank-Wolfe algorithm,
appearing as Algorithm 4, which takes a quality control parameter ε ∈ (0, 1/4) as input. As usual, we
assume without loss of generality that ε−1 is an integer. Algorithm 4 also employs the non-negative
auxiliary function: Ḡ(x) = ε ·

∑ε−1

j=1
eεj ·G(εj·x)

εj
. This function is inspired by the non-oblivious

objective function used by Filmus and Ward [2012].

Note that any call to the gradient oracle of Ḡ can be simulated using ε−1 calls to the gradient oracle
of G. The properties of Algorithm 4 are stated in Theorem 3.8. Since the proof of this theorem is
quite technical and reuses some of ideas from the proof of Theorem 3.7 (as well as new ideas), we
defer it to Appendix A.4.
Theorem 3.8. Let S be the time it takes to find a point in P maximizing a given linear function, then
Algorithm 4 runs in O(ε−2(n/ε+ S) ln ε−1) time, makes O(ε−3 ln ε−1) gradient oracle calls, and
outputs a vector y such that:

F (y) ≥ (1− 1/e− 4ε ln ε−1) ·G(o) + (1− 4ε ln ε−1) · C(o)− 4εLD2 .

4 Experiments

In this section we describe some experiments pertaining to our algorithms for maximizing DR-
submodular + concave functions. All experiments are done on a 2015 Apple MacBook Pro with a
quad-core 2.2 GHz i7 processor and 16 GB of RAM.

4.1 Interpolating Between Constrasting Objectives

We use our algorithms for maximizing the sum of a DR-submodular function and a concave function
to provide a way to achieve a trade-off between different objectives. For example, given a ground
set X and a DPP supported on the power set 2X , the maximum a posteriori (MAP) of the DPP
corresponds to picking the most likely (diverse) set of elements according to the DPP. On the other
hand, concave functions can be used to encourage points being closer together and clustered.

Finding the MAP of a DPP is an NP-hard problem. However, continuous approaches employing
the multilinear extension [Călinescu et al., 2011] or the softmax extension [Bian et al., 2017a,
Gillenwater et al., 2012] provide strong approximation guarantees for it. The softmax approach
is usually preferred as it has a closed form solution which is easier to work with. Now, suppose
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Figure 2: Outputs of the experiment described in Section 4.1. LEFT PLOT: λ = 1 (just the
submodular objective). RIGHT PLOT: λ = 0 (just the concave objective). MIDDLE PLOT: 0 < λ < 1
(combination of both objectives). A darker square corresponds to a larger entry in the final output of
Algorithm 3 for the corresponding element.

that |X| = n, and let L be the n × n kernel of the DPP and I be the n × n identity matrix,
then G(x) = log det[diag(x)(L− I) + I] is the softmax extension for x ∈ [0, 1]n. Here, diag(x)
corresponds to a diagonal matrix with the entries of x along its diagonal.

Observe now that, given a vector x ∈ [0, 1]n, xi can be thought of as the likelihood of picking
element i. Moreover, Lij captures the similarity between elements i and j. Hence, our choice for a
concave function which promotes similarity among elements is C(x) =

∑

i,j Lij(1− (xi − xj)2).
The rationale behind this is as follows. For a particular pair of elements i and j, if Lij is large, that
means that i and j are similar, so we would want C to be larger when Lij is high, provided that
we are indeed picking both i and j (i.e., provided that (xi − xj)2 is small). One can verify that the
function C(x) is indeed concave as its Hessian is negative semidefinite.

In our first experiment we fix the ground set to be the set of 20 × 20 = 400 points evenly spaced
in [0, 1] × [0, 1] ⊂ R2. We also choose L to be the Gaussian kernel Lij = exp(−d(i, j)2/2σ2),
where d(i, j) is the Euclidean distance between points i and j, and σ = 0.04. Given the functions
G and C defined above, we optimize in this experiment a combined objective formally specified
by F = λG + (1 − λ)C, where λ ∈ [0, 1] is a control parameter that can be used to balance the
contrasting objectives represented by G and C. For example, setting λ = 1 produces the (spread out)
pure DPP MAP solution, setting λ = 0 produces the (clustered) pure concave solution and λ = 0.5
produces a solution that takes both constraints into consideration to some extent. It is important to
note, however, that the effect of changing λ on the importance that each type of constraint gets is not
necessarily linear—although it becomes linear when the ranges of G and C happen to be similar.

In Figure 2, we can see how changing λ changes the solution. The plots in the figure show the final
output of Algorithm 3 when run on just the submodular objective G (left plot), just the concave
objective C (right plot), and a combination of both (middle plot). The algorithm is run with the same
cardinality constraint of 25 in all plots, which corresponds to imposing that the '1 norm of each
iteratation must be at most 25. It is important to note that we represent the exact (continuous) output
of the algorithm here. To get a discrete solution, a rounding method should be applied. Also, all of
the runs of the algorithm begin from the same fixed starting point inside the cardinality constrained
polytope. The step sizes used by the different runs are all constant, and were chosen empirically.

On Jeopardy Dataset. As we can see, the above setup lends itself nicely to interpolating between
contrasting objectives, and this can be used in real world applications. For example, consider a set of
news articles or sentences. The DPP MAP solution would correspond to picking a very diverse set of
articles, whereas using just the concave objective would pick a set of similar articles or sentences. The
important step is to appropriately codify the similarity between elements of the ground set (i.e. the
news articles or the sentences) in the kernel L. To illustrate this, we consider a set of 324 questions
from the game show Jeopardy (taken from https://www.j-archive.com/), use a pretrained BERT model
to map these questions to (BERT) embeddings, and then use cosine-similarity to construct the matrix
L. This matrix can be seen to be positive semidefinite. Though we do not have a (small) set of
topics or meta-features for these questions, when this experiment is run, we get that the concave
solution picks questions focused on a few topics such as history and fantasy (like “Star designer
John Galliano was born Juan Carlos Galliano in this British possession at the tip of Spain”, “In
1801 this onetime VP compiled ‘A Manual of Parliamentary Practice’ still used in the U.S. Senate”,
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and “In Euripides’ play about this famed beauty, it’s her double who goes to Troy”), whereas the
DPP solution is much more spread out (including questions such as “These parts of a peach tree are
glossy green, pointed and lance shaped” and “5 x 10 x 15”).

4.2 Other Submodular + Concave Objectives

In this section we compare our algorithms with two baselines: the Frank-Wolfe algorithm [Frank and
Wolfe, 1956] and the projected gradient ascent algorithm. In all the experiments done in this section,
the objective function is again F = λG+ (1− λ)C, where G and C are a DR-submodular function
and a concave function, respectively. For simplicity, we set λ = 1/2 throughout the section.

4.2.1 Quadratic Programming

The non-convex quadratic programming (NQP) problem is a fundamental NP-hard problem studied
within the realm of DR-submodular quadratic programming in works such as Bian et al. [2017a]
and on its own [Xia et al., 2018, Burer and Letchford, 2009, Sherali and Tuncbilek, 1995]. Here,
we use our submodular + concave framework to study the NQP problem for a class of Hessian
matrices which can be decomposed as the sum of a Hessian corresponding to a submodular objective
and a Hessian corresponding to a concave objective. We define G(x) = 1

2 x&Hx+ h&x+ c. By
choosing the matrix H and vector h appropriately, this objective can be made to be monotone or
non-monotone DR-submodular. We also define the down-closed constraint set to be P = {x ∈
Rn

+ | Ax ≤ b,x ≤ u,A ∈ R
m×n
+ ,b ∈ Rm

+}. Following Bian et al. [2017a], we choose the matrix
H ∈ Rn×n to be a randomly generated symmetric matrix with entries uniformly distributed in
[−1, 0], and the matrix A to be a random matrix with entries uniformly distributed in [0.01, 1.01]
(the 0.01 addition here is used to ensure that the entries are all positive). The vector b is chosen as
the all ones vector, and the vector u is a tight upper bound on P whose ith coordinate is defined as
ui = minj∈[m] bj/Aji. We let h = −0.2 ·H&u which makes G non-monotone. Finally, although
this does not affect the results of our experiments, we take c to be a large enough additive constant (in
this case 10) to make G non-negative.

It is known that when the Hessian of a quadratic program is negative semidefinite, the resulting
objective is concave. Accordingly, we let C(x) = 1

20 x&Dx, where D is a negative semidefinite
matrix defined by the negation of the product of a random matrix with entries in [0, 1] with its
transpose. As one can observe, the generality of DR-submodular + concave objectives allows us to
consider quadratic programming with very different Hessians. We hope that our ability to do this will
motivate future work about quadratic programming for a broader class of Hessian matrices.

In the current experiment, we let n ∈ {8, 12, 16} and m ∈ {0.5n, n, 1.5n}, and run each algorithm
for 50 iterations. Note that having fixed the number of iterations, the maximum step size for
Algorithms 1 and 2 is upper bounded by (number of iterations)−1 = 1/50 to guarantee that these
algorithms remain within the polytope. To ensure consistency, we set the step sizes for the other
algorithms to be 1/50 as well, except for Algorithm 4 for which we set to the value of ε given by
solving e−1 · β(ε)/ε2 = 50. This ensures that the gradient computation in Algorithm 4 is not too
time consuming. We start Algorithms 1 and 2 from the starting point their pseudocodes specify, and
the other algorithms from the same arbitrary point. We show the results for n = 8 and m = 4, 8, 12
in Figures 3a, 3b, and 3c, respectively (each plot shows the average of 50 runs of the experiment).
Due to space constraints, the results for n = 12 and 16 are postponed to Appendix B. We also note
that since Algorithms 3 and 4 output the best among the results of all their iterations, we just plot the
final output of these algorithms instead of the entire trajectory.

4.2.2 D-optimal Experimental Design

Following Chen et al. [2018], the DR-submodular objective function for the D-optimal experimental
design problem is G(x) = log det

(
∑n

i=1 xiY
&
i
Yi

)

. Here, Yi is an n dimensional row-vector in
which each entry is drawn independently from the standard Gaussian distribution. The choice of
concave function is C(x) = 1

10

∑n
i=1 log(xi). In this experiment there is no combinatorial constraint.

Instead, we are interested in maximization over a box constraint, i.e., over [1, 2]n (note that the box
is shifted compared to the standard [0, 1]n to ensure that G is defined everywhere as it is undefined
at x = 0). The final outputs of all the algorithms for n = 8, 12, 16 appear in Figure 3d. Like in
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(a) n = 8,m = 4 (b) n = 8,m = 8

(c) n = 8,m = 12 (d) Final outputs for the D-optimal design problem.

Figure 3: Plots 3a, 3b, and 3c correspond to the quadratic programming experiment from Section 4.2.1.
Plot 3d pertains to the D-optimal experimental design problem from Section 4.2.2.

Section 4.2.1, each algorithm was run for 50 iterations, and each plot is the average of 50 runs. The
step sizes and starting points used by the algorithms are set exactly like in Section 4.2.1.

Takeaways. Based on our experiments, we can observe that Algorithms 1 and 4 consistently
outperform the other algorithms. We can also see (especially in the D-optimal experimental design
problem where they almost superimpose) that the difference between Algorithm 3 and the standard
Frank-Wolfe algorithm are minimal, but we believe that the difference between the two algorithms
can be made more pronounced by considering settings in which the gradient of C dominates the
gradient of G. Finally, one can note that the output value in plots 3a, 3b, and 3c tends to decrease
when the number of constraints increases, which matches our intuitive expectation.

5 Conclusion

In this paper, we have considered the maximization of a class of objective functions that is strictly
larger than both DR-submodular functions and concave functions. The ability to optimize this class
of functions using first-order information is interesting from both theoretical and practical points
of view. Our results provide a step towards the goal of efficiently analyzing structured non-convex
functions—a goal that is becoming increasingly relevant.

Our various results enable us to obtain approximation guarantees for many use cases. One use case
which is somewhat less well-covered by our results is the case of maximizing the difference between
a non-negative monotone DR-submodular function G and a non-negative monotone convex function
C. Currently, only Algorithm 3 applies to this case, yielding an approximation guarantee of α = 1/2
and β = 1 (in the notation of Table 1). However, as the functions in this case have so many properties
on top of what is required by Algorithm 3, it is reasonable to believe that one can improve over this
approximation guarantee.
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