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Abstract

A recent work by Ramanujan et al. (2020)
provides significant empirical evidence that
sufficiently overparameterized, random neu-
ral networks contain untrained subnetworks
that achieve state-of-the-art accuracy on sev-
eral predictive tasks. A follow-up line of the-
oretical work provides justification of these
findings by proving that slightly overparame-
terized neural networks, with commonly used
continuous-valued random initializations can
indeed be pruned to approximate any target
network. In this work, we show that the am-
plitude of those random weights does not even
matter. We prove that any target network of
width d and depth [ can be approximated up
to arbitrary accuracy € by simply pruning a
random network of binary {41} weights that
is wider and deeper than the target network
only by a polylogarithmic factor of d,[ and «.

1 Introduction

As the number of parameters of state-of-the-art net-
works continues to increase, pruning has become a
prime choice for sparsifying and compressing a model.
A rich and long body of research, dating back to the
80s, shows that one can prune most networks to a
tiny fraction of their size, while maintaining high accu-
racy (Mozer and Smolensky, 1989; Hassibi and Stork,
1993; Levin et al., 1994; LeCun et al., 1990; Han et al.,
2015b,a; Li et al., 2016; Wen et al., 2016; Hubara et al.,
2016, 2017; He et al., 2017; Wu et al., 2016; Zhu et al.,
2016; He et al., 2018; Zhu and Gupta, 2017; Cheng
et al., 2019; Blalock et al., 2020; Deng et al., 2020).

A downside of most of the classic pruning approaches is
that they sparsify a model once it is trained to full ac-
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curacy, followed by significant fine-tuning, resulting in
a computationally burdensome procedure. Frankle and
Carbin (2018) conjectured the existence of lottery tick-
ets, i.e., sparse subnetworks at (or near) initialization,
that can be trained—just once—to reach the accuracy
of state-of-the-art dense models. This may help allevi-
ate the computational burden of prior approaches, as
training is predominantly carried on a much sparser
model. The conjectured existence of these lucky tickets
is referred to as the Lottery Ticket Hypothesis (LTH).
Frankle and Carbin (2018) and Frankle et al. (2020)
show that not only do lottery tickets exist, but also
that the cost of “winning the lottery’ is not very high.

Along the LTH literature, a curious phenomenon was
observed; even at initialization and in the complete
absence of training, one can find sub-networks of the
random initial model that have prediction accuracy
far beyond random guessing (Zhou et al., 2019; Ra-
manujan et al., 2020; Wang et al., 2019). Ramanujan
et al. (2020) reported this in its most striking form:
state-of-the-art accuracy models for CIFAR10 and Im-
ageNet, simply reside within slightly larger, yet com-
pletely random networks, and appropriate pruning—
and mere pruning—can reveal them! This “pruning is
all you need” phenomenon is sometimes referred to as
the Strong Lottery Ticket Hypothesis.

A recent line of work attempts to establish the the-
oretical validity of the Strong LTH by studying the
following non-algorithmic question:

Can a random network be pruned to
approzimate a target function f(x)?

Here, f represents a bounded range labeling function
that acts on inputs z € X, and is itself a neural network
of finite width and depth. This assumption is not lim-
iting, as neural networks are universal approximators
(Stinchombe, 1989; Barron, 1993; Scarselli and Tsoi,
1998; Klusowski and Barron, 2018; Perekrestenko et al.,
2018; Hanin, 2019; Kidger and Lyons, 2020). Note that
the answer to the above question is trivial if one does
not constraint the size of the random initial network,
for all interesting cases of “random”. Indeed, if we start
with an exponentially wider random neural network
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compared to the one representing f, by sheer luck, one
can always find weights, for each layer, near-identical
to those of any target neural network that is f. Achiev-
ing this result with a constrained overparameterization,
i.e., the degree by which the random network to be
pruned is wider/deeper than f, is precisely why this
question is challenging.

Malach et al. (2020) were the first to prove that the
Strong LTH is true, assuming polynomial-sized overpa-
rameterization. Specifically, under some mild assump-
tions, they showed that to approximate a target net-
work of width d and depth [ to within error €, it suffices
to prune a random network of width O(d?1%/&?) and
depth 2[. Pensia et al. (2020) offered an exponentially
tighter bound using a connection to the SubsetSum
problem. They showed that to approximate a target
network within error ¢, it is sufficient to prune a ran-
domly initialized network of width O(dlog(di/e)) and
depth 2[. A corresponding lower bound for constant
depth networks was also established. Orseau et al.
(2020) were also able to reduce the dependence on ¢ to
logarithmic. They show that in order to approximate a
target network within error ¢, it suffices to prune a ran-
dom network of width O(d? log(dl /<)) if the weights are
initialized with the hyperbolic distribution. However,
this bound on overparamaterization is still polynomial
in the width d.

The above theoretical studies have focused exclusively
on continuous distribution for initialization. However,
in the experimental work by Ramanujan et al. (2020),
the authors manage to obtain the best performance by
pruning networks of scaled, binary weights. Training
binary networks has been studied extensively in the
past (Courbariaux et al., 2015; Simons and Lee, 2019)
as they are compute, memory and hardware efficient,
though in many cases they suffer from significant loss
of accuracy. The findings of Ramanujan et al. (2020)
suggest that the accuracy loss may not be fundamental
to networks of binary weights, when such networks
are learned by pruning. Arguably, since “carving out”
sub-networks of random models is expressive enough
to approximate a target function, e.g., according to
(Pensia et al., 2020; Malach et al., 2020), one is posed
to wonder about the importance of weights altogether.
So perhaps, binary weights is all you need.

Diffenderfer and Kailkhura (2021) showed that indeed
scaled binary networks can be pruned to approximate
any target function. The required overparameterization
is similar to that of Malach et al. (2020), i.e., polyno-
mial in the width, depth and error of approximation.
In a similar vein to the improvement that Pensia et al.
(2020) offered over the bounds of Malach et al. (2020),
we explore whether such an improvement is possible
on the results of Diffenderfer and Kailkhura (2021).
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Figure 1: Approximating a target network with high accu-
racy by pruning overparameterized random binary network.
In this paper, we show that logarithmic overparameteriza-
tion in both width and depth is sufficient.

Our Contributions: In this work, we offer an ex-
ponential improvement to the theoretical bounds by
Diffenderfer and Kailkhura (2021), establishing the
following.

Theorem 1. (informal) Consider a randomly initial-
ized, FC, binary {£1} network of ReLU activations,
with depth © (1log (%)) and width © (allog2 (%)), with
the last layer consisting of scaled binary weights {+C'}.
Then, there exists a constant C' such that this network
can be pruned to approximate any FC ReLU network,
up to error € > 0 with depth | and width d, with proba-
bility at least 1 — 9.

Therefore, we show that in order to approximate any
target network, it suffices to just prune a logarithmi-
cally overparameterized binary network (Figure 1). In
contrast to Diffenderfer and Kailkhura (2021), our con-
struction only requires that the last layer be scaled
while the rest of the network is purely binary {41}.
We believe that the tightness of our bound comes from
using depth more effectively. While Diffenderfer and
Kailkhura (2021) use a construction that is only 2!
in depth, it is wider than the target network by a
polynomial factor. In contrast, our construction is
both logarithmically wider and deeper than the target
network thereby requiring exponentially smaller over-
aparameterization in terms of total parameters. We
show a detailed comparison of the known Strong LTH
results in Table 1.

We would also like to remark that our bounds more
closely justify the experimental findings from Ramanu-
jan et al. (2020) and Diffenderfer and Kailkhura (2021).
Both works demonstrate that the amount of overparam-
eterization required to find a high accuracy subnetwork
is small, and surely not polynomial. Our bounds reflect
this observation.

In light of our theoretical results, one may wonder why
in the literature of training, i.e., assigning a sign pattern
to fixed architecture, binary networks, a loss of accuracy
is observed, e.g., Rastegari et al. (2016). Is this an
algorithmic artifact, or does pruning random signs
offer higher expressivity than assigning the signs? We
show that there exist target functions that can be well
approximated by pruning binary networks, yet none of

1
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Reference Width Depth Total Params ‘Weights

Malach et al. (2020) O(d?12 /%) 21 O(d?13 /€%) Real

Orseau et al. (2020) O(d?log(dl/e) 21 O(d?l1og(dl/e) Real (Hyperbolic)
Pensia et al. (2020) O(dlog(dl/ min{e,d}) 21 O(dllog(dl/ min{e, d}) Real

Diffenderfer and Kailkhura (2021) | O((1d%/2/¢) + Idlog(1d/d)) | 21 O((Pd®2Je) + 1?dlog(1d/s)) | {£e}

Ours, Theorem 1 O(dlog? (dl/ed)) O(llog (dl/€)) | O(dllog® (di/ed)) Binary-{+1}!

Table 1: Comparing the upper bounds for the overparameterization needed to approximate a target network (of width d
and depth ) within error £ > 0 with probability at least 1 — ¢ by pruning a randomly initialized network.

all possible, binary, fully-connected (FC) networks can
approximate it.

Proposition 1. (informal) There exist a function f
that can be represented by pruning a random 2-layer
binary network of width d, but not by any 2-layer fully-
connected binary network of width d.

Note that although finding a subnetwork of a random
binary network results in a “ternary” architecture (e.g.,
0 becomes a possible weight), the total number of
possible choices of subnetworks is 2V, if N is the total
number of weights. This is equal to the total number
of sign assignments of the same FC network. Yet, as
shown in the proposition above, pruning a random FC
network is provably more expressive than finding a sign
assignment for the same architecture.

2 Preliminaries and Problem Setup

Let f(z) : R% — R be the target FC network with I
layers and ReLU activations, represented as

fl@®) =c(Wioc(W;_1...0(Wix))),

where & € R% is the input, o(z) = max{z,0} is the
ReLU activation and W; € R%*di-1 is the weight
matrix of layer ¢ € [I]. With slight abuse of terminology,
we will refer to f as a network, as opposed to a labeling
function. We then consider a binary' network of depth
l/

g(x) =0o((¢By)o(By_1...0(Bix))),

where B; € {—1, +1}d§Xd;fl is a binary weight matrix,
with all weights drawn uniformly at random from {+1},
for all layers ¢ € [I'] and the last layer is multiplied
by a factor of ¢ > 0. The scaling factor is calcu-
lated precisely in Section 3.2.3, where we show that it
is unavoidable for function approximation unless the
problem is that of classification.

Our goal is to find the smallest network ¢ so that it
contains a subnetwork g which approximates f closely.
More precisely, we will bound the overparameteriza-
tion of the binary network, under which one can find

!The weights of all the layers are purely binary {£1}
except for the last layer which is scaled so that it is {£e'}
where ¢’ = (¢/d?1)".

}d;del

supermask matrices M; € {0, 1 , for each layer

i € [I'], such that the pruned network

g(ac) 20'(6/(Ml/ ® Bl/)O'((Ml/—l © Bl’—l) .
...o((M; ® By)x)))

is e-close to f in the sense of uniform approximation
over the unit-ball, i.e.,

max _||f(x) - g(z)| <e

zER0:||z||<1
for some desired € > 0. In this paper, we show g only
needs to be polylogarithmically larger than the target
network f to have this property. We formalize this and
provide a proof in the following sections.

Henceforth, we denote [k] = {1,2,--- ,k} for some pos-
itive integer k. Unless otherwise specified, || - || refers
to the ¢ norm which induces the spectral norm for ma-
trices. We also use the max norm of a matrix, defined
as || Al|max := max;j |A;;j|. The element-wise product
between two matrices A and B is denoted by A ® B.
We assume without loss of generality that the weights
are specified in the base-10 system. However, since
we don’t specify the base of the logarithm explicitly
in our computations, we use the ©(-) notation to hide
constant factors that may arise from choosing different
bases.

3 Strong Lottery Tickets by Binary
Expansion

In this section, we formally present our approximation
results. We show that in order to approximate any
target network f(a) within arbitrary approximation
error ¢, it suffices to prune a random binary!' network
g(x) that is just polylogarithmically deeper and wider
than the target network.

3.1 Main Result

First, we point out that the scaling factor & in the
final layer of g(x) is necessary for achieving arbitrarily
small approximation error for any target network f(x).
In other words, it is impossible to approximate an
arbitrary target network with a purely binary {£1}
network regardless of the overparameterization. To see
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this, note that for the simple target function f(z) =
ex, € [0,1] and € € [0.5, 1), the best approximation
possible by a binary network is g(z) = « and therefore
mMaXgeR:|z|<1 |f($) - g(x)| 2 (1 - 5) for any binary
network g. We will show that just by allowing the
weights of the final layer to be scaled, we can provide
a uniform approximation guarantee while the rest of
the network remains binary {£1}. Formally, we have
the following theorem:

Theorem 1. Consider the set of FC ReLU networks
F defined as

F={f:f(x)=0(Wio(Wi_i...0(Wiz))),
Vi W; € REGxdi-1 ||W;|| < 1},

and let d = max;d;. For any ¢ > 0, let
g(gg) = U(€/Bl'0(Bl’_1 . O'(Blﬁc))) (here 8’ =
(e/d?1)!) be a randomly initialized network with
depth I' = O(llog(d?l/c)) such that every weight is
drawn uniformly from {—1,4+1} and the layer widths
are © (log d?l/e - log <7dl logQ(S(dQl/E))) times wider than
f).

Then, with probability at least 1 — 6, for every f € F,
there exist pruning matrices M; such that

/() —

max

x)| <e
xE€R0:||z||<1 @) <

S}

holds where

J(x) :=0(€/(Ml/ ©By)o(My_1©By_q)...
...o((M; ® By)x))).

Remark 1. The dimensions of the weight matrices of
g(x) in Theorem 1 are specified more precisely below.
Let p = (d?l/¢). Since I' = llog(p), we have [log(p)]
layers in g(x) that approximates each layer in f(x).
For each i € [l], the dimension of B(i_1)|1og(p)|+1 15

2
(C] (dil log(p) log <d“0§(m>) X d;i1,

the dimension of Bj|iog(p)| S

di x © (dil log (p) log (‘W))

and the remaining B(;_1)|1og(p)|+k Where 1 < k <
|log(p)| have the dimension

0 (1 toe 1 (1195
<o (i oty (2252

3.2 Proof of Theorem 1

First, we show in Section 3.2.1 that any target network
in f(x) € F can be approximated within ¢ > 0, by
another network g, («) having weights of finite-precision
at most p digits where p is logarithmic in d,l, and ¢.

Then, in Section 3.2.2, we show that any finite precision
network can be represented exactly using a binary
network where all the weights are binary {41} except
the last layer, and the last layer weights are scaled-
binary {+¢’}. We do this by first showing that any
finite-precision network is equivalent to a network with
integer weights in every layer except the last using
a simple scaling argument. We then prove Lemma 6
which shows the deterministic construction of a binary
network using diamond-shaped gadgets that can be
pruned to approximate any integer network. Theorem 2
extends the result to the case when the network is
initialized with random binary weights.

Putting these together completes the proof of Theo-
rem 1 as shown in Section 3.2.3.

3.2.1 Logarithmic precision is sufficient

First, we consider the simplest setting wherein the tar-
get network contains a single weight i.e., h(z) = o(wz),
where x, w are scalars, the absolute values of which are
bounded by 1. This assumption can be relaxed to any
finite norm bound. We begin by noting that log(1/¢)
digits of precision are sufficient to approximate a real
number within error €, as formalized below

Fact 1. Letw € R, |w| <1 and W be a finite-precision
truncation of w with [©(log(1/e))] digits. Then |w —
w| < e holds.

Now we state the result for the case when the target
network contains a single weight w.

Lemma 1. Consider a network h(z) = o(wz) where
w € R, |w| < 1. For a given € > 0, let w be a finite-
precision truncation of w up to log(1/e) digits and let
Glog(1/¢)(x) = o(wx). Then we have

max

z€R:|z|<1 ‘h(x) o glog(l/g)($)| <e.

Proof. By Fact 1, we know that |w — | < . Applying
Cauchy-Schwarz with |z| < 1 gives us |z — wz| < e.
Since this holds for any  and ReLU is 1-Lipschitz, the
result follows. O

Lemma 1 can be extended to show that it suffices
to consider finite-precision truncation up to log(d?l/¢)
digits to approximate a network for width d and depth
[. This is stated more formally below.
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Lemma 2. Consider a network h(x) =
o(Wia(Wi_1...0(Wix))) where W; € RIixdi-1
(Wil < 1. For a given ¢ > 0, define
g/lo\g(dzl/g)(w) = o(Wio(Wi_y...0(Wix))) where
W, is a finite precision truncation of W; wup to
log(d?l/e) digits, where d = max; d;. Then we have

max
zeR0:||x||<1

|h($) - glog(d%/s) (x)‘ <e.

We provide the proof of Lemma 2 as well as approx-
imation results for a single neuron and layer in Ap-
pendix A.1.

3.2.2 Binary weights are sufficient

We begin by showing that any finite-precision FC ReLU
network can be represented perfectly as a FC ReLLU
network with integer weights in every layer except the
last, using a simple scaling argument. Since ReLU
networks are positive homogenous, we have that o(c-
z) = c-o(z) for any ¢ > 0. Given a network g, where
all the weights are of finite-precision at most p, we can
apply this property layerwise with the scaling factor
¢ = 10? so that,

f(@) =o(Wio(Wi_y...0c(Wiz)))

(CVV[O'(CVVl—l N O'(CWl.’I})))

EO'
= o(Wio(Wi_y ...0(Wiz))) (1)

where ﬁ\Q = 10PW; is a matrix of integer weights and
d = C% Therefore, the rescaled network has integer
weights in every layer except the last layer which has

the weight matrix ¢/W; = (c"\ )W.

In the remaining part of this section, we show that
any FC ReLU network with integer weights can be
represented exactly by pruning a purely binary {+1}
FC ReLU network which is just polylogarithmic wider
and deeper. More precisely, we prove the following
result.

Theorem 2. Consider the set of FC' ReLU networks
with integer weights Fy defined as

Fw =A{f: f(x) = o(Wio(Wi_1...0(Wiz))),

Vi W; € ZdiXdi71 ||W1Hmaz < W}
where W > 0. Define d = max; d; and let g(x) =
o(Byo(By_y...0(Bjx))) be a network with depth I’ =

O(llog(|W1)) where every weight is uniform-randomly
generated from {—1,4+1} and the layer widths are

C) (log W] -log (d“%zlw‘)) times wider than f(x).

Then, with probability at least 1 — &, for every f € F,
there exist pruning matrices M; such that

f(x) = g(x)

holds for any © € R% where j(x) = o((My ©
Bll)O'((Mll_]_ ® Bl’—l) ce U((Ml © Bl)w)))
Remark 2. The dimensions of the weight matrices of
g(x) in Theorem 2 are specified more precisely below.
Note that we have |log |W || layers in g(x) that exactly
represents each layer in f(x). For each i € [l], the
dimension of B(;_1)|10g |W||+1 1S

log?
S) (dil log [W|log (W)) X d; 1,

the dimension of Bj|iog|w|| S

1 2
di x © (di_l log |[W] log (‘”Og&W'))

and the remaining B(;_1)|10g |w||+k Where 1 < k <
|log |W|] have the dimension

2
© (dil log |W|log <dl10g§|VV|)>

2
x O (di_l log |W|log <dllog;|VV|)>

Remark 3. Note that §(x) is exactly equal to f(x).
Furthermore, like Pensia et al. (2020) we provide a
uniform guarantee for all networks in F by pruning a
single over-parameterized network.

Remark 4. Theorem 2 can be stated using a determin-
istic construction thereby avoiding the log(1/6) overpa-
rameterization. We extend to the random initialization
setting by resampling this construction a sufficient num-
ber of times.

Remark 5. To resolve issues of numerical overflow,
we can insert scaling neurons after every layer.

Remark 6. The integer assumption can easily be con-
verted to a finite-precision assumption using a simple
scaling argument. Since all networks in practice use
finite-precision arithmetic, Theorem 2 may be of inde-
pendent interest to the reader. However, we emphasize
here that there is no approximation error in this setting.
Practitioners who are interested in small error(107F)
can just apply Theorem 1 and incur an overparameter-
ization factor of O(k).

The proof of Theorem 2 will first involve a deterministic
construction of a binary network that gives us the
desired guarantee. The construction is based on a
diamond-shaped gadget that allows us to approximate a
single integer weight by pruning a binary ReL.U network
with just logarithmic overparameterization.

First, consider a target network that contains just a
single integer weight i.e., h(z) = o(wz). We will show
that there exists a binary FC ReLU network g(z) which
can be pruned to approximate h(x).
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Figure 2: The diamond-shaped binary ReLLU networks that
compute g, () and g,—x(x), respectively. The dashed edges
are just weights that have been “pruned” (set to 0). The
output neuron is a simple linear activation.

Lemma 3. Consider a network with a single weight,
h(z) = o(wzx) where w € Z. Then there exists a FC
ReL U binary network g(x) of width and depth O(log |w|)
that can be pruned to g(x) so that g(x) = h(zx) for all
r eR.

Proof. Note that since w is an integer, it can be repre-
sented using its binary (base-2) expansion

[logy |w]]

w = sign(w) Z 2 - 28,

k=0

2 € 10,1}, (2)

For ease of notation, we will use log(:) to represent
log, () going forward. Denote n = |log, |w|]. The
construction of g, (x) in Figure 2a shows that 2" can be
represented by a binary network with ReLLU activations
for any n. We will refer to this network as the diamond-
shaped “gadget”.

Note that the expansion in Equation (2) requires us to
approximate 2* for all 0 < k < n = |log |w|]. Luckily,
any of these can be represented by just pruning g, (z)
as shown in Figure 2b.

However, since our constructions use the ReLU activa-
tion, this only works when « > 0. Using the same trick
as Pensia et al. (2020), we can extend this construc-
tion by mirroring it as shown in Figure 3. This gives
us fi (z) == 2""Fz and f, ,(z) := —2""*z. The
correctness of this mirroring trick relies on the simple
observation that wz = o(wz) — o(—wz).

Putting these together, we get g, (z) = o(£ >, _, 2"x)
as shown in Figure 4. By pruning just the weights in
the last layer, we can choose which terms to include.
Setting n = |log |w|| completes the approximation.

To calculate the overparameterization required to ap-
proximate h(x) = o(wzx), we simply count the param-
eters in the above construction. Each gadget gi is a
network of width 2 and depth (|log |w]]). To construct

8n—k

8n—k

(b) fr_y(@) = —2"""
Figure 3: We can use two instances of g,,—j to create (a)
f,. and (b) f,_, to approximate both positive weights
and negative weights. The output neuron here has a linear
activation.

f,j , we need two such gadgets. Therefore to construct
fif and f,, we need width 4 and depth (|log|w|]).
Repeating this for each k € 1,2,...,|log|w|] shows
that our construction is a network of width and depth
O(log |w|) which completes the proof of Lemma 3. [

Remark 7. The network in Fig. 4 used for proving
Lemma 3 can be written as

g(z) =0(M, ©v)T[(M, © B,)o((M,_1 ®B,_1)...
. o((My © By)o((My © u)z)))]),

where {M;}icin), My, My, are mask matrices and
{Bi}icm); v, w are binary weight matrices. By prun-
ing elements in w or v, one can obtain h(zx) = o(wz).
We will always prune the last layer v as it makes the
construction more efficient when we extend it to ap-
proximating a layer.

Now, we extend the construction to the case where the
target function is a neural network with a single neuron
i.e., h(z) = o(wlz).

Lemma 4. Consider the set of single neuron networks
Hu,,,., = {h : h(z) = o(wTz),w € Z ||w||w <
Wmaz t- Then there exists a FC' ReLU binary network
g(x) of width O(dlog |Wmaz|) and depth O(log |Wmaz|)
that can be pruned to gn(x) for every h € H s0
that gn(x) = h(z) for all x € RY.

Wmaz

Proof. A neuron can be written as h(z) = o(wlz) =

d .
o (3 ;1 wix;). Therefore, we can just repeat our con-
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Figure 4: Ilustration of gr(z) = > 1_,(fi (z) + fi (z)) =
o(£ 37 , 2"z) which can be further pruned to approximate
f(z) = o(wx) for any w : |w| < 2" — 1

struction from above for each w;,i € [d]. This results
in a network of width O(dlog |wmaz|) while the depth
remains unchanged at O(log |wmaz|). Note that the
construction is identical for every h € H,,,,,, since it
only depends on the largest weight in the network. [

Next, we describe how to approximate a single layer
target network and avoid a quadratic overparameteri-
zation.

Lemma 5. Consider the set of single layer net-
works Hy = {h : h(z) = o(1To(Wiz)), W, €
Z3xdo Wy |ae < W1 Then there ex-
ists a FC ReLU binary network g(x) of width
O(max{dy, d; } log |W|) and depth O(log|W|) that can
be pruned to gn(x) for every h € H so that gn(x) = h(x)
for all x € R%.

Proof. For ease of exposition, we describe the proof for
a single h but it trivially applies to every h € Hy . Note
that 1 € R% is the vector of 1’s. Naively extending
the construction from Lemma 4 would require us to
replace each of the dy neurons in the first layer by a
network of width O(d; log |W|) and depth O(log |W1).
This already needs a network of width O(dyd; log |W])
which is a quadratic overparameterization. Instead, we
take advantage of pruning only the last layer in the con-
struction from Lemma 3 to re-use a sufficient number of
weights and avoid the quadratic overparameterization.
An illustration of this idea is shown in Figure 5. The
key observation is that by pruning only the last layer of
each f,(z) gadget, we leave it available to be re-used to
approximate the weights of the remaining (d; — 1) neu-
rons. Therefore, the width of the network required to

Figure 5: Illustration of the construction in Lemma 5: Ap-
proximating a 1-hidden layer network h(zx) = o(1%o(Wiz))
by pruning the appropriate binary network g(«). Pruning
the last layer allows us to “re-use” weights.

approximate h(x) is just O(max{dp, d;}log |W|) and
the depth remains O(log |W|). O

Now we can tie it all together to show an approximation
guarantee for any network in Fyy.

Lemma 6. Consider the set of networks Fy = {f :
f(x) = c(Wio(W,_y...0(Wiz))), W, € Zdixdi1
[IWillmaz < W}. Let d = max; d;. Then, there exists
a FC ReLU binary network g(x) of width O(dlog|W1)
and depth O(llog |W]) that can be pruned to §s(x) for

every f € Fw so that §y(z) = f(z) for all x € R%.

Proof. Note that there is no approximation error in
any of the steps above. Therefore, we can just repeat
the construction above for each of the [ layers in f(x).
This results in a network g(x) of width O(dlog|W|)
and depth O(llog|W]). A more precise description
of the dimensions of each layer can be found in the
statement of Theorem 2. U

We are now ready to prove Theorem 2 in its entirety
by showing that our construction can be extended for
networks with randomly initialized weights. We restate
it here in a slightly simpler form for convenience.

Theorem 2. Consider the set of FC ReLU

networks with integer weights Fw = {f
fl®) = oWio(W;i_1...c(Wix))), W, €
Z3xdi-r Wil maw < W} where W > 0. Let

d = max; d; and let g(x) be a randomly initialized
binary network of width © (dlog (M)) and
depth ©O(llog|W|) such that every weight is drawn
uniformly from {—1,+1}. Then, for every f € Fw,
g(x) can be pruned to Gs(x) so that gs(x) = f(x) for
all © € R% with probability at least 1 — 4.
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Proof. Consider any one particular diamond structure
in Figure 2. If we sample the weights of this network
uniformly at random from {—1,+1}, then the proba-
bility that they are all 1 is at most (1/2)*. If we make
the network k times wider, the probability that such a
diamond-gadget does not exist in the network is given
by (1 — (1/2)*)%. In other words, if A is the failure
event, then P(A4) = (1 — (1/2)4)k. Note that there are
O(dllog? |W|) such diamond structures in our network.
By symmetry, the failure probability of each of them
is identical. To have the overall probability of failure
to be at most 9, taking the union bound we have that

dilog? [W|- (1—(1/2)")" <5

Hence, it suffices to have £ > © (log (ng&w))

In other words, a randomly initialized binary network
2

of width © (1og (M)) and depth O(Ilog [W])

contains our deterministic construction with probability
at least 1 — 4. O

Remark 8. Note that we need the randomness to just
ensure the existence of a particular deterministic net-
work - specifically g(x) from Lemma 6. Therefore, a
single random network is sufficient to ensure the guar-
antee for every f € Fy . This allows us to avoid using
any union bound arguments.

3.2.3 Putting everything together

First, note that by Lemma 2, to approximate any f € F
within € > 0, it suffices to consider g(x) which is a
finite-precision version of f where the precision of each
weight is at most p = log(d?l/e). Now, applying the
scaling trick in Equation (1) we can represent §(x)
exactly as a scaled integer network i.e.,

i(@) = c o (Wio(cWi_y ... o(cWhiz)))

where ¢ = 107 = (d?l/¢) and all the weight ma-
Since |[Willmax < 1, it

trices ¢W, are integer.
is clear that Hcﬁ\/}Hmam < ¢.  Therefore, apply-
ing Theorem 2 to the integer network c'g(x) with
W = (d?l/¢), we have the following. If h(x) =
o(Byo(By_1...0(Bix))) is a randomly initialized
binary network of depth O(llog(d?l/e)) and width
C] (log(dQZ/E) log (M)) then with probabil-
6 )

ity at least (1 — d), it can be pruned to h(z) so that
c'§(x) = h(x) for any « in the unit sphere. Therefore,
to approximate §(x) we simply push the scaling fac-
tor ¢! into the last layer By so that its weights are
now scaled binary {#(e/d?l)'}. Combining this with
the approximation guarantee between g(x) and f(x)
completes the proof of Theorem 1.

3.3 Binary weights for classification

Theorem 2 can easily be extended for classification
problems using finite-precision networks. Since sign(-)
is positive scale-invariant, we no longer even require the
final layer to be scaled. Applying the same argument
as Sec 3.2.3 and then dropping the ¢! factor gives us
the following corollary.

Corollary 1. Consider the set of binary classification
FC ReLU networks F of width d and depth [, where the
weight matrices {W;}._, are of finite-precision of at
most p digits. Let g(x) = sign(Bpo(By_1...0(B1x)))
be a randomly initialized binary network with depth
" =0(lp) and width d' = O(dplog(dip/d)) such that
every weight is drawn uniformly from {—1,+1}. Then,
with probability at least 1 — &, for every f € F, there
exist pruning matrices { M;}\_, such that f(x) = §(x)
for any = where g(x) := sign((My © By)o((My_1 ©
Bllfl) RN U((Ml ® Bl)a:)))

3.4 Observation on the power of zero

In the following, we try to understand if pruning is
essential to the expressive power of binary networks.
We will show that pruning binary networks is strictly
more powerful than merely sign-flipping their weights.
To see this, consider the set of all networks that can
be derived by pruning 1-hidden layer binary networks
of width m and input dimension d:

d m
Pane = { £ @) =0 | o [ Loyt | |
i=1 j=1

Wy, Vj S {+1, 1,0}}

Similarly, the set of all 1-hidden layer binary networks
of the same width without pruning is given by

d
m o {f:f(w)cr S 20
=1

wj,Vj € {+1, —1}}. (3)

m

§ %
vjwj ,

j=1

In the following proposition, we prove that Fp,yuneq is &
strictly richer class of functions indicating that pruning
is an essential part of approximating classifiers.

Proposition 1. The function f(x) =o (Z‘Ll i- xi)
satisfies f(x) € FL . and f(z) ¢ FL . i.e., without

prune
pruning, f(x) cannot be represented by a single layer

binary network of width d.

Proof. For simplicity, we consider the case when = > 0
so that the ReLU is equivalent to a linear activation. If
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the functions are not equal for the non-negative orthant,
then they are surely different. First, note that we re-
cover f(x) from ]-'gmned if we set v; = 1 and w} = 1<;
for all 4, j. Therefore, f(x) € F¢ holds. To see

pruned )
that f ¢ ]-'{fin, first note that we can replace vjw; with

z; € {+1,—1} Vi,j in Equation (3). Hence, any g €
FL is of the form g(z) = o (Zle Ti0 (Z?Zl 24) ).

bin
Consider the coefficient of x4 in f(a) which is (d — 1).
Since ch_z cannot be set to 0, the best approximation we
can get using g(x) is d or d — 2. In fact, this holds for

every odd term in f(z). This completes the proof. [

Remark 9. The above proposition suggests that prun-
ing is more powerful than merely flipping signs of a
binary network. In fact, the same argument can be
extended for binary networks of any fized width d and
depth [ to show that pruned networks are more expres-
stve. However, it does not quantify this difference in
expressivity.

4 Conclusion

In this paper, we prove the Strong LTH for binary
networks establishing that logarithmic overparameteri-
zation is sufficient for pruning algorithms to discover
accurate subnetworks within random binary models.
By doing this, we provide theory supporting the wide
range of experimental work in the field, e.g., scaled bi-
nary networks can achieve the best SOTA accuracy on
benchmark image datasets (Diffenderfer and Kailkhura,
2021; Ramanujan et al., 2020). Moreover, we show that
only the last layer needs to be scaled binary, while
the rest of the network can be purely binary {+1}. It
is well known in the binary network literature that a
gain term (scaling the weights) makes the optimization
problem more tractable (Simons and Lee, 2019). While
this is known empirically, it would be interesting to
study this from a theoretical perspective so we can
identify better algorithms to find binary networks of
high accuracy.
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A Appendix

A.1 Proof of Lemma 2

Before proving Lemma 2 in its entirety, we first ex-
tend Lemma 1 to approximate a neuron with log(d/e)-
precision.

Lemma 7. Consider a network h(zx) = o(w”x) where

w € RY||w|| <1 ande > 0. Let @ be a coordinate-
wise finite-precision truncation of w up to log(d/e)
digits and §(x) = o(wz). Then we have that

1h(z) — g(z)|| < e.

max
weR™:||z||<1

Proof. Once again, by Lemma 1, we have that for each

coordinate |w; — w;| < ¢/d. Therefore, ||lw — w|| <

Y (5) < e

[|z|| <1 completes the proof. O

Applying Cauchy-Schwarz with

We now extend the result to approximating a single
layer with finite-precision.
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Lemma 8. Consider a network h(z) = o(17o(W;x))
where Wy € R *do ||[Wy|| <1 and e > 0. Let A
be a coordinate-wise ﬁmte-preczszon truncation of Wi
up to log(d?/e) digits and §(x) = U(Wlx) where d =
max{do,d1}. Then we have that

max _|[h(z) — g(o)|| <e.

zER0:[|z|[<1

Proof. Note that for any « : ||z|| <1,

[h() — ()|
< : L)
= (3 oW 02)) - o3 o2 )|

dq )
— (%)
Oz) = "o o)
=1

(Since o is 1-Lipschitz)

dl .
i /\(7')
<) :||0(W1( )z) —a(Wy z)||
=1

- 5
< =
- ; IIlaX{d()7 dl}

<e

Since this holds for any @, it also holds for the « that
attains the maximum possible error which completes
the proof. O

We are now ready to prove Lemma 2 which states that
to approximate any FC ReLU network within ¢, it
suffices to simply consider weights with logarithmic
precision.

Lemma 2. Consider a network h(x) =

o(Wio(W,_1...0(Wiz))) where W; € Rdxdi-1
(Wil < 1 d < d and ¢ > 0. Let
g(x) = (VV[O’(‘/‘/Z 1...0(Wix))) where W; is

above for the second layer gives us,
lo(Wao (Wi2)) - o (Wa(o(Wia))||
= [lo(Was) — o(Wai)|
= ||o(Wazs) — 0(Wats) + 0(Wazs) — o(Wais)|
< |lo(Wazs) — 0(Wazs)|| + [|lo(Wazs) — o(Wais)||

a finite precision truncation of W; up to log(d?l/e)
digits. Then we have that

[1h()

max
zER0:||z||<1

—g(@)] <e.

Proof. The proof follows inductively. First note that
since operator norm is bounded by the frobenius norm,
we have for the output of the first layer that,

lo(Wiz) — o(Wiz)| < [|[Wiz — Wiz|

< ||Wy — W ||
< |Wi — Willp
<e/l

Next, denote the output of the first layer by @3 :=
o(Wiz), T2 := o(Wixz). Repeating the calculation
Note that the first term is bounded by /1 since ||x2]| <

1. Further, using the fact that ||‘/7[\/2H <1 and |x2 —
Zs|| < /1 as proved above, we get that

lo(Wao (Wiz)) — o(Wa(o(Wia))|| < 2¢/1

By induction, for each layer 1 < i <[ we have that for
any  : ||z|| <1,

|(o(Wio(W;_y
— (U(Wia(ﬁfi_l

o(Whz))))
o(Wia))))| <& (i/1)

Setting ¢ = | completes the proof. U
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