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Abstract—We consider the problem of estimating the structure Graphical models for data variables have been inferred

of an undirected weighted sparse graph underlying a set of from consideration other than statistical, depending upon
signals, exploiting both smoothness of the signals as well as their the intended application, nature of data and available
statistics. We augment the objective function of Kalofolias (2016) . . . i .

which is motivated by a signal smoothness viewpoint and imposes prior 1nf0rmat10n [1]. One class of graphl(.:al models are
a Laplacian constraint, with a penalized log-likelihood objective based on signal smoothness [1], [9]-[11]. Given n samples

function with a lasso constraint, motivated from a statistical {x(t)}{_; of the p data variables 1,21, -+ ,zp, x(t) =
viewpoint. Both of these objective functions are designed for [21(t) z2(t) -+ mp(t)]T. Define

estimation of sparse graphs. An alternating direction method

of multipliers (ADMM) algorithm is presented to optimize X = [x(l) x(2) .- X(n)} c RP*™ (1)

the augmented objective function. Numerical results based on
synthetic data show that the proposed approach improves upon A measure of smoothness of signal x(t) under which the
Kalofolias (2016) in estimating the inverse covariance, and signal takes “similar” values at “neighboring” vertices of a

improves upon graphical lasso in estimating the graph topology. . . . . ;
We also implement an adaptive version of the proposed algorithm given weighted undirected graph, is the function [1], [9]

following adaptive lasso of Zou (2006), and empirically show that 1 &
it leads to further improvement in performance. - Z Wi | X — X; Hg = tr( XTL X) 2)
B . .

I. INTRODUCTION 4,j=1

An undirected simple weighted graph is denoted ¢ = Where X; denotes the ith row of X, L = D — W is
(V,E,W) where V = {1,2,--- ,p} = [p] is the set of p the (combinatorial) graph Laplacian (matrix), and D is the
nodes, £ C [p] x [p] is the set of undirected edges, and W € diagonal weighted degree matrix with Dy = Z§:1 Wij.
RP*P stores the non-negative weights W;; > 0 associated with Based on the smoothness constraint, graph learning from data
the undirected edges. If there is an edge between nodes i and X becomes equivalent to estimation of Laplacian L [1], [9].
j, then edge {i,j} € £ and W;; > 0, otherwise {i,j} ¢ & Another set of approaches are based on statistical considera-
and W;; = 0. In a simple graph W;; = 0. In an undirected tions under the graph Laplacian constraint [1], [12]-[14] where
graph, if {i,j} € &, then {j,i} € £. In graphical models Laplacian L, after regularization, plays the role of inverse

of data variables x1,21,--- ,xp, (x = [x3 2 - xp]T), a covariance £2; L is a symmetric, non-negative-definite matrix
weighted graph G = (V,&, W) (or unweighted G = (V,&)) but with non-positive off-diagonal entries. These approaches
with |V| = p is used to capture relationships between the apply only when off-diagonal entries of inverse covariance are
p variables x;s [1]-[3]. If {i,j} € &, then z; and z; are non-positive.

related (similar or dependent) in some sense, with higher W;; Graph Laplacian matrix has been extensively used for
indicating stronger similarity or dependence. embedding, manifold learning, clustering and semi-supervised

Graphical models provide a powerful tool for analyzing learning [15], [16]; see [1], [9] for further applications.
multivariate data [1]-[3]. In a statistical graphical model, the
conditional statistical dependency structure among p random
variables 1,71, ,T,, is represented using an undirected Prior work related to the objective of our paper is dis-
graph G = (V, £). There is no edge between nodes i and j iff cussed in detail in Sec. II. In this paper, we augment the
; and x; are conditionally independent given the remaining p- ~ smoothness-based objective function of Kalofolias [9] with
2 variables. Suppose & has positive-definite covariance matrix @ penalized log-likelihood objective function with a lasso
¥ with inverse covariance matrix @ = X~1. Then ; ;, the constraint (as in [7]). An alternating direction method of
(i, 7)-th element of €2, is zero iff z; and z; are conditionally ~multipliers (ADMM) algorithm is presented to optimize the
independent. Such models for & have been extensively studied. augmented objective function to infer the graph topology and
In high-dimensional settings, one estimates {2 under some (O estimate the inverse covariance (or, equivalently, the graph
sparsity constraints; see [4]-[8]. edge weights). Numerical results based on synthetic data show

that the proposed approach improves upon [9] in estimating the

This work was supported by NSF Grants CCF-1617610 and ECCS- inverse covariance or the Laplacian, and improves upon [7] in
2040536. estimating the graph topology. It also outperforms [13] which
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2) ADMM Solution: This is an alternative solution given in
[20]. An ADMM algorithm (also a primal-dual algorithm) is
given in [20] to optimize (4), although in a different context
and using scaled Z.

uses a Laplacian constraint. We also implement an adaptive
version of the proposed algorithm following adaptive lasso of
[17], and empirically show that it leads to further improvement
in performance.

Notation: Given A € RP*P, we use |A| and tr(A) to
denote the determinant and trace of A, respectively. Given
a set V, |V denotes its cardinality (number of elements). For
a matrix B € RP*? we define the the Frobenius norm and
the vectorized ¢; norm, respectively, as || B||r = y/tr(BT B)
and ||Bf1 = 3_,; ;|Bi;| where Bj; is the (i,j)-th element
of B. We also denote B;; by [B];;. Given A € RP*?,
AT = diag(A) is a diagonal matrix with the same diagonal as
A,and A~ = A— AT is A with all its diagonal elements set
to zero. Symbol I, is the p X p identity matrix, 1, is a column
of p ones, B; and B ; denote column vectors comprising
ith row and jth column, respectively, of B, and 14 denotes
indicator function (1 if A is true, else 0). For a symmetric
matrix A, A > 0 and A > 0 denote that A is positive-definite

B. Graphical Lasso: Penalized Log-Likelihood

This is the approach first proposed in [7]. With f} de-
noting the sample covariance (assume zero-mean: > =
Ly ix(t)x T (), seek Q to yield mingy o f(£2) where

(€)= w(Q) —In(|92)) + A2 |1, )

A7 ||1 is the lasso penalty and A > 0. Unlike Laplacian
L, off-diagonal entries of 2 may not be non-positive. This
is a statistical approach. In addition to the coordinate descent
approach of [7], there are numerous algorithms to optimize
(5) such as [8], [21]-[23].

C. Generalized Graph Laplacian Estimation

and positive semi-definite, respectively.

II. SOME EXISTING APPROACHES

Here we briefly review some significant existing methods

for graph estimation.

Here we summarize the approach of [13]. In [1], [12]-
[14] approaches that make €2 = L (Laplacian, or some
regularized version) in (5) have been considered. In particular,
[13] considers fitting a generalized graph Laplacian (GGL)
matrix to data where a GGL matrix L = D —W +V such that

W and D are the weighted adjacency matrix and the diagonal
degree matrix of the graph (as before), respectively, and V' is
a diagonal matrix with positive diagonal elements. With the
addition of V', GGL matrix L becomes positive definite. More
specifically, [13] considers

. oy - § 11T
mnin r(OK) -In(|®]), K=X+\I-1,1,) (6)

A. Smoothness-Based Graph Learning

Consider the approach of [9]. With reference to (1) and (2),
it is established in [9] that tr((X TLX) = Ltr(WZ) where
W,Z e RP*P, Z;; = ||X; — X, ||3 and W is the weight
matrix (or the weighted adjacency matrix) with L = D —
W, W=WT" W, >0ad W; =0forl1<ij<np.
Instead of performing a penalized minimization of tr(X T LX)
to estimate L, [9] minimizes a penalized tr(WZ ) w.r.t. W for
graph learning. Given W, one has unique L and the edge-set
E. In the rest of the paper, we will scale Z as Z/n and still
denote the latter as Z.

Define the space W, of all valid p x p weight matrices W

with © restricted to be a generalized graph Laplacian matrix
and A is as in (5). A software implementation of this algo-
rithm is available in [24]. This is a statistical approach with
Laplacian constraint.

D. Adaptive Lasso

This modification of graphical lasso follows from [17],
vyhich, however, is focused on regression problems. With
Q = argming, ¢ f1(2) from Sec. II-B, modify (5) as

Wy = {W R . W =WT, Wy >0, Wi =0} O

In [9] one looks for minwew, fs(W') where

p p p
FW) =W 2) + S W - oY (W) @ min 0(@2) ~n(Q)+ 4 > /10, @)
=1 j=1 1,7=1,1#j

with parameters o > 0 and 8 > 0 controlling the “shape.”.
In (4), (W Z) is the main cost but minimizing it alone
w.rt. W is ill-posed (W = 0 minimizes it). Using only the
logarithmic barrier (8 = 0) leads to very sparse graphs, and
changing « only changes the scale of the solution. The term
gHWH% controls graph sparsity, with smaller 3 leading to
sparser graph.

1) A Forward-Backward Primal-Dual Algorithm: This is
the algorithm used in [9]. A forward-backward algorithm
based on [18] is given in [9] to optimize (4), where optimiza-
tion is carried for fixed o = 1 and then one scales W' to obtain
a desired ||W||. Software implementation of this algorithm is
available in [19].

i.e., use penalty varying with (i,7) as \/|Q;|; for || = 0,
we use A/e with 0 < e < 1. This approach (approximately)
debiases estimate of 2.

III. PROPOSED APPROACH

We propose to augment the smoothness-based objective
function of Kalofolias [9] with a penalized log-likelihood
objective function with a lasso constraint (as in [7]). As has
been observed by several researchers (see, e.g., [13]), W
estimated via [9] yields a (severely) biased estimate of the
Laplacian (whether combinatorial or generalized) L. But, as
the results of [9], [10] show, their approach performs quite
well in estimating the edges of the graph, with the performance
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measured in terms of the F}-score. Recall that the Fj-score is
defined as F; = (2 x precision X recall)/(precision + recall)
where precision = |£ N &y|/|€], recall = |€ N Ey|/ ||, and &
and € denote the true and estimated edge sets, respectively.
On the other hand, while the penalized log-likelihood objective
function with a lasso constraint performs well in general, both
in terms of the Fj-score and accuracy of estimation of the
precision matrix €2, it does not guarantee that the off-diagonal
elements of € will be non-positive. Since our objective is
to estimate a Laplacian matrix, we propose to combine the
smoothness-based objective function of Kalofolias [9] with
a penalized log-likelihood objective function with a lasso
constraint. Our goal is to maintain the edge detection efficacy
of [9] (high F}-score) while improving the estimation accuracy
of W by exploiting its relationship to 2.

A. Objective Function
Combine (4) and (5) to define the cost

(1 - W)fe(W)

p
F A Y WE+Q ®)
7]

Laug(ﬂ> W) :"/fL(Q) +

where v € (0,1) yields a convex combination of (4) and
(5). Cost Lgug(2, W) is strictly convex in Q and W for
W €W, and Q > 0. We propose to minimize Lg,q(€2, W)
wrt. W € W, and 2 >~ 0. The group-lasso penalty [4]
Ag Zf# NAUGRE ij in Lgyg(2, W) makes both €;; and
W;; sparse for the same edge {i,j} of the graph, whereas
A€ |1 and 5||W || control sparsity in Q;; and W;; indi-
vidually.

B. ADMM Solution Outline

We will use ADMM [22] after variable splitting to minimize
Laug(Q2, W). We note that L,,(2, W) is strictly convex,
and its domain is Cartesian product of the set W, defined
in (3) and the set of strictly positive definite matrices €2 (the
latter because of —In(|Q?|), i.e., use of the log-determinant
barrier function [25]). The objective function L, (2, W) is
also closed, proper and lower semi-continuous.

Using variable splitting, we split f7,(€2) into f1,(€2, V4):

FL(Q, V1) =tr(Q2) — In(|92)) + A V;" | ©

subject to Q= V; € RP*P, (10)

We split f(W) into fo(W, Vs, d) with d = [dy,--- ,d,]":

P
fs(W, Vs, d) =tt(W Z) + §|\W||’f; —a) In(d;) (1)
=1
W=V, e RP*? W1,=d,

subject to (12)

where 377, W;; = d; is the ith element of W1,. Using
fr(R, V1) and f((W, V3, d) for fr(£2) and fi(W), respec-
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tively, in Lg,q(€2, W), we have the cost with split variables

Loaug (2, W, V1, Vs, d)
p
+/\gz Vit + Vi
i#£]
Q=Vi, W=V, W1, =d.

13)

subject to (14)

We minimize Eaug(fh W, Vi, Va,d) with respect to
Q, W Vi, Vs, d subject to the constraints in (14), following
the ADMM approach. The scaled augmented Lagrangian [22]
for this problem is

Ly =/(t(2) — n(|2))) + (1 = 7) (W 2)

P P
—a In(d;)+ g ZWE;-) + AV [l
i=1 i#]

p
A Y VR +VE
i#]
+ (Vi -+ Uil + Ve - W + a1}

+lld = W1, +us3) (15)

where we have absorbed «y in A in A||V"||1, U, Uy € RP*P
and uz € RP are the dual variables, and p > 0 is a
penalty parameter. Note also that since W;; = 0 for every
i, we have written §||W||§; as g f# W in (15). The
Lagrangian L, is optimized iteratively. Given the results
Q® wk v* y® g® u® u® and ul?, of the
kth iteration, in the (k + 1)st iteration, an ADMM algorithm
executes the following three updates [22]:

(a) Minimize L, wrt. £ and W resulting in separable
optimizations in £2 and W. Define

Lar () = 7 (r(2%) — In(|92) )

+ LIV —a+ U 16)
B
Lao(W) = (1= ) («(W2) + 5> W)
i#j
P k k 14 k
+ 5V =W UL+ 5 - W+ w3
(17

Minimization of L, w.r.t. £ and W is then equivalent
to minimization of L, (€2) w.r.t. 2 and minimization of
Loo(W) wrt. W separately.

(a-i) Let Q¥+ « argming, o La1 () .

(a-il) Let W*+D « arg minwew, La2(W) .

(b) Minimize L, w.rt. Vi, V; and d resulting in separable
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optimizations in (Vi, V3) and d. Define
P
Lon(Vi, Vo) =MV i+ A D
i
+2Ivi -t U

22] + VILJ

+LIVe =W L UPE) sy
p
Ly(d) = — aZln(dz)
+gld =W, Wl 9)

Minimization of L, w.rt. Vi, V5 and d is then equiv-
alent to minimization of Ly (V1, V2) wrt. Vi, V, and
minimization of Ly2(d) w.r.t. d separately.
) (k+1) < (k+1) .
(b-1) Let (V; .V, ) <= arg miny, v, Ly1 (V1, Va).
(b-ii) Let d**+1) « argming Lyo(d) .
(c) Dual updates:

U1(k+1) - Ul(k) + V1(k+1) — Qk+1) (20)
U2(k+1) - U2(k) + Vz(kJrl) — Wkt @1
ung) - ugk) + dk+D) _ W(k-+1)1p. (22)

C. Detailed ADMM Solution

We now discuss solutions to updates (a) and (b). Update
(c) is a standard part of dual update in ADMM when using a
scaled augmented Lagrangian formulation [22].

Update (a-i). For update (a-i) we need

aLal(ﬂ)

_ s O—1) _
50 =y -97)

k k
(Vi —+U).

(23)
A similar problem has been solved in [22, Sec. 6.5]. Consider

eigen-decomposition of symmetric matrix - (p/ ”/)(Vl(k) +
Ufk)) given by

— (/v +UPM) = QAQT

where A is a diagonal matrix with eigenvalues on the diag-
onal and @ has corresponding orthogonal eigenvectors as its
columns, resulting in QQT = QT Q = I,,. Then the solution
to (23) is given by

0=

(24)

Q*) = QAQT (25)

where A is the diagonal matrix with /th diagonal element

A7, +4(p/7)
2(p/7) '

Since p > 0, JNXM > 0 for every £ =1,2,--- ,p, and therefore,
QG+ w0, It is shown in [22, Sec. 6.5] that Q*+1 given
by (25) satisfies (23).

Update (a-ii). First some notation. Recall that W, € RP
denotes the ith row of W € RPX. Let W; € RP~! denote
the vector obtained from W; by deleting its ith row. Recall
that W;; =0 fori=1,2,--- ,p, therefore, we do not have to

—Age +

Ay = (26)

14-17 December 2021, Tokyo, Japan

solve for them. Slmllarly, let Zl s ng s ng denote vectors in
RP~1, obtained from Zz , Vo, Uy, , respectively, by deleting
their zth row. Using this notation and noting that Z and W
are symmetric, we can rewrite

P
ZWT i Z =y wiwi. @)
i#] i=1
Similarly, we have
P
k Kk < Tk
V" —w + Uf? |3 = ZWJWZ

p
Y O W,
=1
p ~
+ P+ O T (v v OY), @8)
=1

p
=y W1, W,
i=1

k k k k
22 (@ 4 ufT W, 43 (@ 4 a2
i=1

k
1d® — W1, +uf|3

(29)

where we have used the fact that since 2 and W are
symmetric, so are V;, Vo, U; and U,. Using (27)-(29), we
can express Lqo(W) as

1 P .
T La(W) = > Lai(W3) (30)
=1
where (I,_; denotes (p — 1) x (p — 1) identity matrix)
.« 1. . . . .
La2i(W;)) = §WiTAWi_ + ®D) W, + D (31)
A= (B+p) - +plyal, (32)
p= % : (33)
-7
_xr(k ~(k k k
b = Z; — p(Vy) + U5 + () + U1, 1)
(34)
o = L((@" +ul ) + 1V +UPI3)  69)

and ¢ is not a function of W; . Minimization of Ly (W)
wrt. W € RP*P js then equivalent to minimization of
Lagi(Wi,) wrt. W; e Rp! separately for each i =
1,2,--. ,p, exploiting the fact that W;; = 0.

To minimize L,;(W;) w.rt. W;_ subject to W;; > 0, we
consider [26] who minimizes (1/2)y " Py—y ' h w.rt. y € R?
subject to yy > 0 V¢, where P > 0 and h is arbitrary. The
monotonically convergent iterative solution of [26] is

APyl +h{H 46
labs(P)yle + hi™) +6

where 0 < § < 1, P*) = max(P,0), P(~) = max(—P,0),
abs(P) = P() + P(-), and “max” operation is elementwise.

Ye < Yo (36)
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In our problem we have P = A, h = b, P(=) = 0 since all
elements of A are non-negative, and P(t) = P = A, hence
abs(P) = A.

Update (b-i). For update (b-i), notice that L (Vy, Vo) is
completely separable w.r.t. (V4;5, Va;;) since

P
= Z Lp1i;(Viig, Vaij) 37
@7

Lblw(vlm’ V22J) (MVMJ‘ + >‘ V222] 17,]) Lizj

(VMJ - Q(']ﬁl) + Ul(f]))

L (V1, V2)

l\')\bl\’)

(V21J m(]k+1) + UQ(Z))

(38)

Therefore, we solve for

(V(k‘H) V(k+1)

1ij oii )< arg min Ly (Vagg, Vaig) -

15, V2ij

This is a sparse-group lasso problem. Set G1;; = Q(’Hl)

U(k) and Go;5 = W(kH) UZ(Z) For i = j, we have V(kH)

1ij %] lij
Gy and V1™ = Gayj. For i # j, following [4], [27), its
solution is

SGi-,A(lf—A/" Jitm=1

P+ (Grass ) /52(Gij 2)+G3,

mij GZij (1 _ A—/p) ifm=2

\/SZ<G1137 )+GZ,J

where for a real scalar ¢ and £ > 0, (a); := max(0,a),
S(a, k) := (1 — k/|a])+a denotes scalar soft thresholding.

Update (b-ii). In update (b-ii), we notice that

Ly (d) = Z Li2i(d;)

Ly2i(d;) = — aIn(d;) +

(39)

Cw g 4 (02
(40)

(p/2)(d;

Therefore, minimization of Ly (d) w.r.t. d € R? is then equiv-
alent to minimization of Lps;(d;) w.r.t. scalar d; separately for

each i =1,2,--- ,p. Setting
6Lb21(dz) (6]
O=—_—7F—=——+ d; — gi
ad. a p(di — gi)
where g; =W V1, — (" (41)

This leads to a quadratic equation in d;. Since the ith node
degree d; must be positive, we take

(g + Vg + (4a/p) )

where g; is specified in (41). This completes the solution.

d(k+1) (42)

D. Algorithm

A pseudocode for the ADMM algorithm described in Sec.
II-C is given in Algorithm 1 where we use the stopping
(convergence) criterion following [22, Sec. 3.3.1] and varying
penalty parameter p following [22, Sec. 3.4.1]. The stopping
criterion is based on primal and dual residuals being small

14-17 December 2021, Tokyo, Japan

Algorithm 1 Proposed ADMM Algorithm
Input: Number of samples n, number of nodes p, data
{z(t)}}=;, = € RP, parameters \;;, Agij, @, 5, 7 and po,
tolerances 7,5 and T, variable penalty factor p, maximum
number of iterations Knaz. Aij = A, Agi; = Ay for the
proposed approach and Aij = A/Qij, Agij = /\g/w/Q2 + W2
for its adaptive lasso version where Qij and Wij are the result
of non-adaptive version.
Output: estimated W, Laplacian L and edge- set é

I: Calculate sample covariance 3 = I m(t)x T (t

)
(after centering x(t)) and the dlstance squared matrix Z

with (¢, j)th element Z” == LS (@) —25(1))2
2 Tnitialize: U = V' = 0 € RO*®) 1y = 1,2, u® =

0ecRP, d® =1, Q0 = WO = (diag(%))~
Po

3: converged = FALSE, k=0

4. while converged = FALSE AND £k < k44, dO

5:  Eigen-decompose 3 — # (Vl(k) +U1(k)) as 3 —

o (Vl(k) + Uy QAQ" with diagonal ma-
trix A consisting of eigenvalues. Define diagonal ma-

trix A with /th diagonal element Aoy = (—Aee +

A, +4p®))/(2p). Set QD = QAQT

k)
Set p = % and A= (8+p)L,—1 +plpy_11) ;.
for:=1,2,--- ,p do
Obtain ith row Z, of Z and delete its 7th element

10 —

to yield Z; € RP-1. Set b = Z;, — p(V") +
Uy + (d") + U511, ).
9: while converged = FALSE do
10: Iterate on the (th element of W; € RP~! until
convergence as
i BOJF + 6

[Wile < Wil

[AbO], + (60, +0

with initialization W; = W®), .
11: end while

12: Obtain W;. € R? from converged W; € RP~! by
k+1)

inserting W;; = 0, and set W, =W,

13:  end for

14 fori,j=1,2,--- ,pdo

150 Set Guyy = QU Y — U and Gy = WY —
UQ(l) For i = j, set V(l€+1> Gij and V;Zkﬂ)

GQU Define thresholdmg operator S(a, k) := (1—
k/lal)+a where (a)4 := max(0, a). For ¢ # j, the
(,7)th element of V,,,, m = 1,2, is updated as
A= Xi;/p™)

S(G1ij, \) (1 -

Agig /o™ )
\Y4 SQ(G11J7/\)+0211

iftm=1
Vo) = ' 7
.. _ gi //’
Gaig (1 . /SZ(G;,,AHG% )
if m=2

16: end for
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17 fori=1,2,--- ,pdo
18: Set g; = Wl(k'H)l (k) . Update
D =1 (g9 + Vo (mm»

19:  end for
20:  Dual updates

Ul(k+1) _ Ul(k) + ‘/1(k+1) _ Q(k+1)
U2(k+1) - U2(k) + ‘/2(k+1) N W(k+1) ’
WD o) 4 g gk

21:  Check convergence. Let

er =/l [Q0+D, WD W1 ] |12

e =\/ | [V, v a3

k+1 k k+1
\/|| Ut oY (= a3

Set tolerances

Tpri :( 2p2 + p) Tabs + Trel m&X(eh 62)
=(V/2p% + p) Tavs + Trere3/p™) .

Define primary and dual residuals d,, and dg4

Tdual

dy = /51, da=p" /53
where
s1=[QUFD — VIR 4w D - v
+ WL, — a3
s2 = [V - VIR 4 v - v
+(p—1) [d*HD —d @3
If (dy < 7pri) AND (dg < Tguar), set converged =
TRUE .
22:  Update penalty parameter p
20 if d, > pdg
pFFD =8 p®) 2 if dy > pd,
p®) otherwise .
We also need to set UL = U(k+1)/2 =1,2,
and 'u(lﬁ'1> = u§k+1)/2 for d, > pdg and U(kﬂ) =
2U(k+1), = 1,2, and uékﬂ) = Quékﬂ) for dg >
pdp.

23 k<« k+1

24: end while

25: Denote the converged values of weighted adjacency and
precision matrices as W and 2, respectively. For 7 # j,
if both |Q;;] > 0 and W;; > 0, assign edge {i,j} € &,
else {i,j} & £ Weighted adjacency matrix estimate w
is defined as nonzero only on {4, j} € £ such that W;; =
—Q;; if Qi < 0 and Wy; = W;; if Q;; > 0. Clearly
W e Wh. Flnally, combinatorial Laplacian estimate is
L =D —W where D is the (diagonal) weighted degree
matrix corresponding to w.

14-17 December 2021, Tokyo, Japan

where, in our case, at (k + 1)st iteration, the primal residual
is given by the vectorized matrix

(Q(k+1) _ ‘/1(k+1))T

(W(k+1) _ ‘/'Q(k+1))T
(W(kJrl)lp _ d((k+1))T

and the dual residual by the vectorized matrix

k k
(‘/1( +1) V'I( ))T
p(k) (V2(k+1) . ‘/*Q(k))T
T
((d(k-H) _ d(k))l;)r_l)

For all numerical results presented later, we used py = 2,
u= 10, and 7T,ps = Trel = 104,

E. Adaptive Lasso Augmentation

Lasso and related approaches yield biased estimates [17].
To approximately debias, we will mimic the adaptive lasso
approach of [17] to propose an adaptive lasso augmentation
of the proposed approach. The basic idea in [17] is to replace
AQ;; in the penalty with )\Qij/\ﬂiﬂ where Qij is any con-
sistent estimate of {);;, typically a lasso estimate. Mimicking
this approach, we propose to replace A{2;; and A, /W.Q} + 92
in (8) with AQ;/|Q] and Ay /W2 + 03 /\/W2 +02,
respectively, where Qij and W, ; are the result of optimization
of Lgug(£2, W) (the non-adaptive version). The modified
objective function now is

Eaug(Q7W) =7 ( ) ln ‘Q| +)‘Z| d

i#] 5]
Sy
+(1- W)+ A .
i#] VV2 +Q2

Notice that we make no changes to fs(W') (defined in (4)). It
has been shown in [9] that a lasso type penalty does not work
for his objective function fs(W).

We optimize twice, first non-adaptive version of
Laug(2, W), then the adaptive version Eaug(ﬂ, Ww).
The Algorithm 1 applies both times and the modifications
required for the second optimization are specified therein.

(43)

F. Final Estimates

Suppose we denote the converged values of the weighted
adjacency and precision matrices resulting from our proposed
approach, whether non-adaptive or adaptive version, as W
and Q, respectively. To calculate connected edges, we take
{i,j} € & if both estimated W;; > 0 and estimated |Q;;| > 0,
else {i,j} & &, where £ is the estimated edge-set. This reflects
that fact that both weighted adjacency matrix in fs(W') and
precision matrix in f7,(€2) have nonzero entries if and only
if corresponding edges are connected. As noted in [13], W
estimated via [9] typically results in a biased estimate of the
Laplacian L = D — W. Ideally, we should have L = €2
implying that off-diagonal 2~ = —W. But estimated 2 is not
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guaranteed to have non-positive off-diagonal entries. Based on on a Window 10 operating system with processor Intel(R)

these considerations, we estimate W as W specified by Core(TM) i5-6400T CPU @2.20 GHz with 12 GB RAM, and

. A all ADMM approaches used variable penalty parameter p, as

—; ?f {i,j} € € and ©;; <0 in Algorithm 1. For each of seven schemes, tuning parameters

Wij = Wi; if {i,j} €& and ;; >0 “44) A and/or 8 (a=1, as in [9]) were picked for n = 200 via

0 otherwise . simulations to maximize the F}-score (as in [9], [13]), then A

was scaled as o y/In(p)/n [8], [13] while 5 was kept fixed.

The performance measures are F;-score for efficacy in edge

detection, and normalized Frobenius error norm in estimating
Q, (off-diagonal true €2y, equaling —W), defined as

Clearly 114 € W,. Finally, combinatorial Laplacian estimate
is L = D — W where D is the (diagonal) weighted
degree matrix corresponding to W. By construction, L is a
combinatorial Laplacian matrix that is positive semidefinite
with non-positive off-diagonal entries. I QO — Q 1#/19% | ¢ (45)

IV. SIMULATION EXAMPLE where c is selected as follows. We scale estimate !:2* of
We consider Gaussian graphical models based on an Erdos- QJA (when only signal smoothing is used we take €, =

Rényi graph where nodes are connected independently and —W), by a scalar ¢ chosen to minimize mean-square error
randomly with probability p, = 0.03. In the upper triangular || Qg — €25 [|%, resulting in ¢ = tr(25 Qg ) /(25 Q). In
Q (inverse covariance), Q;; = 0 if {i,j} ¢ &, and Q;; is practice,  is unknown. The above scaling preserves relative
uniformly distributed over [—0.3,—0.1] if {i,j} € £. With weighting among €;; which is what is relevant in applications
Q =07, we take Q;; = — Z§:1 Q;; for every ¢, yielding the and is available without knowing €2 . In applications such as

combinatorial Laplacian matrix L = Q. Now add I to €2 thosein [1], [9], [15], [16] that require an estimate of the graph
with k picked to make minimum eigenvalue of 2+ <1 equal Laplacian L, the eigenvectors of L and the relative values of
to 0.001, and with ®& T = (Q + xT )71, we generate * = eigenvalues are exploited which do not depend on scaling c.
Pw with w € RP as Gaussian w ~ N (0, I)), multivariate  As noted in Sec. III-F, the combinatorial Laplacian estimate
Gaussian distribution with zero mean and identity covariance is L=D-W=D+ QE .

matrix. We generate n i.i.d. observations from x using p = Comparing only “Lasso”, “smooth (ADMM [20])” and
100. Addition of I yields a generalized Laplacian matrix proposed “L+Sm (Lquq(Q2, W))”, we see that the proposed
L =Q+ kI [13]. method significantly improves upon “smooth (ADMM [20])”

We apply seven methods for estimating the true edge-set in estimation of inverse covariance without sacrificing the F-
&y and true (off-diagonal) inverse covariance 2, (since it score, while it improves upon “Lasso” in both Fj-score and
equals —W under the Laplacian assumptions, combinatorial inverse covariance estimation. Adding adaptive lasso improves

or generalized): both “Lasso” and “L+Sm (L (2, W))”. Indeed, “Adap
(1) Lasso with cost (5), solved using the method of [22, Sec. lasso” outperforms other six approaches for both graphs, but
6.5] (also used in Sec. IIT), labeled “Lasso” in Table I. ~ along with “Lasso” it can not guarantee that off diagonal

(2) Smoothness-based graph learning [9] solved via the terms of the precision matrix are non-positive. Both “smooth
ADMM approach of [20], labeled “smooth (ADMM [9]” and “GGL [13]” have poorer F}-score performance, but

[20])” in Table 1. are significantly faster. Approaches “smooth (ADMM [20])”
(3) Proposed approach described in Sec. III with v = .5, and “L+Sm (Laug(§2, W))” are significantly slower since the
Ay = 2, labeled “LA+Sm (Lgy,(2, W))” in Table . “inner loop” consisting of iterative solution (36) (line 10 in

(4) Smoothness-based graph learning [9] solved via the Algorithm 1) slows it down (we run it for fixed 40 iterations
forward-backward algorithm available in [19] (MAT- asa stopping criterion is not yet clear or effective), but it may
LAB function gsp_learn_graph_log_degrees.m), labeled —account for superior performance of “smooth (ADMM [20])”
“smooth [9]” in Table I. It requires one to set small values OVer “smooth [9]”. Finally, lasso (and adaptive lasso) can be
in estimated W to be set to zero; following [9], [19], all made much faster by using fast algorithms such as [23].

Wij < 10~ are set to zero.
(5) Generalized graph Laplacian (GGL) method of [13] V. CONCLUSIONS

described in Sec. II-C, using MATLAB function esti- Our objective was to estimate the structure of an undirected

mate_ggl.m from [24], labeled “GGL [13]” in Table I. weighted graph underlying a set of signals, exploiting both

(6) Adaptive lasso, described in Sec. II-D, using the method  gmoothness of the signals as well as their statistics. Structure

of [22, Sec. 6.5] but with variable lasso penalty, labeled  egtimation of a weighted graphs entails estimation of the

“Adap Lasso” in Table L. edge-set £ and the weighted adjacency W (equivalently,

(7) Adaptive lasso version of the proposed approach de- (he corresponding combinatorial Laplacian L = D — W).

scribed in Sec. III-E, with v = .5, Ay = 2, labeled We augmented the smoothness-based objective function of

“L+Sm (Laug (2, W))” in Table 1. [9] with a penalized log-likelihood objective function with

Table I shows the simulation results where the run time a lasso constraint to improve inverse covariance estimation
in seconds was calculated via MATLAB tic-toc functions performance of [9] without sacrificing the F}-score.
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(1]

(2]

(41

(51

(6]

[10]

[11]

[12]

[13]

[14]
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I Model: [ Erdos-Rényi Graph: number of nodes p=100 i
F score (o)
Lasso 0.3009 £0.0200 0.2859 4+0.0417 0.2867 +0.0679 0.2951 40.0458 0.3052 4+0.0355

smooth (ADMM [20])
L+Sm (Laug (2, W))

0.5018 £0.1061
0.5017 £0.0578

0.5881 4-0.1037
0.5497 £0.0700

0.6339 £+0.1033
0.6129 30.0816

0.6339 £+0.1154
0.6285+0.0877

0.6592 £+0.1273
0.6965+0.0937

smooth [9]
GGL [13]

0.1363 £0.0398
0.4609 £+0.0232

0.1420 £0.0397
0.4901 £0.0232

0.1491 £0.0399
0.4984 £+0.0197

0.1666 £0.0495
0.5032 £+0.0175

0.1586 £0.0592
0.4927 £+0.0218

Adap Lasso
L+Sm (Laug (2, W)

0.6566 +0.0462
0.6657 0.0496

0.8412 £0.0383
0.8331 4-0.0380

0.9429 £0.0196
0.9309 4-0.0200

0.9800 £0.0106
0.9710 £+0.0125

0.9987 £0.0025
0.9836 4-0.0125

Frobenius Error Norm (40)

Lasso
smooth (ADMM [20])
L+Sm (Laug (22, W)

0.9964 £0.0043
0.7478 £0.0449
0.6250 £+0.0507

0.9898 £-0.0098
0.6773 £0.0294
0.4550 £0.0383

0.6367 +0.0914
0.6457 £0.0282
0.3280 £0.0250

0.4743 £0.0378
0.6312 +0.0272
0.240240.0232

0.3720 £0.0212
0.6166 £0.0220
0.1458+0.0323

smooth [9]
GGL [13]

0.7621 +0.0316
0.6062 +0.0615

0.7028 £0.0236
0.4204 £0.0492

0.6756 £0.0224
0.2866 +0.0317

0.6562 £-0.0200
0.1963 £0.0234

0.6475 +0.0166
0.0848 +0.0117

Adap Lasso
L+Sm (Laug (22, W)

0.6808 £0.0541
0.6627 £+0.0573

0.4964 10.0485
0.4887 £0.0462

0.3561 £0.0390
0.3550 +0.0367

0.2540 £0.0292
0.2612 £0.0281

0.1096 £0.0189
0.1490 £0.0320

Time(s) (o)

Lasso
smooth (ADMM [20])
L+Sm (Laug (2, W))

1.2664 £0.0412
7.6652 £0.1276
8.9153 £0.2261

1.2483 £0.0361
7.6504 £0.0762
8.9272 £0.4273

1.2671 £0.0393
7.6550 £0.0872
8.9606 £0.2111

1.2935 £0.0353
7.5839 £0.5866
10.6124 £2.4781

1.2923 £0.0368
7.6422 £+0.0917
9.1852 £+0.3722

smooth [9]
GGL [13]

0.2587 £0.0068
0.0652 10.0047

0.2570 £0.0031
0.0639 £+0.0013

0.2568 £0.0023
0.0637 £0.0012

0.2557 £0.0024
0.0636 4+0.0015

0.2582 £0.0021
0.0633 £0.0014

Adap Lasso
L+Sm (Laug (2, W)

1.8343 +0.2762
17.8266 +0.8996

1.6987 £+0.0429
18.2939 £1.3875

1.6394 £0.0350
17.8056 £0.3764

1.5736 £0.0416
17.6605 £0.8972

1.4602 £0.0382
17.9927 £0.5217

TABLE I: Simulation results for Erdds-Rényi graph based on 100 runs.
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