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Abstract— The presence of hardware Trojans in Integrated
Circuits (ICs) poses a serious security concern for the Internet-
of-Things (IoT) and the mitigation of such threats has started to
attract growing attention. This paper addresses the problem by
designing a novel optimal auction mechanism that can optimize
the utility of a buyer (system designer) acquiring ICs in a market
where the sellers (manufacturers) can maliciously insert Trojans
in sold ICs. The paper also proposes, as an integral component
of our designed auction mechanism, the concept of redundant
acquisition of ICs from multiple sellers to obtain reliability in
terms of the buyer’s system operation goals and enhance his
utility as well as characterizes the optimal amount of redundancy
the buyer should have in the acquisition process. The proposed
auction mechanism can adapt to the imperfections in the process
of testing acquired ICs. The optimal fine that should be imposed
on a malicious seller in the auction upon detecting a Trojan in
his sold IC is also characterized. Numerical results are presented
to gain important insights into the proposed auction mechanism.

Index Terms—IoT security, Hardware Trojans, Auction design.

I. INTRODUCTION

Hardware Trojans are malicious modifications of the cir-
cuitry of Integrated Circuits (ICs). Such threats pose a serious
security concern [1] for the Internet-of-Things (IoT) and can
result in severe consequences such as leakage of sensitive in-
formation [1], [2], including leakage of sensed information [3],
degradation of system performance [4], and even complete
failure in achieving operational goals [5], [6], including those
of medical IoT [7] systems.

The primary technique that past work [8]–[11] has focused
on for mitigating threats from hardware Trojans is the devel-
opment of testing strategies that can check for the presence of
hardware Trojans in acquired ICs. For example, in [11], the
authors have designed test patterns that can generate noticeable
differences between the power profile of a genuine IC and
that of an IC containing Trojans, but the effectiveness of their
proposed technique is limited in terms of the manufacturing
processes, behaviors and sizes of the Trojans. Since it can be
prohibitive to exhaustively test an acquired IC against all pos-
sible Trojan types, the works in [12]–[16] develop techniques
using game theory [17] that can intelligently determine which
Trojan types should an acquired IC be tested for against a
strategic malicious manufacturer. Specifically, [14] presents a
two-person Trojan insertion-testing game, but investigates the
equilibrium of the game for an example scenario. The game
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theoretic works in [12], [13] rely on software-based techniques
for investigating testing strategies against a strategic malicious
manufacturer at equilibrium. Analytical characterizations of
equilibrium strategies in closed-forms for Trojan insertion-
testing games in various scenarios can be found in [15], [16].

In contrast to past work, which has been limited to the
development of testing strategies, with some works focusing
on the development of game theoretic testing strategies [12]–
[16], in this paper, we employ Mechanism Design [18],
[19] (i.e., reverse game theory) to design a novel auction
mechanism that can optimize the utility of a buyer acquiring
IC(s) in a market environment where the sellers can act in a
malicious manner by inserting Trojans in sold ICs. To the
best of our knowledge, this is the first work that adopts
a mechanism design perspective to address the problem of
hardware Trojans. Further, to provide reliability to the buyer
in terms of achieving his system operation goals and enhance
his utility in such an environment, a problem which, to the best
of our knowledge, has also not been addressed by past work,
we propose the concept of using redundancy as an integral
component of our designed auction mechanism. Specifically,
the main contributions of our paper are as follows:
• We propose a novel optimal auction mechanism that can

optimize the utility of a buyer who acquires IC(s) in a
market environment where the sellers (manufacturers) can
act in a malicious manner by inserting Trojans in sold ICs.

• In our designed auction mechanism, we introduce the
novel concept of the buyer redundantly acquiring IC(s)
from multiple sellers to obtain reliability in terms of
successful system operation and enhance his utility. We
also characterize the optimal amount of redundancy the
buyer should have in the acquisition of IC(s).

• Our proposed auction mechanism considers the imperfec-
tions of the process of testing acquired ICs to check for
the presence of Trojans and adapts accordingly.

• Numerical results are presented to gain important insights
into our proposed auction mechanism and show its per-
formance advantages.

The rest of the paper is organized as follows. Section II
formulates the optimal auction design problem in the presence
of malicious sellers. Section III analyzes the problem and
presents the design of the optimal auction mechanism. Section
IV provides numerical results to gain important insights.
Finally, Section V concludes the paper.
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Notation Description
α Probability of a seller being malicious
p Probability of a malicious seller inserting a

Trojan in his sold IC
Pd Probability of detecting an inserted Trojan
Vi Benefit acquired by malicious seller i from

a successfully inserted Trojan
Gi Fine imposed on malicious seller i upon detecting

a Trojan in his sold IC
BS Benefit acquired by the buyer from using a Trojan-free IC
ti Bid of seller i, where ti ∈ [ai, bi]
fi(.) Probability density function (PDF) of ti
Fi(.) Cumulative distribution function (CDF) of ti
mi Payment to be made to seller i
qi Selection state of seller i, where qi ∈ {0,1}
d Number of redundantly selected sellers

TABLE I
NOTATIONS USED

II. FORMULATION OF THE AUCTION DESIGN PROBLEM

In this section, we formulate the problem of optimal auc-
tion design in the presence of malicious sellers. Specifically,
consider a buyer (system designer) who conducts an auction
to acquire IC(s) from a set {1, · · · , N} comprised of N sellers
(manufacturers). Suppose that seller i ∈ {1, · · · , N} has the
(true) valuation ti ∈ [ai, bi] for his IC, where ti is considered
as a random variable with the probability density function
(PDF) fi(·), and ai and bi are the lowest and highest possible
valuations of seller i for his IC, respectively. Suppose also that
every seller can be malicious in nature with a probability α
and that every malicious seller inserts a Trojan into his sold IC
with a probability p. Consider that the sellers announce their
valuations of their ICs (as their bids) to the buyer, who, upon
getting a vector of bids t = (t1, · · · , tN ) from the sellers,
suppose uses the functions:
• q(t) =

(
q1(t), · · · , qN (t)

)
to determine which seller(s)

to acquire IC(s) from, where qi(t) ∈ {0, 1} assumes
Boolean values to denote whether seller i is selected, and

• m(t) =
(
m1(t), · · · ,mN (t)

)
to determine the payments

to be made to the sellers, where mi(t) is the payment to
be made to seller i.

We consider the fact that the sellers, to gain undue advantages,
can announce falsified valuations as their bids. Further, we
consider that the buyer, after acquiring an IC from a seller,
tests the IC to check for the presence of Trojans. To model the
imperfections of the testing process, we consider that a Trojan
inserted in an IC is detected by the buyer with a probability Pd.
We also consider that, upon detecting a Trojan in an IC bought
from seller i, the seller is imposed a fine Gi (and the buyer,
of course, does not put to use such an IC). If, however, an
inserted Trojan remains undetected in an IC bought from seller
i, and the buyer uses (installs) such an IC, we consider that
the inserted Trojan accomplishes its goal providing the seller
a benefit Vi (while negatively impacting the buyer’s utility by
an amount Vi reflecting the damage caused to the buyer).

Further, in our auction mechanism, we propose the novel
concept of the buyer redundantly buying the required IC from
multiple sellers (specifically, from d ≤ N sellers) to enhance
the chances of the buyer acquiring a Trojan-free IC (with the
buyer getting a benefit BS upon being able to use a Trojan-free
IC). Table I summarizes our notations used.

The goal of our auction design problem is to design the
functions q(t) and m(t) such that the expected utility of the
buyer from using the auction mechanism is maximized while
satisfying certain constraints. Next, we describe the expected
utilities of the buyer and the sellers from the aforementioned
auction mechanism and then describe the constraints that need
to be satisfied along with the formulation of the auction design
problem as an optimization problem.
A. Expected Utilities

The expected utility (UB(m,q)) of the buyer from the
auction mechanism is

UB(m,q) = BS
[
1− (αp)d

] [ 1− αp
1− αpPd

]
+

∫
T

[
αpPd

N∑
i=1

qi(t)Gi − αp(1− Pd)k
N∑
i=1

Viqi(t)−
N∑
i=1

mi(t)

]
f(t)dt (1)

where, T = [a1, b1]×· · ·×[aN , bN ] denotes the set of all possi-
ble combinations of the sellers’ valuations, f(t) =

∏N
i=1 fi(ti)

is the joint density function on T for the vector of valuations
t = (t1, · · · , tN ), and dt = dt1 · · · dtN . Further, considering
that the buyer selects an IC to be used from the acquired ones
in which a Trojan was not detected via conducted tests (with
the tests themselves being error-prone in nature) with uniform
probability, in (1), we have

k =
1

d(1− αpPd)
(2)

which is the expected probability with which a seller’s IC is
installed by the buyer given that the buyer buys an IC from the
seller and that the bought IC tests negative for the presence of

a Trojan. Further, accordingly,
[
1− (αp)d

] [
1−αp

1−αpPd

]
in (1)

is the probability of the buyer using a Trojan-free IC from
among the d ICs acquired from d different sellers.

The expected utility (USi (mi, qi, ti)) of seller i from the
auction mechanism, having a true valuation ti ∈ [ai, bi]
regarding his IC, is
USi (mi, qi, ti) =

∫
T−i

[
mi(t)− qi(t)

{
ti − αp

(
(1− Pd)

kVi − PdGi
)}]

f−i(t−i)dt−i (3)

where, T−i = [a1, b1] × · · · × [ai−1, bi−1] × [ai+1, bi+1] ×
· · · × [aN , bN ] denotes the set of all possible combina-
tions of the sellers’ valuations other than i, f−i(t−i) =∏
j∈{1,··· ,N},j 6=i fj(tj) is the joint density function on T−i for

the vector of valuations t−i = (t1, · · · , ti−1, ti+1, · · · , tN ),
dt−i = dt1 · · · dti−1dti+1 · · · dtN , and k follows its definition
in (2).

Further, we consider that every seller i, having a true
valuation ti, may send a falsified bid wi hoping to make an
undue profit from the auction mechanism, which would make
the expected utility of the seller to be

ŨSi (mi, qi, wi) =

∫
T−i

[
mi(wi, t−i)− qi(wi, t−i)

{
ti −αp

(
(1− Pd)kVi − PdGi

)}]
f−i(t−i)dt−i (4)
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B. Optimization Problem
The auction design problem can be formulated as the

following optimization problem:

max
m,q

UB(m,q)

Subject to:
USi (mi, qi, ti) ≥ 0, ∀i ∈ {1, · · · , N},∀ti ∈ [ai, bi] (5a)

USi (mi, qi, ti) ≥ ŨSi (mi, qi, wi), (5b)
∀i ∈ {1, · · · , N},∀ti, wi ∈ [ai, bi]

qi(t) ∈ {0, 1}, ∀i ∈ {1, · · · , N} (5c)
N∑
i=1

qi(t) = d (5d)

Below we describe each constraint in detail:
• Individual-Rationality constraint (5a): We consider that

the buyer cannot force a seller to participate in an auction.
If a seller did not participate in the auction, clearly his
utility would be zero. Thus, to rationalize participation of
sellers in the auction, the utility of every seller must be
greater than or equal to zero.

• Incentive-Compatibility constraint (5b): We consider that
the buyer can not prevent any seller from providing a
falsified valuation as his bid if the seller expects to gain
from lying. Thus, to prevent sellers from lying about their
valuations of their ICs, honest reporting of valuations
during the bidding process must form a Nash equilibrium
in the auction game.

• Selection Parameter constraint (5c): The selection param-
eter of every seller is a Boolean variable.

• Redundancy constraint (5d): The buyer selects d sellers
for buying to have the desired amount of redundancy.

Next, we analyze the above auction design problem.

III. ANALYSIS OF THE AUCTION DESIGN PROBLEM
Let us denote the expected value of the selection parameter

of seller i, viz. qi(ti, t−i), for a given ti, as

Qi(qi, ti) =

∫
T−i

qi(ti, t−i)f−i(t−i)dt−i (6)

Our first result is a simplified characterization of the incentive-
compatibility constraint (5b) presented in Section II-B.
LEMMA 1. The incentive-compatibility constraint (5b) holds
only if the following two conditions hold ∀i ∈ {1, · · · , N}:

1. If ti ≤ wi, then Qi(qi, wi) ≤ Qi(qi, ti) (7a)

2. USi (mi, qi, ti) = USi (mi, qi, bi) +

∫ bi

ti

Qi(qi, wi)dwi (7b)

Proof. Consider ti, wi ∈ [ai, bi] with ti ≤ wi. Also, suppose
that, while ti is the true valuation of seller i for his IC, he
sends the falsified valuation wi as his bid. In this case, seller
i’s utility (4) can be rewritten as∫

T−i

[
mi(wi, t−i)− qi(wi, t−i)

[
wi − αp

{
(1− Pd)

kVi − PdGi
}]

+ qi(wi, t−i)(wi − ti)
]
f−i(t−i)dt−i (8)

= USi (mi, qi, wi) + (wi − ti)Qi(qi, wi) (using (6)) (9)

The incentive-compatibility constraint (5b) states that the ex-
pected utility of every seller i from reporting his true valuation
must be greater than or equal to his expected utility from
reporting a falsified valuation as his bid. Thus, we must have

USi (mi, qi, ti) ≥ USi (mi, qi, wi) + (wi − ti)Qi(qi, wi) (10)

which implies that

(wi − ti)Qi(qi, wi) ≤ USi (mi, qi, ti)− USi (mi, qi, wi) (11)

Similarly, considering wi to be the true valuation of seller i
and ti to be a falsified valuation, the incentive-compatibility
constraint implies

(wi− ti)Qi(qi, ti) ≥ USi (mi, qi, ti)−USi (mi, qi, wi) (12)

From (11) and (12), we get

(wi − ti)Qi(qi, wi) ≤ USi (mi, qi, ti)− USi (mi, qi, wi)

≤ (wi − ti)Qi(qi, ti) (13)

Clearly, (13) implies (7a). Further, defining δ = wi − ti, we
can rewrite the inequalities in (13) for δ → 0 as

Qi(qi, wi)δ ≤ USi (mi, qi, wi − δ)− USi (mi, qi, wi)

≤ Qi(qi, wi − δ)δ (14)

Thus, Qi(qi, wi) is a decreasing function of wi, and thus
Riemann integrable, based on which we get

USi (mi, qi, ti) = USi (mi, qi, bi) +

∫ bi

ti

Qi(qi, wi)dwi (15)

which proves (7b). This proves the lemma.

Based on Lemma 1, the optimization problem in Sec-
tion II-B can be simplified as given in the following theorem.

THEOREM 1. For (m,q) to represent an optimal auction
mechanism, q(t) should maximize

BS
[
1− (αp)d

][ 1− αp
1− αpPd

]
−
∫
T

N∑
i=1

[
ti+

Fi(ti)

fi(ti)

]
qi(t)f(t)d(t)

(16)
subject to constraints (5c) and (5d), and the payment to seller
i should be given by

mi(t) = qi(t)
[
ti + αp{PdGi − (1− Pd)kVi}

]
+

∫ bi

ti

qi(wi, t−i)dwi (17)

Proof. The buyer’s expected utility (1) can be rewritten as

UB(m,q) = BS
[
1− (αp)d

] [ 1− αp
1− αpPd

]
+

N∑
i=1

∫
T[

−mi(t) + qi(t)
{
ti−αp

(
(1−Pd)kVi−PdGi

)}]
f(t)dt

−
N∑
i=1

∫
T

tiqi(t)f(t)dt (18)
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Now, we have∫
T

[
−mi(t)+qi(t)

{
ti−αp

(
(1−Pd)kVi−PdGi

)}]
f(t)dt

(19)

= −
∫ bi

ai

USi (mi, qi, ti)fi(ti)dti (20)

=−
∫ bi

ai

[
USi (mi, qi, bi)+

∫ bi

ti

Qi(qi, wi)dwi

]
fi(ti)dti (21)

= −USi (mi, qi, bi)−
∫ bi

ai

∫ wi

ai

Qi(qi, wi)dwifi(ti)dti (22)

= −USi (mi, qi, bi)−
∫ bi

ai

Fi(wi)Qi(qi, wi)dwi (23)

= −USi (mi, qi, bi)−
∫
T

Fi(ti)

fi(ti)
qi(t)f(t)dt (24)

Substituting (24) into (18), we get,

UB(m,q) = BS
[
1− (αp)d

] [ 1− αp
1− αpPd

]
−
∫
T

N∑
i=1

[
ti+

Fi(ti)

fi(ti)

]
qi(t)f(t)d(t)−

N∑
i=1

USi (mi, qi, bi) (25)

In (25), m(t) only appears in the last term of the buyer’s utility
function. Also, from the individual-rationality constraint (5a),
we know that for every seller i, we must have USi (mi, qi, bi) ≥
0. Thus, the best possible value of the last term of (25) can
be obtained, which is zero (since the buyer seeks to maximize
his utility), as well as the individual-rationality constraint can
be satisfied, by having USi (mi, qi, bi) = 0, ∀i ∈ {1, · · · , N},
which implies, using (7b),

USi (mi, qi, ti)−
∫ bi

ti

Qi(qi, wi)dwi = 0 (26)

Substituting (3) and (6) into (26), we get (17) with the utility of
the buyer thereby becoming (16). This proves the theorem.

A. Determination of Auction Outcome

We now describe how to determine the outcome of the
optimal auction mechanism characterized in Theorem 1. In
particular, we describe how to find the optimal set of sellers,
their payments, and the optimal amount of fine that should be
imposed on a seller upon finding a Trojan in his sold IC. We
also discuss the optimization of d to characterize the optimal
amount of redundancy the buyer should opt for.

1) Optimal seller selection for a given d: Given valuation
ti ∈ [ai, bi] of seller i, let us define

ηi(ti) = ti +
Fi(ti)

fi(ti)
(27)

We refer to ηi(ti) as the virtual valuation of seller i. Now,
it can be noted that the buyer’s expected utility (16) in the
optimal auction mechanism is maximized if q(t) is such that
it maximizes

BS [1− (αp)d]

[
1− αp

1− αpPd

]
−

N∑
i=1

ηi(ti)qi(t) (28)

subject to constraints (5c) and (5d) for all t ∈ T . To
maximize (28) for a given d (i.e., for a given number of
sellers to be selected), clearly, upon receiving a vector of
bids t = (t1, · · · , tN ) from the sellers, the buyer should
first calculate the virtual valuations of the sellers (using (27)),
number the sellers in non-decreasing order of their virtual
valuations (such that η1(t1) ≤ η2(t2) ≤ · · · ≤ ηN (tN )), and
then select the d sellers having the lowest virtual valuations,
i.e., choose qi(t) = 1 (if i ∈ [1, d]) and qi(t) = 0 (otherwise).

2) Optimal seller section while optimizing d: (28) can
clearly be optimized by optimally selecting d. To find optimal
d, we first prove some properties of the first term of (28) in
the following lemma.
LEMMA 2. The first term of (28), viz. BS [1−(αp)d][ 1−αp

1−αpPd
],

is an increasing function of d. The rate of increase of the first
term of (28) is non-increasing with d.

Proof. Let us denote the first term of (28) as

ξ(d) = BS
[
1− (αp)d

] [ 1− αp
1− αpPd

]
(29)

Now, since αp ∈ [0, 1], we have ξ(d = κ+ 1)− ξ(d = κ) =
BS [ 1−αp

1−αpPd
][(αp)κ − (αp)κ+1] ≥ 0, showing that ξ(d) is an

increasing function of d. Again, since αp ∈ [0, 1], we have
ξ(d = κ+1)−ξ(d = κ) ≥

{
ξ(d = κ+1)−ξ(d = κ)

}
(αp) =

ξ(d = κ + 2) − ξ(d = κ + 1), which shows that the rate of
increase of ξ(d) is non-increasing with d.

Based on Lemma 2, upon receiving a vector of bids
t = (t1, · · · , tN ), to find the optimal value of d, the buyer
should compute the virtual valuation ηi(ti) (27) for every seller
i, number the sellers in non-decreasing order of their virtual
valuations

(
such that η1(t1) ≤ η2(t2) ≤ · · · ≤ ηN (tN )

)
, and

then, to maximize (28), choose the largest value of κ ∈ [1, N ]
that satisfies the condition ηκ(tκ) ≤ ξ(d = κ) − ξ(d =
κ − 1) as d∗ (i.e., as the optimal value of d), where ξ(·)
follows (29). Clearly, the optimal set of d∗ sellers (that would
maximize (28)) corresponds to the buyer choosing qi(t) = 1
(if i ∈ [1, d∗]) and qi(t) = 0 (otherwise). If, however,
η1(t1) > ξ(d = 1) − ξ(d = 0), then there clearly does not
exist any value of κ ∈ [1, N ] that satisfies the aforementioned
condition and, in such a scenario, the buyer should choose
d∗ = 0 (i.e., the buyer should not buy the IC from any
seller). Finally, it should be noted that the above procedure
for determining d∗ and the optimal set of d∗ sellers requires
sorting the sellers in non-decreasing order of their virtual
valuations, thereby having a time complexity of O(N logN).

3) Determination of Sellers’ Payments: The payments to be
made to the sellers can be computed using (17). First, it can be
noted from (17) that sellers who are not selected by the buyer
do not receive any payment, since if seller i is not selected with
a bid ti ∈ [ai, bi], then qi(wi, t−i) = 0, ∀wi ∈ [ti, bi]. The
difficulty of computing the payment of seller i who is selected
by the buyer lies in calculating the integral term of (17). To
compute the integral term, it can be noted that seller i who is
selected with a bid ti ∈ [ai, bi] could have still been selected
with a higher bid until his bid exceeds a certain cutoff bid,
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Fig. 1. Impact of Trojan insertion probability (p) on auction outcome.

say σi ∈ [ti, bi]. In other words, we have qi(wi, t−i) = 1,
∀wi ∈ [ti, σi], and qi(wi, t−i) = 0, ∀wi ∈ (σi, bi]. Thus,
the payment (17) of seller i who is selected by the buyer
becomes mi(t) = ti+αp{PdGi− (1−Pd)kVi}+(σi− ti) =
σi + αp{PdGi − (1 − Pd)kVi}. The cutoff bid σi for seller
i can be determined in a computationally efficient manner by
using the bisection method [20] to iteratively narrow down the
highest possible winning bid of seller i in the range [ti, bi].

Further, noting that (17) is a function of the fine (Gi)
imposed on seller i upon detecting a Trojan in his sold IC leads
us to the following important remark regarding the optimal fine
that should be charged.
REMARK 1. The optimal fine that should be imposed on seller
i upon detecting a Trojan in his sold IC can be found by setting
the term {PdGi − (1 − Pd)kVi} in (17) to 0, which yields
Gi =

1−Pd

Pd
kVi. This results in the least amount of payment

to be made to a selected seller while ensuring that the seller
is unable to make a profit by sending a falsified bid.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to gain insights
into the proposed auction mechanism and show its perfor-
mance advantages. To obtain the results, the optimal number
of redundant sellers along with the optimal set of sellers to
be selected were determined using the procedure described in
Section III-A2 for optimizing the buyer’s expected utility in
(16), and the payments of the selected sellers were determined
using the procedure described in Section III-A3 for computing
(17) with the fines set optimally based on Remark 1.

In Fig. 1, we show how the probability (p) with which a
malicious seller inserts a Trojan into his sold IC impacts the
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Fig. 2. Impact of the detection probability (Pd) on auction outcome.

outcome of the proposed auction mechanism. For the figure,
we consider, N = 10, BS = 200, α = 0.5, and the valuations
of all sellers for their ICs to be uniformly distributed over the
range [10, 25]. As can be seen from Fig. 1(a), as p increases,
for a given Pd, the average number of sellers redundantly
selected by the buyer shows a non-decreasing trend. This
happens to mitigate the impact of larger fractions of acquired
ICs having Trojans in them with increasing p. As can also
be noted from the figure, for a given p, the average number
of sellers redundantly selected shows a non-decreasing trend
with Pd. This is because a higher Pd enhances the ability of
the buyer to find a Trojan-free IC from among the acquired
ones thereby rationalizing the buyer’s investment in buying
ICs from multiple sellers with a higher degree of redundancy
with increasing Pd. As can be noted from Fig. 1(b), and as is
also intuitive, the expected utility of the buyer in the proposed
auction mechanism decreases with increasing p for a given
Pd. Further, as expected, for a given p, it can be noted from
the figure that the expected utility of the buyer increases with
Pd. Moreover, Fig. 1(b) also shows the expected utility of
the buyer (for Pd = 0.5) with redundant acquisition of ICs
from multiple sellers allowed as well as when its not (i.e., for
d = 1). As can be seen, the expected utility of the buyer when
redundant acquisition of ICs from multiple sellers is allowed
is greater than or equal to that of the case where d = 1, which
shows the performance advantage of redundantly acquiring
ICs from multiple sellers in the proposed mechanism.

In Fig. 2, we show the impact of the detection probability
(Pd) of an inserted Trojan on the outcome of the proposed
auction mechanism. For the figure, we consider N = 10,
BS = 200, α = 0.6, and the valuations of all sellers for
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their ICs to be uniformly distributed over the range [10, 25].
As can be seen from Fig. 2(a), the average number of sellers
redundantly selected by the buyer shows a non-decreasing
trend with Pd (for a given Trojan insertion probability p)
as well as shows a non-decreasing trend with p (for a given
Pd) due to reasons discussed earlier for Fig. 1(a). Moreover,
as expected, the expected utility of the buyer increases with
Pd (for a given p) and decreases with p (for a given Pd)
as noted earlier for Fig. 1(b). These observations corroborate
those made for Fig. 1.
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Fig. 3. Impact of the number of sellers (N ) on auction outcome.

In Fig. 3, we show how the number of sellers (N ) impacts
the outcome of the proposed auction mechanism. For the
figure, we consider BS = 200, α = 0.5, Pd = 0.8, and
the valuations of all sellers for their ICs to be uniformly
distributed over the range [10, 25]. As can be seen from Fig.
3(a), the expected utility of the buyer in the proposed auction
mechanism shows an increasing trend with N , for a given
probability of Trojan insertion (p), since with N the chances
of finding sellers who can sell for lower payments as well
as the number of redundant sellers that can be selected both
increase. As expected, the expected utility of the buyer, for a
given N , decreases with p. As can be seen from Fig. 3(b), and
as is consistent with the observation made for Fig. 3(a), the
total payment made by the buyer shows a decreasing trend with
N . Moreover, as can be seen, for a given N , the total payment
made by the buyer shows a non-decreasing trend with p since,
as noted in Fig. 1(a), the number of redundantly selected
sellers shows a non-decreasing trend with p, thereby making
the total payment needed follow a non-decreasing trend.

V. CONCLUSION

This paper adopted a mechanism design perspective to
design an optimal auction mechanism that can optimize the
utility of a buyer acquiring ICs in a market where sellers can
act in a malicious manner by inserting hardware Trojans in
sold ICs. The presence of Trojans in constituent ICs poses a
severe security threat to IoT. The proposed mechanism can
optimally employ redundancy in the selection of sellers to
obtain reliability and enhance the buyer’s utility. Our auction
mechanism can adapt to the imperfections of the process of
testing acquired ICs. The optimal fine that should be imposed
on a malicious seller upon detecting a Trojan in his sold IC
was also characterized. Numerical results were presented to
gain important insights into the proposed auction mechanism.
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