Checkpointing SPAdes for Metagenome Assembly:
Transparency versus Performance in Production

Twinkle Jain
Northeastern University
jain.t@northeastern.edu

Abstract—The SPAdes assembler for metagenome assembly
is a long-running application commonly used at the NERSC
supercomputing site. However, NERSC, like many other sites,
has a 48-hour limit on resource allocations. The solution is to
chain together multiple resource allocations in a single run, using
checkpoint-restart. This case study provides insights into the
“pain points” in applying a well-known checkpointing package
(DMTCP: Distributed MultiThreaded CheckPointing) to long-
running production workloads of SPAdes. This work has exposed
several bugs and limitations of DMTCP, which were fixed to
support the large memory and fragmented intermediate files of
SPAdes. But perhaps more interesting for other applications,
this work reveals a tension between the transparency goals of
DMTCP and performance concerns due to an I/O bottleneck
during the checkpointing process when supporting large memory
and many files. Suggestions are made for overcoming this
I/O bottleneck, which provides important “lessons learned” for
similar applications.

Index Terms—SPAdes, Checkpoint-Restart, Metagenome As-
sembly, DMTCP

I. INTRODUCTION

Next-generation sequencing (NGS) technology has dramat-
ically changed the scale of genomics study in the past decade.
Metagenome sequencing for characterizing the microbial com-
munity composition is one of the areas that benefits the most
from NGS technology [1]. The application of metagenome
sequencing in microbial community analysis remains challeng-
ing — especially in the area of metagenome assembly [2].

For metagenome analysis, we use the St. Petersburg genome
assembler, hereafter known simply as SPAdes. SPAdes has
been adopted by the genomics scientific community for a wide
variety of metagenomic characterization applications, and has
been used for COVID-19 genome assembly [3], [4]. The
original SPAdes assembler paper has been cited over 11,000
times since it was first published in 2012 [5].

The SPAdes assembler for metagenome assembly is or-
chestrated as a pipeline overseen by a Python process, which
calls executables (SPAdes binaries) to perform metagenome
assembly. The SPAdes uses OpenMP [6] to parallelize DNA
string K-mer analysis and assembly graph construction, which
are both time consuming and computationally intensive.

Because of the long run time for SPAdes, it was decided
to introduce checkpoint-restart based on DMTCP (Distributed
MultiThreaded Checkpointing) [7] for two primary reasons:

Jie Wang

DOE-JGI Lawrence Berkeley National Laboratory

jwang7 @lbl.gov

1) The SPAdes run time on large data sets often exceeds
the 48-hour wall-time limit set by the HPC provider’s
queue policy;

2) Unexpected job interruptions (e.g., unplanned system
shutdowns) can result in days of computation results
being lost.

In order to test the efficacy of DMTCP, we use three
metagenome datasets (Table I). The read and base counts
imply the scale of the SPAdes assembler. We used small-
and medium-scale datasets, namely Bog and Spike-in, for our
initial DMTCP compatibility testing. However, the checkpoint-
restart feature is not crucial at the small and medium scales due
to the relatively short job run times. Therefore, we focus on the
large dataset, Rhizosphere, in this case study. All experiments
were performed on the National Energy Research Scientific
Computing Center’s (NERSC’s) Cori cluster [8] using Intel

Skylake nodes.
TABLE I
DATASETS USED IN THIS STUDY

Name Read Count (Millions) | Base Count (Billions)
Bog 31.1 4.5
Spike-in 78.7 11.8
Rhizosphere 193 28.5

The rest of this paper is organized as follows. Section II
describes our approach to checkpointing, and the issues we
faced in applying this approach to complex software at large
scale. Section III highlights the lessons learned, in particular
the issue of I/O bottlenecks in supporting SPAdes. DMTCP
was chosen for its support for transparent checkpointing, thus
easing the burden of the application developer. While this
transparency was successful, it resulted in excessively long
checkpointing times. Thus, for the next iteration, we propose
modifications to how SPAdes stores its data, and the possible
introduction of separate I/O middleware, in order to alleviate
the I/0 bottleneck during checkpointing. Section IV presents
a conclusion.

II. APPROACH TO CHECKPOINTING

In the process of scaling DMTCP for SPAdes, we faced
two kinds of challenges: a) fundamental changes needed in
DMTCP to make it compatible with SPAdes regardless of the
scale; and b) elimination of limitations and bugs exposed by
running at larger scales. We discuss the issues faced in detail
below.



A. Challenges in making DMTCP compatible for SPAdes

1) Precious files: One of the fundamental requirements
of any checkpoint package is to be able to save enough
information to restart the application correctly. One of the key
characteristics of the SPAdes application is that it creates/uses
temporary files of up to a terabyte in size, known as precious
files, and later cleans up those temporary files. These files may
or may not be opened by the processes at all times.

By default, DMTCP assumes that all the files associated
with a process will be persistent and present at their original
path. Though DMTCP provides an option to save files opened
by each process at checkpoint time, a subset of precious files
may not even show up in the opened file list. Note that
precious files can be associated in a per-process fashion or be
shared among more than one process at the application level.
To solve this problem, we exploited DMTCP’s plugin-based
architecture [9] by creating a plugin specifically for SPAdes to
handle the precious file issue. This plugin takes a backup of
precious files at the checkpoint and replaces them at restore.

2) Tuning DMTCP for NERSC environment: We made
minor changes in DMTCP to perform well with the working
environment, i.e., the Cori cluster at NERSC. For example,
the Cori OS upgrade from CLE6 to CLE7 exposed a memory
region merge issue in DMTCP. This edge case was not
expected by DMTCP developers. So, we introduced guard
pages around the sensitive memory region.

Moreover, Cori was changed in the last year to enable the
huge memory pages module by default [10]. Only after initial
debugging did we realize that DMTCP doesn’t support huge
pages (2 MB pages). So, we disabled the hugepages module
explicitly and informed the DMTCP developers about this
scenario. The DMTCP developers plan to introduce support
for huge pages.

B. Challenges in scaling DMTCP to production workload

1) Data Structure limitations: Scaling to a real-world sce-
nario required a few modifications in DMTCP’s code. For
example, for a large dataset, SPAdes uses more file descriptors
than the maximum number assumed by DMTCP, causing
a clash with DMTCP internal file descriptors. We resolved
this error by dynamically choosing the internal file descriptor
range for DMTCP to avoid any overlap with the application’s
file descriptors. Additionally, we increased limits on a few
more internal data structures in DMTCP as we switched to
production scale from small scale.

2) The ABA bug: A broad range of large-scale applications
have been using DMTCP for checkpoint-restart purposes.
However, SPAdes, with a large dataset, exposed the ABA
problem [11], a race condition that led to memory corrup-
tion in DMTCP. SPAdes uses many user-threads along with
OpenMP threads. We observed this memory corruption more
often for the large dataset than for the small and medium
scale datasets. This memory corruption bug was one of the
hardest among other problems to identify because of its non-
deterministic nature. Upon reporting the bug to the DMTCP

team, we learned that this was a known bug, and they soon
provided a fix!.

3) Irrecoverable checkpoint state: SPAdes assembler runs
from a Python script. Therefore, at each checkpoint instance,
DMTCP needs to save both the Python and SPAdes binary
processes. The Python process maintains a relatively small
memory footprint (a few MBs) at all times. With large datasets,
SPAdes binary’s memory footprint can become very large
(hundreds of GB) many times during the lifetime of the
SPAdes assembler.

Consider the general case where C; = {p;1, pi2, ---; Dim } as
the i*" checkpoint instance of an application with m processes
and p;; where j € [1,m], is the checkpoint image for the j*"
process at the 7*" instance. By default, DMTCP overwrites the
all the checkpoint images from the C; instance with new ones
from the C; 11 checkpoint instance on the persistent storage.

We observed that all processes of the application running
under DMTCP replace their own checkpoint image asyn-
chronously, without waiting for other processes to finish the
save task. This sets up the potential for a scenario in which
process P; has already replaced p;; with p;1; but process P
(where j # k) has not yet finished the checkpointing task. At
this point, if the job hits the wall-time limit or crashes, we
will have a set of checkpoint images from different instances
on the persistent storage, from which a restore is not possible.

We faced this unrecoverable state many times because of the
combination of a small (Python) and a large (SPAdes binary)
memory footprint. We resolved this issue by introducing a
global barrier in DMTCP that allows each process to replace
the older checkpoint image synchronously after all processes
finish their checkpoint task.

III. LESSONS LEARNED: THE TENSION BETWEEN
TRANSPARENCY AND PERFORMANCE

DMTCP is a transparent checkpointing package. Its long-
term philosophy is that if an application runs well natively,
then DMTCP should also execute it well. No change to the
target application is needed. Here in this paper, we are seeing
the limits to this philosophy of transparency. Transparency
fails in the following ways:

(i) The precious files had to be declared explicitly to a
new, specialized DMTCP plugin, thus partially breaking the
transparency;

(ii)) The use of DMTCP with SPAdes introduced a new
requirement to write out the precious files. The precious files
were part of a database of many files. Checkpointing required
DMTCP to save each such file sequentially. But the native
execution of SPAdes does not have to write out the precious
files. This is a new application requirement added only because
of DMTCP. As a consequence, checkpoint performance suffers
greatly, especially because DMTCP performs naive I/0 and
does not use an I/O middleware library [12], [13] to optimize
I/0. So, DMTCP can no longer easily hide itself and remain
transparent.

Uhttps://github.com/dmtcp/dmtcp/pull/851



(iii) DMTCP has no feedback from SPAdes about which
output file is a precious file and which one is not. Because it
cannot identify precious files, DMTCP ends up saving all the
output files naively. This increases the size of the precious files
over time (see Figure 1). It can reach up to a few terabytes,
which hinders performance.

EEE Time to save process image
Time to save precious files

0 C3 C4 C5

Cl c2
Checkpoint instances

= = N N w
o (V)] o (6] o

Total time taken to checkpoint (minutes)

w

Fig. 1. Checkpoint time distribution: SPAdes runs under DMTCP with
five periodic checkpoints demonstrating the variability in the time to save
precious files (orange) and process images (blue) at each instance.

One could argue that, since our primary motivation is to
overcome job wall-time limits, we can eliminate this 1I/O
bottleneck while remaining almost transparent by checkpoint-
ing only once near the end of the scheduled time, and exit
immediately after the checkpoint task completes. This way all
the precious files will remain on the persistent storage and no
backup would be required. However, this proposed solution
has two problems:

a) This solution requires an accurate prediction of check-
point time duration to ensure the completion of checkpoint
task before the job wall-time runs out. The memory footprint
of the SPAdes application depends on the analysis step that
the assembler is performing at the time of the checkpoint. We
have observed that the memory footprint varies from a few
megabytes to hundreds of gigabytes inconsistently during the
lifetime of the SPAdes assembler.

b) The Cori Burst Buffer is not available on the Skylake
nodes. So DMTCP must use Cori’s shared Lustre file system
as persistent storage to write checkpoint images. However,
the I/O performance of the shared Lustre file system can
significantly decrease in the presence of congestion [14]
at the NERSC supercomputing site. Therefore, there is no
straightforward way to predict checkpoint completion time in
this setting.

Less transparency, better performance: The emphasis on
transparency clearly caused performance degradation. There-

fore, for reasons of performance, it is important to include
some efforts on the application side. Modifying applications to
improve the I/O is an age-old problem [12], [13]. Nevertheless,
some relatively non-invasive changes on the side of SPAdes
can reduce the I/O bottleneck. We list three suggestions for
SPAdes to improve checkpointing performance:

1) SPAdes could help DMTCP identify the precious files
among regular output files. This could be done with:
i) a simple prefix/suffix to tag temporary/precious files;
ii) writing all precious files in a specific directory which
can be saved at checkpoint.

2) SPAdes can be made checkpoint-aware by introducing a
simple “ckpt-enable” option. We know that precious files
are those temporary files that get deleted at some point in
the lifetime of SPAdes. So, when the checkpoint option
is enabled then SPAdes don’t remove those temporary
files from persistent storage.

3) SPAdes can trigger DMTCP’s application-initiated
checkpoint. So, instead of initiating checkpoints peri-
odically, initiate a checkpoint when either the memory
footprint of SPAdes or the total size of the precious files
is smallest.

Any of the above suggestion should reduce the current
checkpoint overhead introduced by precious files. We believe
that an understanding of both the application (SPAdes) and
DMTCP, together, is needed to provide good performance.

IV. CONCLUSION

DMTCP’s checkpoint-restart has been demonstrated to work
well with SPAdes. Numerous challenges were experienced and
resolved during testing of DMTCP checkpoint-restart primar-
ily on large metagenome assembly jobs. At the same time,
this exposed bugs in DMTCP when handling jobs with large
memory footprints. Overall, DMTCP can be extended through
minor modifications to work with real-world applications. The
checkpoint overhead was found high due to an added support
to handle numerous precious files in SPAdes. In the future, if
these essential precious files could be identified, with the help
of the SPAdes developer team, then I/O overhead in periodic
checkpoints could be greatly reduced.

ACKNOWLEDGMENTS

We would like to thank: Zhengji Zhao and Rebecca
Hartman—Baker for access to NERSC computing resource, for
utility scripts [15] to re-queue jobs, and for generous assistance
in adapting DMTCP; Alicia Clum and Alex Copeland for
sequencing datasets and for help with SPAdes; and Gene
Cooperman for guidance on debugging using DMTCP with
the SPAdes project. We also thank the reviewers for valuable
comments that greatly improved the exposition. This research
used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
ACO02-05CH11231. This work was partially supported by
National Science Foundation Grant OAC-1740218 and a grant
from Intel Corporation.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch,
J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson et al., “En-
vironmental genome shotgun sequencing of the Sargasso Sea,” science,
vol. 304, no. 5667, pp. 66-74, 2004.

S. Koren, T. J. Treangen, and M. Pop, “Bambus 2: scaffolding
metagenomes,” Bioinformatics, vol. 27, no. 21, pp. 2964-2971, 09
2011. [Online]. Available: https://doi.org/10.1093/bioinformatics/btr520
E. C. Carbo, I. A. Sidorov, J. C. Zevenhoven-Dobbe, E. J. Snijder, E. C.
Claas, J. F. Laros, A. C. Kroes, and J. J. de Vries, “Coronavirus discovery
by metagenomic sequencing: a tool for pandemic preparedness,” Journal
of Clinical Virology, vol. 131, p. 104594, 2020.

F. Garcés-Ayala, A. Araiza-Rodriguez, E. Mendieta-Condado, A. P.
Rodriguez-Maldonado, C. Wong-Ardmbula, M. Landa-Flores, J. C. del
Mazo-Lépez, M. Gonzilez-Villa, N. Escobar-Escamilla, D. E. Fragoso-
Fonseca et al., “Full genome sequence of the first SARS-CoV-2 detected
in Mexico,” Archives of Virology, vol. 165, no. 9, pp. 2095-2098, 2020.
A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S.
Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski et al.,
“SPAdes: a new genome assembly algorithm and its applications to
single-cell sequencing,” Journal of computational biology, vol. 19, no. 5,

Ep. 455-4717, 2012.
. Dagum and R. Menon, “Openmp: an industry standard api for shared-

memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46-55, 1998.

J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 2009 [EEE
International Symposium on Parallel & Distributed Processing. 1EEE,
2009, pp. 1-12.

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

“NERSC Cori system,” [accessed Dec-2020]. [Online]. Available:
https://docs.nersc.gov/systems/cori/

K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman, ‘“Design and
implementation for checkpointing of distributed resources using process-
level virtualization,” in IEEE Int. Conf. on Cluster Computing (CLUS-
TER’16). IEEE Press, 2016, pp. 402-412.

“NERSC best practices,” [accessed Jan-2021]. [Online]. Available:
https://docs.nersc.gov/jobs/best-practices/#hugepages

“The ABA problem,” [accessed Dec-2020]. [Online].
https://en.wikipedia.org/wiki/ABA_problem

Available:

B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in SC’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. 1EEE, 2012, pp.
1-11.

F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-A.
Nguyen, J. Cao, H. Abbasi, S. Klasky et al., “Flexio: I/o middleware for
location-flexible scientific data analytics,” in 2013 IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing. 1EEE, 2013,
pp- 320-331.

“NERSC file system performance,” [accessed Dec-2020]. [Online].
Available: https://my.nersc.gov/filesystems-cs.php

T. Connors, R. Hartman-Baker, Z. Zhao, and S. Leak,
time job scripts,” [accessed Dec-2020]. [Online].
https://github.com/NERSC/variable-time-job

“Variable-
Available:



	I Introduction
	II Approach to Checkpointing
	II-A Challenges in making DMTCP compatible for SPAdes
	II-A1 Precious files
	II-A2 Tuning DMTCP for NERSC environment

	II-B Challenges in scaling DMTCP to production workload
	II-B1 Data Structure limitations
	II-B2 The ABA bug
	II-B3 Irrecoverable checkpoint state


	III Lessons Learned: The Tension between Transparency and Performance
	IV Conclusion
	References

