
a
rX

iv
:2

1
0
3
.0

3
3
1
1
v
1

[c

s.
D

C
]

 4
 M

a
r

2
0
2
1

Checkpointing SPAdes for Metagenome Assembly:

Transparency versus Performance in Production

Twinkle Jain

Northeastern University

jain.t@northeastern.edu

Jie Wang

DOE-JGI Lawrence Berkeley National Laboratory

jwang7@lbl.gov

Abstract—The SPAdes assembler for metagenome assembly
is a long-running application commonly used at the NERSC
supercomputing site. However, NERSC, like many other sites,
has a 48-hour limit on resource allocations. The solution is to
chain together multiple resource allocations in a single run, using
checkpoint-restart. This case study provides insights into the
“pain points” in applying a well-known checkpointing package
(DMTCP: Distributed MultiThreaded CheckPointing) to long-
running production workloads of SPAdes. This work has exposed
several bugs and limitations of DMTCP, which were fixed to
support the large memory and fragmented intermediate files of
SPAdes. But perhaps more interesting for other applications,
this work reveals a tension between the transparency goals of
DMTCP and performance concerns due to an I/O bottleneck
during the checkpointing process when supporting large memory
and many files. Suggestions are made for overcoming this
I/O bottleneck, which provides important “lessons learned” for
similar applications.

Index Terms—SPAdes, Checkpoint-Restart, Metagenome As-
sembly, DMTCP

I. INTRODUCTION

Next-generation sequencing (NGS) technology has dramat-

ically changed the scale of genomics study in the past decade.

Metagenome sequencing for characterizing the microbial com-

munity composition is one of the areas that benefits the most

from NGS technology [1]. The application of metagenome

sequencing in microbial community analysis remains challeng-

ing — especially in the area of metagenome assembly [2].

For metagenome analysis, we use the St. Petersburg genome

assembler, hereafter known simply as SPAdes. SPAdes has

been adopted by the genomics scientific community for a wide

variety of metagenomic characterization applications, and has

been used for COVID-19 genome assembly [3], [4]. The

original SPAdes assembler paper has been cited over 11,000

times since it was first published in 2012 [5].

The SPAdes assembler for metagenome assembly is or-

chestrated as a pipeline overseen by a Python process, which

calls executables (SPAdes binaries) to perform metagenome

assembly. The SPAdes uses OpenMP [6] to parallelize DNA

string K-mer analysis and assembly graph construction, which

are both time consuming and computationally intensive.

Because of the long run time for SPAdes, it was decided

to introduce checkpoint-restart based on DMTCP (Distributed

MultiThreaded Checkpointing) [7] for two primary reasons:

1) The SPAdes run time on large data sets often exceeds

the 48-hour wall-time limit set by the HPC provider’s

queue policy;

2) Unexpected job interruptions (e.g., unplanned system

shutdowns) can result in days of computation results

being lost.

In order to test the efficacy of DMTCP, we use three

metagenome datasets (Table I). The read and base counts

imply the scale of the SPAdes assembler. We used small-

and medium-scale datasets, namely Bog and Spike-in, for our

initial DMTCP compatibility testing. However, the checkpoint-

restart feature is not crucial at the small and medium scales due

to the relatively short job run times. Therefore, we focus on the

large dataset, Rhizosphere, in this case study. All experiments

were performed on the National Energy Research Scientific

Computing Center’s (NERSC’s) Cori cluster [8] using Intel

Skylake nodes.
TABLE I

DATASETS USED IN THIS STUDY

Name Read Count (Millions) Base Count (Billions)

Bog 31.1 4.5

Spike-in 78.7 11.8

Rhizosphere 193 28.5

The rest of this paper is organized as follows. Section II

describes our approach to checkpointing, and the issues we

faced in applying this approach to complex software at large

scale. Section III highlights the lessons learned, in particular

the issue of I/O bottlenecks in supporting SPAdes. DMTCP

was chosen for its support for transparent checkpointing, thus

easing the burden of the application developer. While this

transparency was successful, it resulted in excessively long

checkpointing times. Thus, for the next iteration, we propose

modifications to how SPAdes stores its data, and the possible

introduction of separate I/O middleware, in order to alleviate

the I/O bottleneck during checkpointing. Section IV presents

a conclusion.

II. APPROACH TO CHECKPOINTING

In the process of scaling DMTCP for SPAdes, we faced

two kinds of challenges: a) fundamental changes needed in

DMTCP to make it compatible with SPAdes regardless of the

scale; and b) elimination of limitations and bugs exposed by

running at larger scales. We discuss the issues faced in detail

below.

A. Challenges in making DMTCP compatible for SPAdes

1) Precious files: One of the fundamental requirements

of any checkpoint package is to be able to save enough

information to restart the application correctly. One of the key

characteristics of the SPAdes application is that it creates/uses

temporary files of up to a terabyte in size, known as precious

files, and later cleans up those temporary files. These files may

or may not be opened by the processes at all times.

By default, DMTCP assumes that all the files associated

with a process will be persistent and present at their original

path. Though DMTCP provides an option to save files opened

by each process at checkpoint time, a subset of precious files

may not even show up in the opened file list. Note that

precious files can be associated in a per-process fashion or be

shared among more than one process at the application level.

To solve this problem, we exploited DMTCP’s plugin-based

architecture [9] by creating a plugin specifically for SPAdes to

handle the precious file issue. This plugin takes a backup of

precious files at the checkpoint and replaces them at restore.

2) Tuning DMTCP for NERSC environment: We made

minor changes in DMTCP to perform well with the working

environment, i.e., the Cori cluster at NERSC. For example,

the Cori OS upgrade from CLE6 to CLE7 exposed a memory

region merge issue in DMTCP. This edge case was not

expected by DMTCP developers. So, we introduced guard

pages around the sensitive memory region.

Moreover, Cori was changed in the last year to enable the

huge memory pages module by default [10]. Only after initial

debugging did we realize that DMTCP doesn’t support huge

pages (2 MB pages). So, we disabled the hugepages module

explicitly and informed the DMTCP developers about this

scenario. The DMTCP developers plan to introduce support

for huge pages.

B. Challenges in scaling DMTCP to production workload

1) Data Structure limitations: Scaling to a real-world sce-

nario required a few modifications in DMTCP’s code. For

example, for a large dataset, SPAdes uses more file descriptors

than the maximum number assumed by DMTCP, causing

a clash with DMTCP internal file descriptors. We resolved

this error by dynamically choosing the internal file descriptor

range for DMTCP to avoid any overlap with the application’s

file descriptors. Additionally, we increased limits on a few

more internal data structures in DMTCP as we switched to

production scale from small scale.

2) The ABA bug: A broad range of large-scale applications

have been using DMTCP for checkpoint-restart purposes.

However, SPAdes, with a large dataset, exposed the ABA

problem [11], a race condition that led to memory corrup-

tion in DMTCP. SPAdes uses many user-threads along with

OpenMP threads. We observed this memory corruption more

often for the large dataset than for the small and medium

scale datasets. This memory corruption bug was one of the

hardest among other problems to identify because of its non-

deterministic nature. Upon reporting the bug to the DMTCP

team, we learned that this was a known bug, and they soon

provided a fix1.

3) Irrecoverable checkpoint state: SPAdes assembler runs

from a Python script. Therefore, at each checkpoint instance,

DMTCP needs to save both the Python and SPAdes binary

processes. The Python process maintains a relatively small

memory footprint (a few MBs) at all times. With large datasets,

SPAdes binary’s memory footprint can become very large

(hundreds of GB) many times during the lifetime of the

SPAdes assembler.

Consider the general case where Ci = {pi1, pi2, ..., pim} as

the ith checkpoint instance of an application with m processes

and pij where j ∈ [1,m], is the checkpoint image for the jth

process at the ith instance. By default, DMTCP overwrites the

all the checkpoint images from the Ci instance with new ones

from the Ci+1 checkpoint instance on the persistent storage.

We observed that all processes of the application running

under DMTCP replace their own checkpoint image asyn-

chronously, without waiting for other processes to finish the

save task. This sets up the potential for a scenario in which

process Pj has already replaced pij with pi+1j but process Pk

(where j 6= k) has not yet finished the checkpointing task. At

this point, if the job hits the wall-time limit or crashes, we

will have a set of checkpoint images from different instances

on the persistent storage, from which a restore is not possible.

We faced this unrecoverable state many times because of the

combination of a small (Python) and a large (SPAdes binary)

memory footprint. We resolved this issue by introducing a

global barrier in DMTCP that allows each process to replace

the older checkpoint image synchronously after all processes

finish their checkpoint task.

III. LESSONS LEARNED: THE TENSION BETWEEN

TRANSPARENCY AND PERFORMANCE

DMTCP is a transparent checkpointing package. Its long-

term philosophy is that if an application runs well natively,

then DMTCP should also execute it well. No change to the

target application is needed. Here in this paper, we are seeing

the limits to this philosophy of transparency. Transparency

fails in the following ways:

(i) The precious files had to be declared explicitly to a

new, specialized DMTCP plugin, thus partially breaking the

transparency;

(ii) The use of DMTCP with SPAdes introduced a new

requirement to write out the precious files. The precious files

were part of a database of many files. Checkpointing required

DMTCP to save each such file sequentially. But the native

execution of SPAdes does not have to write out the precious

files. This is a new application requirement added only because

of DMTCP. As a consequence, checkpoint performance suffers

greatly, especially because DMTCP performs naı̈ve I/O and

does not use an I/O middleware library [12], [13] to optimize

I/O. So, DMTCP can no longer easily hide itself and remain

transparent.

1https://github.com/dmtcp/dmtcp/pull/851

(iii) DMTCP has no feedback from SPAdes about which

output file is a precious file and which one is not. Because it

cannot identify precious files, DMTCP ends up saving all the

output files naively. This increases the size of the precious files

over time (see Figure 1). It can reach up to a few terabytes,

which hinders performance.

C1 C2 C3 C4 C5
Checkpoint instances

0

5

10

15

20

25

30

35

To
ta

l t
im

e
ta

ke
n

to
 c

he
ck

po
in

t (
m

in
ut

es
)

Time to save process image
Time to save precious files

Fig. 1. Checkpoint time distribution: SPAdes runs under DMTCP with
five periodic checkpoints demonstrating the variability in the time to save
precious files (orange) and process images (blue) at each instance.

One could argue that, since our primary motivation is to

overcome job wall-time limits, we can eliminate this I/O

bottleneck while remaining almost transparent by checkpoint-

ing only once near the end of the scheduled time, and exit

immediately after the checkpoint task completes. This way all

the precious files will remain on the persistent storage and no

backup would be required. However, this proposed solution

has two problems:

a) This solution requires an accurate prediction of check-

point time duration to ensure the completion of checkpoint

task before the job wall-time runs out. The memory footprint

of the SPAdes application depends on the analysis step that

the assembler is performing at the time of the checkpoint. We

have observed that the memory footprint varies from a few

megabytes to hundreds of gigabytes inconsistently during the

lifetime of the SPAdes assembler.

b) The Cori Burst Buffer is not available on the Skylake

nodes. So DMTCP must use Cori’s shared Lustre file system

as persistent storage to write checkpoint images. However,

the I/O performance of the shared Lustre file system can

significantly decrease in the presence of congestion [14]

at the NERSC supercomputing site. Therefore, there is no

straightforward way to predict checkpoint completion time in

this setting.

Less transparency, better performance: The emphasis on

transparency clearly caused performance degradation. There-

fore, for reasons of performance, it is important to include

some efforts on the application side. Modifying applications to

improve the I/O is an age-old problem [12], [13]. Nevertheless,

some relatively non-invasive changes on the side of SPAdes

can reduce the I/O bottleneck. We list three suggestions for

SPAdes to improve checkpointing performance:

1) SPAdes could help DMTCP identify the precious files

among regular output files. This could be done with:

i) a simple prefix/suffix to tag temporary/precious files;

ii) writing all precious files in a specific directory which

can be saved at checkpoint.

2) SPAdes can be made checkpoint-aware by introducing a

simple “ckpt-enable” option. We know that precious files

are those temporary files that get deleted at some point in

the lifetime of SPAdes. So, when the checkpoint option

is enabled then SPAdes don’t remove those temporary

files from persistent storage.

3) SPAdes can trigger DMTCP’s application-initiated

checkpoint. So, instead of initiating checkpoints peri-

odically, initiate a checkpoint when either the memory

footprint of SPAdes or the total size of the precious files

is smallest.

Any of the above suggestion should reduce the current

checkpoint overhead introduced by precious files. We believe

that an understanding of both the application (SPAdes) and

DMTCP, together, is needed to provide good performance.

IV. CONCLUSION

DMTCP’s checkpoint-restart has been demonstrated to work

well with SPAdes. Numerous challenges were experienced and

resolved during testing of DMTCP checkpoint-restart primar-

ily on large metagenome assembly jobs. At the same time,

this exposed bugs in DMTCP when handling jobs with large

memory footprints. Overall, DMTCP can be extended through

minor modifications to work with real-world applications. The

checkpoint overhead was found high due to an added support

to handle numerous precious files in SPAdes. In the future, if

these essential precious files could be identified, with the help

of the SPAdes developer team, then I/O overhead in periodic

checkpoints could be greatly reduced.

ACKNOWLEDGMENTS

We would like to thank: Zhengji Zhao and Rebecca

Hartman–Baker for access to NERSC computing resource, for

utility scripts [15] to re-queue jobs, and for generous assistance

in adapting DMTCP; Alicia Clum and Alex Copeland for

sequencing datasets and for help with SPAdes; and Gene

Cooperman for guidance on debugging using DMTCP with

the SPAdes project. We also thank the reviewers for valuable

comments that greatly improved the exposition. This research

used resources of the National Energy Research Scientific

Computing Center, which is supported by the Office of Science

of the U.S. Department of Energy under Contract No. DE-

AC02-05CH11231. This work was partially supported by

National Science Foundation Grant OAC-1740218 and a grant

from Intel Corporation.

REFERENCES

[1] J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch,
J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson et al., “En-
vironmental genome shotgun sequencing of the Sargasso Sea,” science,
vol. 304, no. 5667, pp. 66–74, 2004.

[2] S. Koren, T. J. Treangen, and M. Pop, “Bambus 2: scaffolding
metagenomes,” Bioinformatics, vol. 27, no. 21, pp. 2964–2971, 09
2011. [Online]. Available: https://doi.org/10.1093/bioinformatics/btr520

[3] E. C. Carbo, I. A. Sidorov, J. C. Zevenhoven-Dobbe, E. J. Snijder, E. C.
Claas, J. F. Laros, A. C. Kroes, and J. J. de Vries, “Coronavirus discovery
by metagenomic sequencing: a tool for pandemic preparedness,” Journal

of Clinical Virology, vol. 131, p. 104594, 2020.
[4] F. Garcés-Ayala, A. Araiza-Rodrı́guez, E. Mendieta-Condado, A. P.

Rodrı́guez-Maldonado, C. Wong-Arámbula, M. Landa-Flores, J. C. del
Mazo-López, M. González-Villa, N. Escobar-Escamilla, D. E. Fragoso-
Fonseca et al., “Full genome sequence of the first SARS-CoV-2 detected
in Mexico,” Archives of Virology, vol. 165, no. 9, pp. 2095–2098, 2020.

[5] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S.
Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski et al.,
“SPAdes: a new genome assembly algorithm and its applications to
single-cell sequencing,” Journal of computational biology, vol. 19, no. 5,
pp. 455–477, 2012.

[6] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[7] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 2009 IEEE

International Symposium on Parallel & Distributed Processing. IEEE,
2009, pp. 1–12.

[8] “NERSC Cori system,” [accessed Dec-2020]. [Online]. Available:
https://docs.nersc.gov/systems/cori/

[9] K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman, “Design and
implementation for checkpointing of distributed resources using process-
level virtualization,” in IEEE Int. Conf. on Cluster Computing (CLUS-

TER’16). IEEE Press, 2016, pp. 402–412.

[10] “NERSC best practices,” [accessed Jan-2021]. [Online]. Available:
https://docs.nersc.gov/jobs/best-practices/#hugepages

[11] “The ABA problem,” [accessed Dec-2020]. [Online]. Available:
https://en.wikipedia.org/wiki/ABA problem

[12] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in SC’12: Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis. IEEE, 2012, pp.
1–11.

[13] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.-A.
Nguyen, J. Cao, H. Abbasi, S. Klasky et al., “Flexio: I/o middleware for
location-flexible scientific data analytics,” in 2013 IEEE 27th Interna-

tional Symposium on Parallel and Distributed Processing. IEEE, 2013,
pp. 320–331.

[14] “NERSC file system performance,” [accessed Dec-2020]. [Online].
Available: https://my.nersc.gov/filesystems-cs.php

[15] T. Connors, R. Hartman-Baker, Z. Zhao, and S. Leak, “Variable-
time job scripts,” [accessed Dec-2020]. [Online]. Available:
https://github.com/NERSC/variable-time-job

	I Introduction
	II Approach to Checkpointing
	II-A Challenges in making DMTCP compatible for SPAdes
	II-A1 Precious files
	II-A2 Tuning DMTCP for NERSC environment

	II-B Challenges in scaling DMTCP to production workload
	II-B1 Data Structure limitations
	II-B2 The ABA bug
	II-B3 Irrecoverable checkpoint state

	III Lessons Learned: The Tension between Transparency and Performance
	IV Conclusion
	References

