Improving scalability and reliability of
MPI-agnostic transparent checkpointing for
production workloads at NERSC

Prashant Singh Chouhan Harsh Khetawat
Northeastern University
Boston, USA

chouhan.p@northeastern.edu

Raleigh, USA
hkhetaw @ncsu.edu

Rohan Garg

Nutanix, Inc.

Seattle, USA
rohan.garg @nutanix.com

Gene Cooperman

Northeastern University
Boston, USA
gene@ccs.neu.edu

Abstract—Checkpoint/restart (C/R) provides fault-tolerant
computing capability, enables long running applications, and
provides scheduling flexibility for computing centers to support
diverse workloads with different priority. It is therefore vital to
get transparent C/R capability working at NERSC. MANA [1], a
transparent checkpointing tool, has been selected due to its MPI-
agnostic and network-agnostic approach. However, originally
written as a proof-of-concept code, MANA was not ready to
use with NERSC’s diverse production workloads, which are
dominated by MPI and hybrid MPI+OpenMP applications. In
this talk, we present ongoing work at NERSC to enable MANA
for NERSC’s production workloads, including fixing bugs that
were exposed by the top applications at NERSC, adding new
features to address system changes, evaluating C/R overhead at
scale, etc. The lessons learned from making MANA production-
ready for HPC applications will be useful for C/R tool developers,
supercomputing centers and HPC end users alike.

Index Terms—transparent checkpointing, MANA, DMTCP,
split-process, production workloads, supercomputing

Transparent checkpointing for HPC has been discussed
and developed at least since the 1990s [2], [3]. Yet, it is
not in common use at the level of supercomputing. This
work describes an effort to make transparent checkpointing
available for HPC production workloads: first for users at
NERSC [4], and then as a demonstration of best practices
for other supercomputing sites to benefit from.

The work is based on the use of MANA for MPI [1], which
in turn is based on the DMTCP package for transparent check-
pointing [5]. MANA employs a new split-process model, first
described in 2019. While that initial prototype demonstrates
the practicality and advantages of the split-process approach, it
has not yet been made production-ready for supercomputing.

In order to place MANA in context, the evolution of
transparent checkpointing toward support for supercomputing
is briefly summarized in the figure below. (“Checkpointing”

North Carolina State University

Rebecca Hartman—Baker
Lawrence Berkeley Nat. Lab.

rjhartmanbaker @1bl.gov

Neil Resnik
Northeastern University
Boston, USA
resnik.n@northeastern.edu

Twinkle Jain
Northeastern University
Boston, USA
jain.t@northeastern.edu

Zhengji Zhao
Lawrence Berkeley Nat. Lab.
Berkeley, USA
zzhao@Ibl.gov

Berkeley, USA

or “checkpoint-restart” will often be abbreviated to “C/R” in
the rest of this article.)

A Short History of Checkpointing for MPI
Early: Application-specific checkpointing is widely used
1990s: Single-computer checkpointing [2], [3]

2005: BLCR: Berkeley Laboratory C/R [6]

2009: Interconnect Agnostic C/R for Open MPI [7]
2014: Transparent C/R for InfiniBand (below MPI) [8]
2016: Petascale-level transparent checkpointing [9]
2019: MANA: MPI-Agnostic, Network-Agnostic [1]
2020: Production-ready MANA (this work)

The “M x N” problem is the problem of supporting M pos-
sible variants of MPI and N possible variants of network.
Supercomputing centers generally procure new systems every
3 to 5 years, which may use completely different MPI or net-
work architectures. Therefore any transparent checkpointing
solution must solve the “M x N’ problem to ensure portability
from one generation of machine to the next. The MANA
architecture was particularly promising in this regard.

MANA solves the “M x N problem through a split-process
approach. The memory regions of the MPI application are
tagged as upper-half regions, and the MPI, network and other
system libraries are tagged as lower-half. Only the upper half
is checkpointed. On restart, a trivial MPI application is created,
thus instantiating the lower half. Each MPI rank of this trivial
application then restores the upper-half memory regions of that
same rank. For details on DMTCP [5] and MANA [1], see the
relevant citations.

This work is an effort to improve the scalability and reliabil-
ity of MANA. Although the prototype version was functional,
it was nowhere close to supporting diverse production work-
loads running at all scales. This work has largely increased
the scalability, reliability and usability of the software, and



has also added new features that are required for the code
to function after system upgrades. It can now reliably C/R a
couple of top applications at NERSC. Further, the performance
overhead of the software was evaluated over various file sys-
tems available on Cori [10], to prepare for MANA deployment
at large scale.

NERSC Production Workloads

NERSC is the primary HPC center for US DOE Office of
Science, supporting more than 8,000 users and 900 projects
from all scientific fields. Tens of thousands of different appli-
cation binaries, which are from MPI or MPI+OpenMP codes
dominantly, run at NERSC each year; jobs run at all scales —
from single node to full machine.

Checkpoint/restart provides fault-tolerant computing capa-
bility, enables long running applications, and provides schedul-
ing flexibility to support diverse workloads with different
priority levels, e.g., making space for high-priority, real-time
workloads by preempting low-priority jobs. It is therefore vital
to get transparent C/R capability working at NERSC.

While it is a daunting task to transparently checkpoint and
restart a huge number of applications run at NERSC at the
system level, this task can be broken into small, incremental
steps, prioritizing top applications. As shown in Figure 1
the top 20 applications account for about 70% of NERSC’s
Cori [10] computing cycles. If we can get MANA to work
reliably with these top applications, then potentially about 70%
of the system resources can be preempted to support the high
priority, real-time workloads.

Machine Hour Breakdown by Executable
1/14/2020 - 12/04/2020

HotQCD (1.15%) |

MILC (1.16%) |

PYTHON (1.28%)

CESM (1.33%)
QE (137%)
OSIRIS (1.

NWChem (1.51%)
BerkeleyGW (1.60%) /.

N
|

other (30.13%)

GWU-QCD (165%)
numact! (2.09%)

MC_Descent @29% /.
CP2K (3.95%)
CHROMA (5.22%)

shifter (5.81%)

NIMROD (7.24%)

VASP (22.24%)
E3SM (8.47%)

Fig. 1. Application Usage at NERSC in 2020

To get MANA to work with NERSC’s production workloads
at all scales, we needed to address a few challenges. How
production-ready and scalable is this approach, and how
much overhead does it create? Under this high-level concept,
there are minute details that need to be taken care of while
implementing MANA in any checkpoint software.

Software Design Issues at Small Scale

When implementing MANA for NERSC workloads, we
observed issues of varying levels of severity at different scales.
We began debugging at small scales, where we faced primarily

bugs related to synchronization, memory-tagging, and other
implementation issues for split processes. To resolve these
issues, we instrumented the code to add rank-to-node and
process-id mapping for debugging.

Some of the bugs were related to TCP sockets, network
delays, missing locks, descriptor conflicts, and lost messages.
The DMTCP coordinator connects to each rank via a TCP
connection. Network congestion on the production machine
at times caused packet losses and disconnects. The TCP
KeepAlive option was added to solve this problem. Network
delays due to quiescence of the Cray GNI network reconfig-
uring itself brought additional bugs to the surface. And a few
race conditions were seen when the data structures were left
in an inconsistent state due to missing locks. The descriptor
conflicts would occur upon restart: the upper half opens a
file descriptor before checkpoint, and upon restart the lower
half opens the same file descriptor number for its internal
use. During restart, the lower half then restores the upper half
application, creating a file descriptor conflict. We resolved this
contention by tagging and reserving file descriptors for each
half — upper and lower. And to ensure that no in-transit MPI
messages are lost due to checkpointing, we delayed the final
checkpoint until the count of total bytes sent and received was
equal.

Further, the original MANA assumed that addresses of
certain system memory regions were fixed. When the operating
system on Cori was upgraded, these assumptions were no
longer true, resulting in some memory-region overlaps. To
resolve this issue, we used the MMAP_FIXED_NOREPLACE
option with mmap to dynamically determine free memory
space each time the application executes.

Software Design Issues at Large Scale

At large scale, we started to see new memory corruption,
network failure, argument length limit, and disk space errors.
We also began to see startup time performance issues with
our dynamically linked MANA/DMTCP executables, as static
linking is preferred at scale.

We found that the MPI library (in the lower half) can
create new memory regions for message exchange at runtime.
These lower-half regions may overlap with upper-half regions,
eventually leading to memory corruption. MANA converts
blocking MPI calls (e.g., MPI_Send) to non-blocking MPI
calls (e.g., MPI_Isend); without sufficient care, this subtle
difference in calls can change the semantics of an application.
The Slurm srun command uses a network packet containing
the list of arguments it was passed, to send commands to its
worker processes. Due to the limit on packet sizes, srun was
unable to pass all checkpoint file names to its workers, leading
to a crash. We resolved this by changing the way we provide
the file names. Applications with a large memory footprint
may fail to checkpoint if there is insufficient storage space for
the checkpoint image; a system warning is needed.

For best startup performance at scale, it is recommended to
broadcast a statically linked executable to all nodes. DMTCP
currently does not support static linking, but we plan to use



the ——wrap=symbol flag of the Linux linker to interpose
on important functions needed by MANA.

Checkpoint Overhead Evaluations

As part of ongoing work, we evaluated MANA'’s checkpoint
overhead using multiple applications on different file systems.
Figure 2 shows the checkpointing time for Gromacs [11] for
runs ranging from four ranks to 64 ranks with eight OpenMP
threads per task using the ADH benchmark [12]. The aggregate
memory use is shown in blue and average time for checkpoint
is shown in purple and green, for Burst Buffers and the Lustre
file system (CSCRATCH), respectively. Preliminary results
show that performance on the Burst Buffers is superior to that
on the CSCRATCH and also scales better.

Gromacs Checkpoint Time and Aggregate Memory Use
35 T T T T 25

eeeeeeeee

30 F

4 20

25 b

4 1s
20 7

Time (in seconds)

15
4 10

JFTO

16/128 32/256 64/512
Ranks/Cores

Aggregate Memory Use (in GB)

Fig. 2. Checkpoint time of Gromacs with MANA on Burst Buffers and the
Lustre file system CSCRATCH on Cori

HPCG [13] displays behavior similar to Gromacs, with
checkpoint time for Burst Buffers at 30 seconds and
CSCRATCH at over 600 seconds for 512 ranks with eight
OpenMP threads per task. The aggregate memory used was
5.8 TB. The speedup for Burst Buffers over CSCRATCH
on restart was more modest at about 2.5 times whereas the
speedup for checkpointing was more than 20 times.

Lessons Learned

Research codes are usually written quickly to demonstrate a
proof of principle. While they show promising features, there
is a gap to close before they can be used reliably in production.
While debugging MANA and fixing bugs, we had to redesign
a few parts of MANA. We learned that instrumenting research
codes as follows would have greatly accelerated the conversion
to production codes:

1) Greater emphasis on runtime annotations. For example,
an annotated table of all memory regions, along with
dynamic runtime checks, would help catch bugs early
in the development phase.

2) Clearer semantic specifications for each code unit. This
will enable better unit testing.

3) Improved design for atomic data structures even for
single-threaded code. Each data structure should include
a field “CHANGES_PENDING”, which would act as a
lock.

4) Better attention to warnings and error messages from the
beginning. This would help diagnose issues quickly.

Current status of MANA adoption in production workloads

Currently we have enabled MANA with NERSC’s top
application, VASP [14], which is a widely used materials
science code and represents more than 20% of computing
cycles at NERSC (Figure 1). VASP is written in Fortran 90 and
parallelized with MPI (version 5) or MPI+OpenMP (version
6). VASP jobs usually run with a smaller number of nodes for
a long time. While some features implemented in VASP, such
as atomic relaxations, have internal C/R support, some other
features, such as Random Phase Approximation (RPA), have
no such support. The RPA jobs can run for much longer than
48 hours, the max walltime allowed on Cori. In the past we
had to make special reservations for these jobs, now they can
run on Cori by checkpointing/restarting with MANA. MANA
has been tested with various representative VASP workloads
and is ready for production deployment.

We have also enabled MANA for Gromacs, a widely used
molecular dynamics simulation code, for which we had to
fix multiple bugs exposed only by production workloads
at scale. Gromacs is written in C++ and parallelized with
MPI+OpenMP. While Gromacs has internal C/R support, a
benefit of MANA is that a Gromacs computation can be
checkpointed at any point in its execution and resumed to
generate exactly the same results as an uninterrupted run.

Currently we are in the process of enabling MANA on the
rest of the top applications at NERSC using the real use cases
provided by NERSC users.

Future Work

The future work includes: getting MANA to work with more
applications, reducing the checkpoint overhead for large-scale
applications, deploying a preempt queue for real-time work-
loads, and enabling MANA for NERSC’s next pre-exascale
computer, Perlmutter [15], an NVIDIA GPU system.

ACKNOWLEDGEMENT

The authors would like to thank Steve Leak and Chris
Samuel at NERSC for valuable discussions and help. We
would also like to thank the reviewers for their valuable com-
ments and feedback. This work was supported by the Office of
Advanced Scientific Computing Research in the Department
of Energy Office of Science under contract number DE-ACO02-
05CH11231. This work was partially supported by National
Science Foundation Grant OAC-1740218 and a grant from
Intel Corporation.

REFERENCES

[1]1 R. Garg, G. Price, and G. Cooperman, “MANA for MPI: MPI-agnostic
network-agnostic transparent checkpointing,” in Proc. of the 28th
Int. Symp. on High-Performance Parallel and Distributed Computing,
pp. 49-60, ACM, 2019.



[2]

[3]

[4]

[5]

[6]

[7]

M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint
and migration of UNIX processes in the Condor distributed processing
system,” technical report 1346, University of Wisconsin, Madison,
Wisconsin, April 1997.

A. Barak and A. Shiloh, “The MOSIX cluster operating system for
distributed computing on Linux clusters, multi-clusters and clouds: A
white paper,” tech. rep., Citeseer, 2013.

“NERSC, the primary scientific computing facility for the Office of
Science in the U.S. Department of Energy.” https://nersc.gov/.

J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent check-
pointing for cluster computations and the desktop,” in 2009 IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS’09),
(Rome, Italy), pp. 1-12, IEEE, 2009.

P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux clusters,” Journal of Physics: Conference Series,
vol. 46, no. 1, p. 494, 2006.

J. Hursey, T. I. Mattox, and A. Lumsdaine, “Interconnect agnostic
checkpoint/restart in Open MPL” in Proc. of 18th ACM Int. Symp. on

[8]

[9]

[10]

[11]
[12]

[13]
[14]
[15]

High Performance Distributed Computing, pp. 49-58, 2009.

J. Cao, G. Kerr, K. Arya, and G. Cooperman, “Transparent checkpoint-
restart over InfiniBand,” in ACM Symposium on High Performance
Parallel and and Distributed Computing (HPDC’14), ACM Press, 2014.
J. Cao, K. Arya, R. Garg, S. Matott, D. K. Panda, H. Subramoni,
J. Vienne, and G. Cooperman, “System-level scalable checkpoint-restart
for petascale computing,” in 22nd IEEE Int. Conf. on Parallel and
Distributed Systems (ICPADS’16), pp. 932-941, IEEE Press, 2016.
“Cori, a Cray XC40 system at NERSC.” https://docs.nersc.gov/systems/
cori/.

“Gromacs.” http://www.gromacs.org/.

“Gromacs ADH benchmark.” ftp:/ftp.gromacs.org/pub/benchmarks/
ADH_bench_systems.tar.gz.

“HPCG.” https://www.hpcg-benchmark.org/.

“VASP.” https://www.vasp.at/.

“Perlmutter, a Cray Cascade system at NERSC.” https://www.nersc.gov/
systems/perlmutter/.



	References

