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ABSTRACT.—Weather is thought to influence raptor reproduction through effects on prey availability,
condition of adults, and survival of nests and young; however, there are few long-term studies of the effects of
weather on raptor reproduction. We investigated the effects of weather on Northern Goshawk (Accipiter
gentilis; henceforth goshawk) breeding rate, productivity, and fledging date in south-central Idaho and
northern Utah, USA. Using data from 42 territories where we found evidence of breeding attempts in �1 yr
from 2011–2019, we analyzed breeding rates using 315 territory–season combinations, analyzed productivity
for 134 breeding attempts, and analyzed fledging date for 118 breeding attempts. We examined 35 predictor
variables from four categories: precipitation, temperature, wind, and snowpack. Of the variables we
evaluated, April precipitation, previous year’s April–July precipitation, April–May mean temperature, and
March–May mean temperature were related to measures of goshawk reproduction. Greater April–July
precipitation in the previous year and lower April precipitation in the current year were associated with
higher breeding rates. Years with warmer average April–May temperatures were associated with increased
goshawk productivity. Years with greater April–July precipitation during the previous year and lower mean
March–May temperatures were associated with later fledging dates. Based on these relationships, we
considered projected changes in weather in the northern Great Basin over the next 50 yr as a result of climate
change (without directly accounting for habitat changes caused by climate change), and predicted that
climate change will: (a) have no significant effect on goshawk breeding rate, (b) have a positive effect on
goshawk productivity, and (c) cause a shift toward earlier goshawk breeding. Our results indicate that
weather is significantly related to goshawk reproduction in the northern Great Basin, and we suggest that the
relationship between raptor breeding and weather be further investigated to enable higher resolution
predictions of how changes in the climate may influence their populations, particularly changes that may not
have been captured by our study.
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EL CLIMA LOCAL EXPLICA LA VARIACIÓN ANUAL EN LA REPRODUCCIÓN DE ACCIPITER GENTILIS
EN EL NORTE DE LA GRAN CUENCA, EEUU

RESUMEN.—Se considera que el clima influye en la reproducción de las rapaces a través de su efecto sobre la
disponibilidad de presas, la condición de los adultos y la supervivencia de los nidos y los polluelos; sin
embargo, hay pocos estudios a largo plazo de los efectos del clima sobre la reproducción de las rapaces.
Investigamos los efectos del clima sobre la tasa reproductiva, la productividad y la fecha de emplumamiento
de Accipiter gentilis en el sur-centro de Idaho y norte de Utah, EEUU. Usando datos procedentes de 42
territorios donde encontramos evidencia de intentos reproductivos en �1 año desde 2011–2019, analizamos
las tasas reproductivas usando 315 combinaciones de territorio y estación, analizamos la productividad para
134 intentos reproductivos y analizamos la fecha de emplumamiento para 118 intentos reproductivos.
Examinamos 35 variables predictivas de cuatro categorı́as: precipitación, temperatura, viento y manto de
nieve. De las variables que evaluamos, la precipitación de abril, la precipitación de abril-julio del año previo,
la temperatura media de abril-mayo y la temperatura media de marzo-mayo estuvieron relacionadas con las
medidas de la reproducción de A. gentilis. Una mayor precipitación en abril-julio del año previo y una menor
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precipitación del corriente año estuvieron asociadas con tasas reproductivas más altas. Los años con
temperaturas promedio más elevadas en abril-mayo estuvieron asociados con un aumento de la
productividad de A. gentilis. Los años con mayor precipitación en abril-julio del año previo y con menores
temperaturas medias en marzo-mayo estuvieron asociados con fechas de emplumamiento más tardı́as.
Tomando como base estas relaciones, consideramos a los cambios proyectados en el clima en el norte de la
Gran Cuenca para los próximos 50 años como el resultado del cambio climático (sin considerar
directamente los cambios de hábitat causados por el cambio climático), y predijimos que el cambio
climático: (a) no tendrá un efecto significativo en la tasa reproductiva de A. gentilis, (b) tendrá un efecto
positivo en la productividad de A. gentilis, y (c) causará un cambio hacia una reproducción más temprana de
A. gentilis. Nuestros resultados indican que el clima está significativamente relacionado con la reproducción
de A. gentilis en el norte de la Gran Cuenca, y sugerimos que la relación entre su reproducción y el clima sea
investigada con más profundidad para permitir predicciones más precisas de cómo los cambios en el clima
pueden influir en sus poblaciones, particularmente aquellos cambios que pueden no haber sido
considerados en nuestro estudio.

[Traducción del equipo editorial]

INTRODUCTION

Weather can affect raptor fecundity by influencing
individual condition, the availability of food and
water, and habitat quality (e.g., Krüger 2002,
McDonald et al. 2004, White 2008). Weather can
influence raptor prey abundance and alter prey
behavior, which is particularly important during the
breeding season because the abundance and avail-
ability of prey directly influence raptors’ ability to
reproduce (e.g., Steenhof et al. 1997, Krüger 2002,
McDonald et al. 2004). Weather-induced effects on
prey can have long-term effects on the demograph-
ics of raptor populations, as low prey availability
during the breeding season can cause decreased
raptor brood sizes and increased mortality rates in
raptor nestlings and fledglings (Olsen and Marples
1992, Salafsky et al. 2007).

Northern Goshawk (Accipiter gentilis; henceforth
goshawk) reproductive success is affected by weather
(e.g., Fairhurst and Bechard 2005, Herfindal et al.
2015, Reynolds et al. 2019) and weather is also
related to goshawk prey availability, which influences
goshawk productivity (Rutz and Bijlsma 2006, Wiens
et al. 2006, Herfindal et al. 2015). Furthermore,
long-term changes to weather patterns are a driving
factor of ongoing precipitous declines in the extent,
abundance, and distribution of quaking aspen
(Populus tremuloides) and lodgepole pine (Pinus
contorta), which compose many of the forest stands
that goshawks use for nesting in western North
America (Rehfeldt et al. 2009, Perovich and Sibold
2016).

We studied goshawks in the northern Great Basin
of southern Idaho and northern Utah, USA, where
goshawks are currently designated as an indicator
species of forest health by the US Forest Service (US

Forest Service 2011). In the northern Great Basin,
goshawk occupancy and productivity are more
variable than in most other locations where they
have been studied (Bechard et al. 2006, Jiménez-
Franco et al. 2011, Reynolds et al. 2017), which may
be the result of the available suite of prey (Miller et
al. 2014, Miller 2017), individual and territory
quality (Reynolds et al. 2019), weather conditions
(Fairhurst and Bechard 2005, Reynolds et al. 2019),
or a combination of these factors. Based on 9 yr of
research in the fragmented forests of the northern
Great Basin, we hypothesized that weather had a
significant influence on goshawk breeding rate,
productivity, and fledging date. We investigated
the association of weather and goshawk reproduc-
tion by assessing the relationships of precipitation,
temperature, wind, and snowpack with breeding
rate, productivity, and fledging date. In addition to
analyzing direct weather factors similar to those
evaluated by Fairhurst and Bechard (2005), we
investigated factors that may act indirectly through
their influence on prey abundance and availability.
Lastly, we explored how these factors may influence
future goshawk population ecology using a model of
future climate conditions.

METHODS

Study Area. Our study area encompassed all five
divisions of the Minidoka Ranger District, Sawtooth
National Forest in south-central Idaho and northern
Utah, USA (41.98–42.508N, 112.89–114.488W; Fig.
1). All divisions were bordered primarily by land
administered by the Bureau of Land Management
(US Forest Service 2003).

Landscapes within our study area consisted of
isolated patches of forested land cover surrounded
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by shrublands, agriculture, and developed areas (US
Forest Service 2003). The forested portions were
naturally fragmented and adjacent areas were
dominated (approximately 80%) by grasslands and
mountain big sagebrush (Artemisia tridentata vaseya-
na; US Forest Service 2003). Forest stands in the
western portion of our study area consisted predom-
inantly of quaking aspen, lodgepole pine, and
subalpine fir (Abies lasiocarpa; US Forest Service
2003). Douglas fir (Pseudotsuga menziesii) was the
predominant tree species in the eastern portions of
our study area, interspersed with quaking aspen
throughout and mixed with piñon pine (Pinus
edulis) and juniper (Juniperus spp.) in northern Utah
(US Forest Service 2003).

In 2011 and 2012, we monitored goshawks only in
the Cassia Division on the western edge of our study
area (Fig. 1). In 2013, we collected data in the Cassia,
Black Pine, and Sublett Divisions. In 2014–2019, we
collected data in all five divisions. Within each
division, we surveyed areas with historical observa-
tions of goshawk breeding attempts (i.e., nest where
eggs were laid) and prospective new areas prioritized
by predictive Geographic Information System (GIS)
habitat suitability models (Miller et al. 2013). Based
on a prior radiotelemetry investigation of male
home range in the same study area (Hasselblad
and Bechard 2007), we delineated ‘‘territories’’ as
circular areas extending 1370 m (588 ha) from the

last occupied nest structure or, if no known nest
structure existed in the area, from the core of the
area with the highest suitability as established by our
predictive model (Miller et al. 2013). We restricted
our analyses to territories where we observed a
breeding attempt at least once during the 9-yr study
period and included data in our analyses only from
years in which territories were surveyed.
Field Methods. In our study area, April is the nest-

building and egg-laying period, and the majority of
incubation occurs in May. Eggs hatch during late
May and early June. We established call-broadcast
points every 300 m in all areas with forest cover
within delineated territories. Due to the highly
fragmented nature of forest cover in our study area,
we manually positioned call-broadcast points on a
map using satellite imagery to minimize the number
of points while ensuring all forest areas fell within
180 m of a point (a point offset technique suggested
by Joy et al. [1994]). The resulting number of call-
broadcast points ranged from four to 24 per territory
and varied with the amount of forest cover across
territories.

In territories with previously identified nests, we
first checked all known intact nest structures for
evidence of occupation by goshawks each year
starting in late May or early June and before
beginning a call-broadcast survey. A nest was
considered occupied if signs of reproduction were

Figure 1. Northern Goshawk study areas in Minidoka Ranger District, Sawtooth National Forest in the northern Great
Basin in south-central Idaho and northern Utah, USA (left); with five isolated divisions highlighted (right).
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observed. If we found no occupied nest, we began a
survey at call-broadcast points located closest to the
last known occupied nest.

At each call-broadcast point, we broadcasted three
calls separated by silent listening periods, following
Kennedy and Stahlecker (1993) and Joy et al.
(1994). During June and early July (local nestling-
rearing period), we broadcasted three adult goshawk
alarm calls. During mid-to-late July (local fledgling
period), we switched to two alarm calls followed by
one begging call at each point (Joy et al. 1994). For
each broadcast (alarm and begging), we broadcasted
the call for 10 sec at approximately 100 dB with a
game caller (FoxPro Inc., Lewistown, PA, USA,
models FX3, NX3, or NX4) followed by a silent
listening and searching period of 50 sec. We then
rotated the game caller 1208 on the horizontal plane
and repeated the procedure (rotating in the same
direction) until we completed three full broadcast-
ing and listening intervals (Kennedy and Stahlecker
1993).

When we detected a goshawk, we ceased broad-
casts and began searching for an occupied nest. If we
discovered an occupied nest, we ceased all broad-
casts within 2 km to minimize potential disturbance
until returning to assess productivity. If we failed to
detect evidence of a breeding attempt while survey-
ing a territory, we classified that territory as having
no evidence of a breeding attempt for that year,
acknowledging that measurement error may have
occurred as a result of early nest failure or
inconspicuous behavior of breeding goshawks
(Woodbridge and Hargis 2006). We quantified
breeding rate as the proportion of territories
surveyed with evidence of breeding attempts each
year. Our survey protocol did not always include
repeat visits to individual territories within years, so
we were unable to account for imperfect detection in
our assessment of territory status and therefore
report unadjusted estimates of breeding rate.

Nest success and productivity. Using a photographic
key (Boal 1994) to estimate nestling age, we
classified a breeding attempt as successful if at least
one nestling reached 34 d of age, which is the
minimum acceptable age for assessing goshawk
nesting success (80% of average fledging age;
Steenhof et al. 2017). We define productivity as the
number of fledglings per breeding attempt.

During the late nesting period and early fledging
period, we visited all territories where we previously
observed breeding to count fledglings and used
these observations to quantify nesting success,

quantify productivity, and estimate fledging date
(assuming a fledging age of 42 d for the oldest
fledgling; Boal 1994, Franke et al. 2017). If nestlings
had fledged, we attempted to locate all fledglings,
alive or dead, by searching within 150 m of the nest
structure. If we failed to locate all fledglings
previously known to be present, we broadcasted
begging calls in an attempt to elicit a response.
Because the likelihood of detecting fledglings
decreased as the period between fledging and our
visit increased, we used these visits only to confirm
nesting success, whereas we quantified productivity
based on the greatest number of nestlings we
observed in nests. In two cases, while searching for
fledged young, we discovered nestlings older than 34
d that had died prior to fledging. In these two cases,
we considered the nesting attempt as successful, but
we subtracted the dead nestlings from estimates of
productivity.
Statistical Analyses. For each year during our study

period, we classified territories based on whether we
observed a goshawk breeding attempt, quantified
productivity, and estimated fledging date (Franke et
al. 2017, Steenhof et al. 2017). We examined 35
predictor variables from five categories (precipita-
tion, large storm precipitation, temperature, snow-
pack, and wind; Appendix 1) and developed models
of goshawk breeding rate, productivity, and fledging
date. We selected variables that we hypothesized
could affect goshawk reproduction through specific
mechanisms. Precipitation may affect goshawk hunt-
ing success, particularly if precipitation influences
prey availability by causing prey to become more
difficult to capture (Dawson and Bortolotti 2000,
Sergio 2003). Precipitation may also affect thermo-
regulation of young and cause hypothermia (Anctil
et al. 2014). We evaluated the previous year’s April–
July precipitation because it may affect ground
squirrel abundance through its effects on foraging
conditions before squirrels move underground to
breed (Yensen et al. 1992) and goshawks in our study
area depend heavily on Belding’s, golden-mantled,
and Uinta ground squirrels (Urocitellus beldingi,
Callospermophilus lateralis, U. armatus; approximately
75% of biomass consumed in some areas; Miller et
al. 2014). Temperature could affect survival rates of
eggs and young nestlings, especially if the female
goshawk leaves the nest to forage in times of prey
scarcity or poor hunting success. We examined
snowpack because ground squirrels do not emerge
from hibernation until snow melts sufficiently to
expose greenery (Morton and Sherman 1978,
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Sheriff et al. 2011). We also considered wind in our
analysis because it occasionally destroys goshawk
nests and causes nest trees to fall (R. Miller unpubl.
data).

We acquired daily precipitation and temperature
data from Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM) Climate Group
(2019) and procured wind data from the National
Oceanic and Atmospheric Administration (NOAA)
Physical Sciences Laboratory (2019). We derived
mean and maximum wind speed using National
Center for Environmental Prediction/National Cen-
ter for Atmospheric Research Reanalysis 1 near-
surface projections, interpolating these datasets up
to the resolution of our precipitation and temper-
ature data (Kalnay et al. 1996). We obtained average
snowpack data (snow water equivalent; SWE) from
the National Weather Service (2019). We restruc-
tured the precipitation, temperature, and wind data
into monthly and multiple-month time scales based
on our hypothesized effects for each variable. We
calculated the previous year’s April–July precipita-
tion as a possible predictor of ground squirrel
abundance (Yensen et al. 1992). We defined heavy
precipitation days as all days within the upper 5% of
daily precipitation readings in our study area (the
equivalent of exceeding two standard deviations
above the mean), which consisted of days with
precipitation exceeding 10.39 mm. We derived
predictor variables related to precipitation using
the total heavy precipitation days between March
and May and the maximum number of consecutive
days of heavy precipitation during the same period.
We calculated the SWE for early April, mid-April,
and late April, as we hypothesized that these times
would be the most ecologically relevant for analysis
given how snowpack might affect incubating female
goshawks. We applied our analyses to the incubation
and nesting periods because they coincided with the
timing of our observations, thereby providing an
opportunity for more direct inference.

We used generalized linear mixed models in all
analyses (Zuur et al. 2009, 2010). We performed
three analyses, each with a separate response
variable of breeding rate (binomial distribution),
productivity (Poisson distribution), or fledging date
(Gaussian distribution). For all models, we included
division (within the Sawtooth National Forest),
territory, and year as random effects to account for
pseudo-replication and spatial autocorrelation
(Zuur et al. 2009, 2010).

In each analysis, we ranked competing models
with Akaike Information Criterion adjusted for
sample size (AICc; Burnham and Anderson 2002).
To address the issue of correlated variables, we used
a two-tier approach to model selection (Lebreton et
al. 1992, Doherty et al. 2012). In the first tier, we
placed variables within each category (e.g., precip-
itation or temperature), many of which were
correlated, into univariate models and ranked them
against the other univariate models in their category,
using AICc to choose the best-supported univariate
model for each category if that univariate model
ranked above the null model. We chose the best-
supported univariate model including precipitation,
previous year’s April–July precipitation, tempera-
ture, wind, snow, and severe storms, propagating the
variables from those models into the second tier of
model selection. In evaluating models considering
all combinations of these six variables, we ensured
that no two highly correlated variables appeared
within the same model (Pearson’s jr j , 0.6; Zuur et
al. 2010). We identified the best-supported model in
each analysis by removing models that were .2
DAICc from the best-supported model, models that
ranked below the null model, and models including
variables that were uninformative (Burnham and
Anderson 2002, Arnold 2010).
Future Climate Projections. For climate projec-

tions, we used the Hadley Centre Global Environ-
ment Earth System Model version 2 and
Representative Conservation Pathway (RCP) 8.5 a
priori (Collins et al. 2011). This model is based on the
World Climate Research Programme’s (WCRP’s)
Coupled Model Intercomparison Project phase 5
(CMIP5) multi-model dataset (Taylor et al. 2009).
We used the Bias Corrected and Downscaled WCRP
CMIP5 Climate Projections (Bureau of Reclamation
2013). This model assumes a radiative forcing value
of þ8.5 watts/m2 in the year 2100 relative to pre-
industrial values, which is the climate scenario that
most closely aligns with the current greenhouse gas
emission trend (Moss et al. 2008, US Global Change
Research Program 2017). We chose an arbitrary
period of 50 yr for projections.

We integrated RCP climate projections of the
relevant weather variables into our models of
goshawk reproduction to create predictions for
breeding rate, productivity, and fledging date over
the next 50 yr. For each of our projections (breeding
rate, productivity, and fledging date), we evaluated
significant trends using linear models of the
projection and reported them if the 95% confidence

DECEMBER 2021 5NORTHERN GOSHAWK BREEDING AND WEATHER



intervals of the coefficients did not overlap zero. The
confidence interval represents the uncertainty of the
predicted trend rather than the uncertainty of the
models themselves.
Statistical Reporting. We report coefficient esti-

mates for all models with standard errors and 95%
confidence intervals (hereafter CIs). We report
relationships from the best-supported model(s) of
projected goshawk reproduction with 95% CIs
determined by altering the variable of interest across
its measured range while holding all other variables
at their mean values. We conducted all statistical
analyses in R (R Core Team 2019) and fit all models
using R package glmmTMB (Magnusson et al. 2019).
We ranked models using R package MuMIn (Bartoń
2019).

RESULTS

We found evidence of breeding attempts in 42
territories over our 9-yr study period (2011–2019).
We quantified breeding rate using 315 territory–
season combinations, quantified productivity based
on 134 breeding attempts, and estimated fledging
date for 118 successful breeding attempts.
Breeding Rate. Of the 315 territory–season com-

binations, we found evidence of breeding attempts
on 146 occasions, resulting in an unadjusted
estimate of breeding rate of 46%. The best-support-
ed model of breeding rate incorporating precipita-
tion variables from the same year that we assessed
breeding rate included April precipitation (�0.02 6

0.005; CI:�0.03,�0.01). The model of breeding rate
that incorporated the previous year’s April–July
precipitation (0.01 6 0.005; CI:�0.003, 0.02) ranked
above the null model in our first tier of model

selection. The best-supported model of breeding
rate considering temperature variables included
minimum May temperature (0.17 6 0.05; CI: 0.07,
0.27) and the maximum number of consecutive days
with heavy precipitation (�0.54 6 0.26; CI: �1.05,
�0.02). No models including wind speed or snow-
pack ranked above the null model. In our second
tier of modeling breeding rate, we considered
variables identified in each category in our first tier
of model selection. The best-supported model of
breeding rate in our second tier of model selection
included April precipitation and previous year’s
April–July precipitation (Table 1). Goshawks were
more likely to be present, detected, and breeding in
areas and years with lower April precipitation (�0.02
6 0.004; CI: �0.03, �0.01; Fig. 2a), and greater
precipitation in April–July the previous year (0.009
6 0.003; CI: 0.003, 0.01; Fig. 2b).
Productivity. Of the 134 breeding attempts for

which we were able to assess productivity, average
productivity was 2.12 (61.06 SD) fledglings per
breeding attempt. In our first tier of modeling
productivity, no model including precipitation from
the current year or previous year, no model
including snowpack, and no model including wind
variables ranked above the null model. The best-
supported model of productivity considering tem-
perature variables was also our best supported
overall model, including only mean April–May
temperature (0.06 6 0.03; CI: 0.007, 0.11; Table
1). Productivity was higher in years with warmer
April–May temperatures (0.06 6 0.03; CI: 0.007,
0.11; Fig. 3).
Fledging Date. For the 118 breeding attempts for

which we were able to estimate fledging date,

Table 1. Best-supported models and null models of breeding rate, productivity, and fledging date of Northern Goshawks
within the Minidoka Ranger District, Sawtooth National Forest in the northern Great Basin in Idaho and Utah, USA, 2011–
2019. We present only models where DAICc � 2.00 and the null model for comparison.

RESPONSE VARIABLE

(ANALYSIS) MODEL
a Kb AICC

c DAICC
d DEVIANCE df

Breeding rate (binomial) PrecipApril þ PrecipLagAprJul 6 385.7 0.00 373.4 309
Null 4 399.8 14.09 391.7 311

Productivity (Poisson) TempMeanAprMay 6 399.9 0.00 387.2 128
Null 5 402.5 2.64 392.1 129

Fledging date (Gaussian) PrecipLagAprJul þ TempMeanMarMay 7 808.2 0.00 793.2 111
Null 5 827.0 18.84 816.5 113

a All models include division and territory as random effects. Model variables defined in Appendix 1.
b K ¼ number of parameters in the model.
c AICc ¼ Akaike’s Information Criterion adjusted for sample size.
d DAICc ¼ difference in AICc values between individual model and model with lowest AICc.
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average fledging date was 10 July (68.7 d SD). The
best-supported model of fledging date incorporat-
ing precipitation variables from the same and
previous year included previous year’s April–July
precipitation (0.08 6 0.02; CI: 0.05, 0.11). The best-
supported model of fledging date considering
temperature variables included mean March–May
temperature (�4.31 6 0.90; CI: �6.07, �2.55). The
best-supported model of fledging date considering
snowpack variables included early April SWE (0.02
6 0.006; CI: 0.01, 0.03). Considering variables
identified within variable categories (i.e., precipita-
tion, temperature, and snowpack) in our second tier
of model assessment, previous year’s April–July
precipitation and mean March–May temperature
were related to fledging date (Table 1). Goshawks

bred later on average in years with more previous
year’s April–July precipitation (0.04 6 0.02; CI:
0.004, 0.08; Fig. 4a) and lower mean March–May
temperatures (�3.06 6 0.97; CI: �4.97, �1.16; Fig.
4b).
Future Climate Projections. We assessed the

effects of climate change on breeding rate by
integrating projections from climate models of April
precipitation and previous year’s April–July precip-
itation in our best-supported model of breeding
rate. Predicted breeding rate exhibited no change
over the next 50 yr (�0.0006 6 0.002; CI: �0.004,
0.003; Fig. 5a). We projected a significant increase in
productivity over the next 50 yr (0.01 6 0.002; CI:
0.009, 0.02; Fig. 5b) based on predicted future April–
May mean temperatures. Lastly, we projected a
significant shift toward earlier breeding over the
next 50 yr (�0.34 6 0.04; CI: �0.43, �0.26; Fig. 5c)
based on predicted March–May mean temperatures
and previous year’s April–July precipitation.

DISCUSSION

We evaluated weather factors related to goshawk
breeding rate, productivity, and breeding phenology
(i.e., fledging date) in the northern Great Basin
region of western North America and demonstrated
that spring precipitation and temperature were
related to goshawk reproduction. We then used
our best-supported models of goshawk breeding
rate, productivity, and fledging date—combined

Figure 2. Predicted relationship between Northern Gos-
hawk breeding rate and (a) cumulative April precipitation;
and (b) previous year’s April–July precipitation from the
best-supported model of Northern Goshawk breeding rate
within the Minidoka Ranger District, Sawtooth National
Forest in the northern Great Basin in Idaho and Utah,
USA, 2011–2019. Black line¼model prediction; gray area¼
95% confidence interval; and points ¼ data used to build
the model with point size relative to the number of similar
values.

Figure 3. Predicted relationship between Northern Gos-
hawk productivity (fledglings per breeding attempt) and
mean April–May temperature from best-supported model
of Northern Goshawk productivity within the Minidoka
Ranger District, Sawtooth National Forest in the northern
Great Basin in Idaho and Utah, USA, 2011–2019. Black line
¼ model prediction; gray area ¼ 95% confidence interval;
and points ¼ data used to build the model.
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with weather projections from climate models—to
predict future goshawk reproduction. Our projec-
tions for goshawk reproduction suggest that changes
to weather as a result of climate change over the next
50 yr will likely (1) have no effect on breeding rate,
(2) cause productivity to increase, and (3) cause
fledging date to become earlier.
Breeding Rate. April precipitation and previous

year’s April–July precipitation were associated with
goshawk breeding rate during our 9-yr study period.
Greater April precipitation had a negative relation to
breeding rate, similar to the relationship described
by Kostrzewa and Kostrzewa (1990) and Fairhurst
and Bechard (2005). There are several potential
mechanisms for this relationship. Goshawk hunting
success may be negatively affected by high precipi-
tation, as it may cause prey to become less available

Figure 4. Predicted relationship between Northern Gos-
hawk fledging date and (a) previous year’s April–July
precipitation; and (b) mean March–May temperature from
best-supported model of Northern Goshawk fledging date
within the Minidoka Ranger District, Sawtooth National
Forest in the northern Great Basin in Idaho and Utah,
USA, 2011–2019. Black line¼model prediction; gray area¼
95% confidence interval; and points ¼ data used to build
the model.

Figure 5. Predicted trends from best-supported models of
Northern Goshawk (a) breeding rate; (b) productivity; and
(c) fledging date using weather data from the Hadley
Centre Global Environment Earth System Model version 2
and Representative Conservation Pathway (RCP) 8.5
climate model over the next 50 yr for the 42 Northern
Goshawk territories within the Minidoka Ranger District,
Sawtooth National Forest in the northern Great Basin in
Idaho and Utah, USA. Black line¼ linear regression line of
yearly predictions; gray area¼ 95% confidence interval for
the regression line (Does not include climate model
uncertainty). There was no trend for breeding rate, but a
positive trend for productivity and a negative trend for
fledging date.
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(Dawson and Bortolotti 2000, Sergio 2003). If food
resources are not sufficient for egg production,
either because the male is unable to adequately
provision the female or the female is unable to
secure sufficient prey herself, a breeding attempt
may fail (Newton 1986, Korpimäki 1990). Addition-
ally, greater precipitation may result in higher
energetic costs for an incubating female, and she
may therefore be unable to successfully incubate
eggs (Kostrzewa and Kostrzewa 1990).

Breeding rate was positively related to previous
year’s April–July precipitation. This association may
have been related to increased prey availability, as
most goshawks in our study are highly dependent
upon ground squirrels during the nesting period
and precipitation may be linked to ground squirrel
abundance through its effects on vegetation (Younk
and Bechard 1994, Van Horne et al. 1997, Miller et
al. 2014).

In contrast to our results, Patla (2005) found no
effect of weather on goshawk nest occupancy; her
definition of nest occupancy rate was similar to what
we termed breeding rate. However, her study used
lower-resolution weather data from a single, central
weather station, possibly contributing to the lack of
an observed effect. Natsukawa et al. (2019) also
found no effect of weather, but their study was
limited to 3 yr of observations.
Productivity. Higher April–May mean tempera-

tures were associated with increased goshawk pro-
ductivity in the northern Great Basin, which was
similar to the results of Kostrzewa and Kostrzewa
(1990) and Fairhurst and Bechard (2005). In our
study area, April is the nest-building and egg-laying
period, the majority of incubation occurs in May,
and eggs hatch during late May and early June.
Temperatures during these periods could be related
to productivity because colder temperatures in-
crease the risk of hypothermia and subsequent
death in nestlings, and temperature may affect
goshawks indirectly by altering the behavior of prey
species (e.g., the prolonged presence of snow is
negatively correlated with the emergence of ground
squirrels from their hibernation burrows; Morton
and Sherman 1978). Although we did not observe a
relationship between snowpack and goshawk pro-
ductivity, we expect that the timing of the emer-
gence of ground squirrels could impact goshawk
productivity in our study area, with earlier emer-
gence enabling goshawks to produce more young.
Fledging Date. Mean March–May temperature and

previous year’s April–July precipitation were related

to goshawk fledging date, i.e., breeding date. Higher
mean March–May temperatures were associated with
earlier fledging dates, likely because warmer tem-
peratures resulted in increased availability of ground
squirrels earlier in the season and consequently
enabled female goshawks to produce eggs earlier
(Morton and Sherman 1978, Sheriff et al. 2011).
Greater previous year’s April–July precipitation
could lead to improved ground squirrel condition
when they estivate, leading to greater ground
squirrel survival and productivity, thereby resulting
in greater abundance the following year (Yensen et
al. 1992). This increased prey abundance could
enable female goshawks to attain higher body
condition sooner, which may allow them to produce
eggs earlier.

Years with greater previous year’s April–July
precipitation were also associated with later fledging
dates, likely because greater previous year’s April–
July precipitation is associated with higher breeding
rates. In years with higher breeding rates, the
proportion of young, inexperienced breeding gos-
hawks may also have been higher, as older,
experienced breeders are more likely to breed
consistently, even in poor years (R. Miller unpubl.
data). Young goshawks lay eggs later than older
goshawks, which could result in later average
fledging dates (Kenward 2006).
Climate Change. Incorporating predicted weather

conditions from the RCP8.5 climate model into our
best-supported models of goshawk breeding rate,
productivity, and fledging date over the next 50 yr
indicated substantive potential effects on goshawk
reproduction. Integrating April precipitation and
previous year’s April–July precipitation into our
model of breeding rate resulted in no trend in
breeding rate.

In contrast to our result for breeding rate, our
model of goshawk productivity projects an increase
in productivity based on predicted warmer April–
May mean temperatures derived from climate
models. Furthermore, based on projected mean
March–May temperatures and previous year’s April–
July precipitation, our model of fledging date
predicts a trend toward earlier breeding, which we
expect would have a neutral effect on goshawk
reproduction. Overall, we expect that weather
changes brought about by a climate scenario akin
to RCP8.5 may have a slight positive effect on
goshawk reproduction in the northern Great Basin
by bolstering productivity.
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However, our analysis does not fully account for all
possible indirect effects that climate change may
have on goshawk reproduction in our study area.
Climate change is known to be a primary cause of
continuing aspen declines in the western United
States and is a factor that increases the vulnerability
of lodgepole pine to mountain pine beetle (Den-
droctonus ponderosae) infestation and subsequent
death (Rehfeldt et al. 2009, Perovich and Sibold
2016). Furthermore, prey species and the vegetation
on the open landscapes hunted by goshawks have
experienced declines in the northern Great Basin
linked to climate change (Keane et al. 2018, Reeves
et al. 2018). These declines in tree, shrub, and prey
species could result in a dramatic decrease in
quantity and quality of breeding habitat available
to goshawks in our study area, which would likely
negatively influence their reproduction. We ob-
served a decline in breeding rate that may be related
to the indirect effects of climate change on forest
structure (e.g., decreased canopy cover) during our
9-yr study period, but that trend is not apparent in
the analysis of weather variables that we considered.
We suggest that more long-term analyses investigat-
ing the relationship between weather, changes to
forest structure, and annual variation in the repro-
duction of goshawks be conducted across their
range; an understanding of these relationships is
essential to inform predictions regarding the impact
climate change may have on goshawk populations.

We also acknowledge that our inability to address
imperfect detection could have influenced our
results and their interpretation. If missed detections
of goshawks in territories were random, any bias in
our sample of goshawk territories may have been
minimized. However, if missed detections were not
random, estimates of breeding rate and productivity
may have been biased. Our most likely source of
imperfect detection was missing failed breeding
attempts, especially those where failure occurred
prior to our arrival in the study area. If missed failed
breeding attempts correlated with any of our
predictor variables, identification of the best-sup-
ported model and the nature of relationships we
identified could have been compromised. Although
we are unable to assess how imperfect detection may
have influenced our results, we suggest that future
studies account for imperfect detection.
Conclusions. Our results suggest that April pre-

cipitation, previous year’s April–July precipitation,
April–May mean temperature, and March–May
mean temperature affect goshawk reproduction in

the northern Great Basin, and we propose various
explanations for these relationships. We found a
neutral to positive influence of projected climate on
goshawk breeding over the next 50 yr, primarily
through an increase in productivity. Despite the
trends indicated by our best-supported models, we
suspect that climate change may have a long-term
negative effect through its gradual influences on
vegetation, but this will require additional time to
validate. We suggest that future studies be conduct-
ed to determine what impact a changing climate will
have on tree, shrub, and prey species relevant to
breeding goshawks, which would improve future
projections of how climate change may affect
goshawk reproduction.
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Appendix 1. Category, variable name, mean, standard deviation (SD), range, and source of data used in models of
Northern Goshawk breeding rate, productivity, and fledging date within the Minidoka Ranger District, Sawtooth National
Forest, northern Great Basin in Idaho and Utah, USA, 2011–2019.

CATEGORY AND VARIABLE MEAN 6 SD RANGE DESCRIPTION

Precipitation (mm)a

PrecipApril 80.2 6 43.8 10.2–225.9 April precipitation
PrecipMarApr 151.6 6 66.3 15.2–337.0 March–April precipitation
PrecipFebApr 212.4 6 88.6 27.7–427.0 February–April precipitation
PrecipJanApr 296.8 6 120.2 44.1–619.5 January–April precipitation
PrecipMay 62.3 6 38.5 7.4–172.6 May precipitation
PrecipAprMay 142.6 6 47.9 47.0–265.1 April–May precipitation
PrecipMarMay 214.0 6 68.5 79.0–428.3 March–May precipitation
PrecipFebMay 274.7 6 89.2 101.4–492.4 February–May precipitation
PrecipJanMay 359.1 6 114.0 122.7–656.2 January–May precipitation
PrecipLagAprJul 157.7 6 52.0 59.9–321.3 Previous year’s April–July precipitation

Large storms precipitation (mm) or (d)a

MaxDailyPrecip 24.7 610.7 8.9–63.5 Maximum daily precipitation March–May
DaysHeavyPrecip 5.3 6 2.9 0–14 Total number of days with heavy

precipitation March–May
ConsDaysMaxPrecip 1.5 6 0.6 0–3 Maximum consecutive days with heavy

precipitation March–May
Temperature (8C)a

TempMeanApril 5.3 6 3.1 0.0–15.3 Mean April temperature
TempMeanMarApr 3.9 6 2.5 �0.6–11.8 Mean March–April temperature
TempMeanFebApr 2.4 6 2.6 �2.0–10.3 Mean February–April temperature
TempMeanMay 7.2 6 3.9 �3.3–12.3 Mean May temperature
TempMeanAprMay 6.3 6 1.5 1.9–9.5 Mean April–May temperature
TempMeanMarMay 5.0 6 1.3 0.9–7.6 Mean March–May temperature
TempMeanFebMay 3.7 6 1.5 �0.5–7.1 Mean February–May temperature
TempMinApr �7.2 6 2.9 �12.9–0.2 Minimum April temperature
TempMinMay �5.2 6 5.4 �22.9–2.4 Minimum May temperature
TempMinAprMay �7.2 6 4.0 �22.9–2.0 Minimum April–May temperature
TempMeanMinApr �0.6 6 2.8 �5.3–9.7 Mean minimum April temperature
TempMeanMinMay 1.5 6 3.4 �9.8–6.6 Mean minimum May temperature

Snowpack (mm)b

SnowDepth 375.9 6 482.3 0.0–1669.7 Mid-April snow depth
EarlyAprSWE 133.0 6 173.3 0.0–590.1 Early April snow water equivalent
MidAprSWE 108.0 6 162.2 0.0–610.2 Mid-April snow water equivalent
LateAprSWE 76.2 6 142.0 0.0–631.3 Late April snow water equivalent

Wind (m/sec)c

MeanApr 4.6 6 0.4 3.9–5.2 Mean April wind speed
MeanMay 4.1 6 0.3 3.7–4.5 Mean May wind speed
MeanAprMay 4.3 6 0.3 4.0–4.8 Mean April–May wind speed
MaxApr 6.8 6 0.5 5.9–7.8 Maximum April wind speed
MaxMay 6.0 6 0.4 5.5–6.7 Maximum May wind speed
MaxAprMay 6.4 6 0.3 5.8–6.9 Maximum April–May wind speed

a PRISM Climate Group (2019).
b National Weather Service (2019).
c NOAA Physical Sciences Laboratory (2019).
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