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Abstract— This paper presents an adaptive lookahead
pure-pursuit lateral controller for optimizing racing met-
rics such as lap time, average lap speed, and deviation
from a reference trajectory in an autonomous racing
scenario. We propose a greedy algorithm to compute and
assign optimal lookahead distances for the pure-pursuit
controller for each waypoint on a reference trajectory
for improving the race metrics. We use a ROS based
autonomous racing simulator to evaluate the adaptive
pure-pursuit algorithm and compare our method with
several other pure-pursuit based lateral controllers. We
also demonstrate our approach on a scaled real testbed
using a F1/10 autonomous racecar. Our method results in
a significant improvement (20%) in the racing metrics for
an autonomous racecar.

I. INTRODUCTION

Autonomous racing can be considered as the ex-
treme version (high speeds, and close proximity to
other self-driving agents) of the self-driving car prob-
lem, and therefore making progress here will en-
able breakthroughs in agile, and safe autonomy. Au-
tonomous racing is already becoming a futuristic motor-
sport [1]. Roborace [2] is the Formula E’s sister series,
which features fully autonomous race cars. International
autonomous racing competitions such as F1/10 au-
tonomous racing [3], [4], Autonomous Formula SAE [5]
are becoming proving grounds for testing the perception,
planing, and control algorithms at higher speeds. Ama-
zon has also recently announced a 1/18 scale DeepRacer
testbed [6] for end-to-end driving and reinforcement
learning methods for autonomous racing.

For a single vehicle to race autonomously around a
track, the environment around the car on the racetrack
must be perceived. This is typically done using a Simul-
taneous Localization And Mapping (SLAM) algorithm
( [7]–[10]). Next, the map is used to obtain a reference
trajectory ( [11]–[13]) that the race car can follow.
Finally, the vehicle’s steering and velocity controller
is fed with small trajectory parts with a defined time
horizon while the car is driving around the track.

This combination of path planning and motion control
is a critical capability for autonomous vehicles. Pure-
pursuit controllers are a prevalent class of geometric

lateral control algorithms for steering autonomous cars.
This paper focuses on advancing the design of an
adaptive version of the Ackermann-adjusted pure-pursuit
controller [14] to make it suitable for the purpose of
autonomous racing. The analysis and scope of this paper
is limited to the single agent setting, where a single
autonomous race car is tasked with following a reference
trajectory (often the raceline), with the minimum lap
time. This is known as the time-trial racing problem.
Research contributions of this paper: With the au-
tonomous racing time-trial scenario in mind, this paper
has the following novel contributions:

1) A greedy algorithm for adaptive lookahead pure-
pursuit: given a reference trajectory, our offline
algorithm produces the optimal lookahead distance
assignment for each waypoint on the reference tra-
jectory based on a tunable convex racing objective.

2) We demonstrate the increased performance in lap
time and average speed of the adaptive lookahead
pure-pursuit implementations and compare them
to a baseline Ackermann-adjusted pure-pursuit in
a Gazebo based racing simulator [15] & on a real
scaled F1/10 autonomous racecar [4].

II. RELATED WORK

Autonomous racing has received attention in recent
years from the robotics, control systems, autonomous ve-
hicles, and deep learning communities. In [16], authors
present the use of nonlinear model predictive controller
(NMPC) for the control of 1:43 scale RC race cars.
Using a dynamical model of the vehicle, the authors
compute racing trajectories and control inputs using
receding horizon based controller. A similar MPC based
controller is also presented in [17], [18]. In [19], authors
design a controller to drive an autonomous vehicle at
the limits of its control and traction. AutoRally, an
open-source 1:5 scale vehicle platform for aggressive
autonomous diving is presented in [20]. In all of this
work, the MPC directly generates the steering and
throttle control inputs based on the reference trajectory
and the state of the vehicle. With these approaches an
accurate and detailed dynamical model is required.
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Researchers have also analyzed the problem of com-
puting the optimal (fastest) raceline for a given track
layout. A minimum curvature trajectory controller for
the Roborace DevBot autonomous racecar is described
in [21]. [22]–[26] addresses the problem of computing
the optimal racing line. In our work, we assume that the
race line is known a-priori and provided as a reference
trajectory. Our proposed adaptive lookahead pure-pursuit
algorithm can work for any reference trajectory.

Path tracking is the problem concerned with deter-
mining speed and steering inputs at each instant of
time in order for the robot to follow a certain path.
In [27], authors describe a model-based receding horizon
controller for pure-pursuit tracking. They accommodate
the vehicle’s steady-state lateral dynamics to improve
tracking performance at high speeds. [28] investigates
the application of the pure-pursuit technique for reactive
tracking of paths for nonholonomic mobile robots. Re-
searchers have also analyzed the stability of mobile robot
path tracing algorithms [29] including pure-pursuit. We
guide the reader towards [30] for a detailed review of
the applications of pure-pursuit.

Previous work on overcoming the limitations of pure-
pursuit like corner cutting and limited maximum speed
are addressed in [31], [32] and have been successful
within the stated scope of those projects. However, the
metrics for an autonomous racecar as defined in this
paper require a different approach which addresses a
combination of the previous work and a novel method
to maximize a global racing objective.

III. PROBLEM FORMULATION

We present a brief overview of the pure-pursuit algo-
rithm in order to provide the background and motivation
for our work on adaptive lookahead pure-pursuit.

A. Pure-Pursuit Algorithm

Pure-pursuit is a seminal algorithm for geometric
lateral control that can be easily implemented in several
applications including autonomous robots. It can be
dated back in history to the pursuit of missile to a
target [33]. This algorithm is popular for it’s ability
to recover if the robot moves too far away from the
reference trajectory.
Seminal Pure-Pursuit

Pure-pursuit computes the angular velocity command
that moves the robot from its current position to reach
a lookahead waypoint in front of the robot. The linear
velocity is assumed constant. As the robot pursues the
goal, the algorithm then moves the lookahead point
further on the path based on the current position of
the robot. The original pure-pursuit algorithm [34] was

implemented on full-differential drive robot while taking
into account it’s associated kino-dynamic constraints.

Consider a robot R whose pose is (x1, y1, φ) where
(x1, y1) represent the 2D position of the robot and φ
is it’s current heading in the local frame, and a goal
position (x2, y2) that is lookahead distance ld away on
the reference trajectory. The pure-pursuit controller is
tasked with finding the curvature of the circular arc that
will guide the robot from it’s current position to the
goal. The relative angular offset, α, between the robot’s
current heading and the goal, and the curvature k is
calculated using:

α = tan−1(
y2 − y1
x2 − x1

); k =
2 sin(α)

ld
(1)

The curvature provided by equation (2) is used to
calculate the heading required to move the robot at a
constant speed along the circular arc. Once the arc is
computed, the robot follows the arc at a fixed velocity
for a certain time τ , before recomputing the goal based
on the lookahead distance.

The LookAheadDistance, ld parameter controls
how far along the reference path the robot should look
from the current location to compute the steering/lateral
correction commands. Changing this parameter affects
the tracking behaviour of the robot: if the distance is
low, it can lead to oscillations around the reference path,
and if it is too high, it can cause large deviations and
lead to corner-cutting [31], [32].

R

2αθ

R

path

goal (𝑥2, 𝑦2)

car (𝑥1, 𝑦1)

curvature

𝐿

𝑙𝑑

reference trajectory
pure-pursuit curvature

𝐿: wheelbase

θ: angle error

𝑙𝑑: lookahead

Legend

Fig. 1: Calculating the desired heading θ using Ackermann-adjusted
pure-pursuit from the racecar’s base link at the center of the rear axle

Ackermann-Steering Adjustment
The seminal pure-pursuit produces undesired driving

behavior like cutting corners [35] when implemented in
an Ackermann-steering [36] robot and when the look-
ahead parameter is not well tuned [37]. For imple-
menting pure-pursuit path tracking controller to non-
holonomic Ackermann-steering robots, we need to add
the geometric constraints of the robot to equation (1).
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To do so, we use the Ackermann adjusted pure-pursuit
implementation as described in [14]. We define the
base link (x1, y1) as the center of the rear-axle of the
racecar. By including the robot wheelbase L (distance
between the front and the rear axle), the pure-pursuit
controller calculates the heading θ required to guide the
robot along the curvature as:

θ = tan−1(kL) = tan−1(
2Lsin(α)

ld
) (2)

This is depicted in Figure 1. The racecar finds the
nearest point to its base link in the reference trajectory
and identifies a goal waypoint on the trajectory that is
distance ld away from the base link. It then computes
the arc of radius R that joins the base link to the goal
to find the angular offset α. Adjusting for the racecar’s
wheelbase L, the angular offset to the goal is calculated
with reference to the front axle that is distance L away
from the base link in the heading of the racecar. This
heading is θ, and it is calculated from equation (2). The
curvature k, goal, (x2, y2) and angle θ are continuously
updated as the racecar follows the reference trajectory.

B. Autonomous racing problem setup

We define a race-track as any closed-loop drivable
environment. The reference trajectory is a sequence of
way-points that the car can follow. As described earlier,
there are several ways of choosing the right reference
trajectory - mathematical race lines such as minimum
distance, or minimum curvature - or complicated race
lines computed while taking into account the dynamics
of the vehicle.

Let W denote the set of N waypoints wi that collec-
tively form the reference trajectory:

W = {wi, i ε 1→ N} (3)

Each waypoint wi, represents the coordinates
(x mapi, y mapi) from the beginning of the start, and
heading θi to the next waypoint wi+1, i.e.

wi = {x mapi, y mapi, θi} (4)

Our approach is agnostic to whether the reference
trajectory is optimal or not, and will work as long as
any reference trajectory is a closed-loop.

C. Adaptive Pure-Pursuit Problem Statement

In racing, the ultimate objective is to be faster than
your opponents. This can be translated into having a
lower lap time than the opponents. The lap time depends
on many factors, including average velocity around the
track, total distance travelled etc. In the absence of other

opponents, the goal is to stick to the reference trajectory
and be as fast as possible. For this paper we assume a
single racecar on the track at any time (time-trial mode).

As described in Section III-A, the lookahead distance
ld of the pure-pursuit controller is the most important
parameter which determines the behavior of the au-
tonomous racecar. We pose the following question:
What is the optimal value of the lookahead distance for
a pure-pursuit controller that will result in the fastest
lap around the track ?

One can think of this as an offline label assignment
problem, where we want to assign each waypoint wi, on
the reference trajectory an associated optimal lookahead
distance, lj that the pure-pursuit controller will take
as input when it arrives at that waypoint. This idea
forms the basis for an adaptive lookahead pure-pursuit
controller.

Given a reference trajectory W that consists of way-
points described in equation (4), consider a set of K
lookahead distances (labels) L:

L = {lj , j ε 1 . . .K} (5)

A lookahead label informs the underlying pure-pursuit
controller about the control horizon. The pose of the
racecar at any given time in the race-track is denoted as
the tuple Ti, such that;

Ti =< xi, yi, φi, vi > (6)

Where (xi, yi) is the position of the racecar in the
race-track relative to the start/finish line, φi is the
heading of the racecar at the given position, and vi is the
current velocity of the racecar. Given each way-point wi
and the lookahead distance set L we want to compute a
function assignment γ such that;

γ(wi, lj , Ti)→ (vexit i, δi) (7)

Where vexit i is the exit velocity of the racecar, and
δi is the deviation from the reference trajectory of the
racecar for the given way-point and lookahead distance.

The label assignment policy π can be defined as a
mapping for every way-point with an optimal lookahead
distance from the set L.

IV. ADAPTIVE LOOKAHEAD PURE-PURSUIT

Race-tracks have sections of lengthy corridors with
no turns or small angled turns, and a racecar must
utilize these sections of the race-track to achieve higher
speeds in order to minimize lap times. Longer lookahead
distances yield higher speeds; but at tight turns, the
racecar will attempt to cut corners leading to collisions

3



Algorithm 1: Lookahead label Assignment
Input: Tinit, vinit = 0,W,L
Compute:
while i < N do

R = SpawnCar(Ti)
for lj = 0 to K do

PurePursuit(lj , R)
if CrashDetected() then

ResetCar(R)
vexit i = 0
δi =∞

else
until R = lj |W
calculate {vcurrent, δcurrent}
then:
vexit i = vcurrent
δi = δcurrent
vi+1 = vexit i

end
end
π(wi) = π∗(β, vexit i, δi)∀ljεL

end
Result: π = li∀wi; liεL

with the bounds of the race-track. This means the the
lookahead distance has to be tuned to work with the most
difficult section of the race-track. Consequentially, we
use multiple lookahead distances for different sections
of the track. We find the labelling policy π which assigns
lookahead distances to different sections of the track
based on the desired racing objectives.

We first define the racing objectives:
1) Maximum Velocity Pure-Pursuit (vel*): The la-

belling policy π∗v maximizes the vexit i exit velocity
for each way-point wi by selecting appropriate the
lookahead distance li from the set L, i.e.

π∗v = argmax
L

(
N∑
i=1

vexit i) ∀ li ε (1 . . .K) (8)

2) Minimum Deviation Pure-Pursuit (dev*): The la-
belling policy π∗δ minimizes δi deviation for each way-
point wi by selecting the lookahead distance li which
produces the minimum δi for all looaheads in L. We
define deviation as the area of the curve between the
reference trajectory and the actual trajectory taken by
the racecar.

π∗δ = argmin
L

(
N∑
i=1

δi) ∀ li ε (1 . . .K) (9)

3) Convex Combination Pure-Pursuit: This objective
is a convex combination of previous two objectives from
equations (8) and (9), governed by trade-off factor β.

π∗v−δ = β(π∗v) + (1− β)(π∗δ ); β ε [0, 1] (10)

Reference Trajectory

Actual Trajectory

Deviation 𝛿
(Area under the curve)

Spawn Location
(using 𝑇)

Goal 
(set by 𝑙𝑗)

Exit Pose
(log 𝛿, 𝑣𝑒𝑥𝑖𝑡)

Race Track 
Bounds

Fig. 2: An iteration of the lookahead label assignment algorithm, with
racecar spawned using T , the goal set by current lookahead lj , and
the actual trajectory taken by the racecar using the current lookahead
until the goal - where the exit pose, deviation (δ) and vexit are logged

Depending on the application, trade-off factor β can
be adjusted such that β = 0 produces minimum devia-
tion and β = 1 produces maximum achievable velocity.

Having defined the different objectives for the adap-
tive lookahead label assignment, we now present a novel
lookahead label algorithm which can assign the optimal
lookahead distance labels to each way-point based on the
specified objective function (Eqs 8,9,& 10). An overview
of our method is presented in Algo. 1, and a visual
representation is provided in Fig. 2.

For a waypoint wi, we spawn the autonomous car
in the simulator using the tuple Ti, using the func-
tion SpawnCar(). At this waypoint, we simulate the
function γ (Eq 7) for each of the possible lookahead
value in the set L. Each iteration of γ makes the
racecar use Ackermann-adjusted pure-pursuit using the
current lookahead until it approaches the goal on the
reference trajectory originally set when the racecar was
spawned (at both spawn and goal, the Euclidean dis-
tance between the racecar’s base link and the actual
corresponding waypoint on the reference trajectory is
minimal compared to all other waypoints in W), during
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ROS Map (Occupancy Grid) ROSMap2Gazebo

Label Assignment

Experiment Setup
Real Race Track

Hardware F1/10 Platform

Mapping using
Hector SLAM

Export ROS map
to 3D CAD design

Identify map bounds

Extrude map bounds

Export 3D mesh as STL
& create SDF descriptor

Run label 
assignment
algorithm 

on simulator

Generate
Optimal

Label
assignments

Simulation Parameters
• Raceline
• List of lookahead distances
• Velocity range
• PID controller gains

PGM +YAML file

Export 
lookahead 

labels to real 
world

Validate on Testbed

Fig. 3: Clockwise from Top Left: The F1/10 platform is manually driven around the race track to create a ROS map using traditional SLAM,
the ROS map is exported to CAD where the map bounds are extruded and exported as a 3D mesh, the label assignment algorithm is performed
on the new map using the set simulation parameters, & the labels are exported to be validated on the F1/10 platform

which time the algorithm continuously computes the
racecar’s deviation from the reference trajectory and its
current velocity. At the end of the current iteration,
when the racecar is closest to the original goal set at
spawn, the exit velocity, vexit i, which is the current
velocity when the racecar is closest to the original goal,
and the total deviation from the reference trajectory, δi,
from when the racecar travelled from the spawn location
to the goal is logged. If the racecar collides with the
race-track boundaries at any time during the current
iteration of the algorithm, the corresponding lookahead
distances are not considered as candidates for selection
at the current waypoint wi. This is captured by the
CrashDetected() subroutine in Algorithm 1. When the
algorithm completely iterates through all lookaheads in
L for all waypoints inW , the logged data which contains
[vexiti , δi] is match to the corresponding lookahead and
stored for offline tuning.

Next, we greedily select the lookahead distance which
is best suited for the objective function using the policy
π∗. For e.g. for vel∗, we would pick the lookahead
distance with the maximum exit velocity at each way-
point and the corresponding lookahead is assigned as its
label. The same criteria can be applied to the dev∗, and
convex combination objectives. The policy is applied
to assign the best corresponding lookahead label from
L for all waypoints in W .

V. IMPLEMENTATION ON SIMULATOR & TESTBED

The race-track used in the experiment is a small
indoor setup with tight turns, and to ease computation
on the racecar’s onboard embedded computer (we use
the NVIDIA Jetson TX2), we decided to limit the
number of lookaheads to 3. While this is not a lim-
itation of the algorithm, the observable differences in
performance of the racecar at tightly grouped lookaheads
did not produce a larger racing performance increase
compared to the additional computation demanded by
the onboard computer. We chose lookahead distances
(set L = {1.0, 1.5, 2.0}, K = 3). Empirically, the
racecar tracked the reference trajectory best at 1.0m
lookahead, and at 2.0m lookahead, the racecar was able
to achieve the maximum permissible velocity.

A. Experiment Setup

Fig. 3 provides an overview of the experiment work-
flow, where the major steps are descirbed below:

1) Mapping the Race Track: The F1/10 racecar is
manually driven around the race track to build a
2D occupancy grid map using the Hector SLAM
algorithm [38].

2) ROSMap2Gazebo: We extrude the map bounds
by using a smoothing filter and export the resulting
3D mesh to Gazebo as a world model.
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Min Deviation 11.05 1.651 3.109

Max Velocity 9.72 2.013 3.852

Convex Combination 9.33 2.097 3.453

Pure Pursuit 
Implementation

Lap Time
(sec)

Lap Speed 
Avg (m/s)

Lap 𝜹
(m2)

Baseline (Ackermann) 12.26 1.582 3.106

Min Deviation 10.44 1.858 3.230

Max Velocity 9.69 2.002 3.825

Convex Combination 9.44 2.042 3.437

Performance (Simulation)

Performance (F1/10 Testbed)

Fig. 4: [Left Half]: The labels generated using the lookahead label assignment assignment for various values of β; [Right Half]: Race metrics
performance of the various pure-pursuit implementations compared to the baseline Ackermann-adjusted pure-pursuit on the simulator and testbed

3) Label Assignment: The lookahead label as-
signment algorithm is run on the virtual race
track in ROS F1Tenth simulator for β =
[0.0, 0.25, 0.5, 0.75, 1.0], and the resulting looka-
head label sets are benchmarked for performance.

4) Validation on Testbed: The labels generated from
our algorithm are exported to the F1/10 testbed
and verified against simulation results.

In doing so, we can go from a real track, to a real map,
to a simulated track and back to the testbed (Fig. 3).

B. Testbed Execution & Results

For accurate localization at high speeds, the F1/10
testbed was equipped with the CDDT particle filter using
a GPU enabled ray-tracing algorithm [39].

In Fig. 4, the left half shows the reference trajectory
imposed with the lookahead labels where read, yellow
and green represent short, medium and long lookahead
distances respectively and the chart showing the effect
of the trade-off factor β on the best lap time for the
current setting. Note that the extreme emphasis on either
velocity or deviation optimization leads to worse lap
times as opposed to a balanced emphasis.

Observed lap times differences between simulation
and real world implementation were within 0.5 seconds,
and the total lap deviation during real world implemen-
tation was withing 5% of the simulated deviation. This
can be seen in the right half of Fig. 4 which compares
race metrics of the F1/10 autonomous racecar on the real
race-track. The convex combination label assignment

has better performance in both lap time and average
lap speed on the F1/10 testbed with 20% improvement
over the baseline implementation. The convex factor
β and its impact on the lap time is shown in Fig. 4.
As β changes from 0.25 (minimum deviation) to 0.75
(maximum velocity), the label assignments produce a
varying lap time with the best performance on all metrics
at around β=0.5. At β=0.0, the racecar’s performance
was very similar to the baseline Ackermann-adjusted
pure-pursuit, and several lookahead labels for β=1 led
to undesirable behaviors including oscillations, drifting
and general loss of path tracking on multiple turns.

VI. CONCLUSION & FUTURE WORK

In this paper we have demonstrated that adap-
tive lookahead pure-pursuit out performs Ackermann-
steering adjusted pure-pursuit in terms of race related
metrics such as lap time and average lap speed, and is a
novel fit for autonomous racing, both in simulation and
the F1/10 testbed. The analysis focuses on a single agent
setting, where a single race car is tasked with following
a reference trajectory with the minimum lap time. Our
future work involves using the adaptive lookahead pure-
pursuit for multiple autonomous racecars & creating a
formal framework for autonomous overtaking at high
speeds and close-proximity situations.
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