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Random Multilinear Maps
and the Erd6s Box Problem
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Abstract: By using random multilinear maps, we provide new lower bounds for the Erd6s
box problem, the problem of estimating the extremal number of the complete d-partite d-
uniform hypergraph with two vertices in each part, thereby improving on work of Gunderson,
R&dl and Sidorenko.
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1 Introduction

Writing Ks(ld)wx , for the complete d-partite d-uniform hypergraph with parts of orders si,...,s4, the

extremal number exd(n,Ks(f{)mJ ,) is the maximum number of edges in a d-uniform hypergraph on n
vertices containing no copy of Ks(f?__vs ,. Already for d = 2, the problem of determining these extremal
numbers is one of the most famous in combinatorics, known as the Zarankiewicz problem. The classic
result on this problem, due to K&vari, S6s and Turdn [12], says that

eXZ(n7Ks1,sz) =0 <n271/51)

for all s1 < s,. However, this upper bound has only been matched by a construction with Q(nz_l/ 51) edges
when s, > (s; — 1)!, a result which, in this concise form, is due to Alon, Kolldr, R6nyai and Szabé [1, 11],
but builds on a long history of earlier work on special cases (see, for example, the comprehensive
survey [8]).

Generalizing the K&vari—-So6s—Turan bound, Erdds [6] showed that

1
exd(ans(ld,?.‘,sd) =0 <nd7m> (1)
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for all s; <sp < ... <s4. An analogue of the Alon—Kolldr—Rényai—Szabd result, due to Ma, Yuan and
Zhang [14], is also known in this context and says that (1) is tight up to the constant provided that s, is
sufficiently large in terms of sy, ...,s;—1. The proof of this result is based on an application of the random
algebraic method, introduced by Bukh [2] and further developed in [3] and [4].

Our concern then will be with determining the value of ex,(n, Ks(ld)s ,) in the particular case when
s1 = --- =54 = 2. In the literature, this problem, originating in the work of Erdds [6], is sometimes
referred to as the box problem, owing to a simple reformulation in terms of finding the largest subset of
the grid {1,2,...,n}¢ which does not contain the vertices of a d-dimensional box (see also [10] for a
connection to a problem in analysis). By (1), we have

exg(n, KLY ) =0 (n"57). @)

While in the case d = 2 it has long been known that ex»(n,K»») = @(n3/ 2), with a matching construction
due to Klein [5] even predating the K&vari—S6s—Turdn bound, there has been very little success in
finding constructions matching (2) for d > 3. Indeed, it is unclear whether they should even exist.
For d = 3, the best available construction is due to Katz, Krop and Maggioni [10], who showed that
ex3 (”aKz(?z)ﬂz) = Q(n3/3). For general d, there is a simple, but longstanding, lower bound

exa(n, KLY ) =@ ('3 3

coming from an application of the probabilistic deletion method. Besides the Katz—Krop—Maggioni
construction, the only improvement to this bound is an elegant construction of Gunderson, Rodl and
Sidorenko [9], which amplified the deletion argument by introducing algebraic structure on one of the
sides of the d-partition and using random hyperplanes to define the edges.

Theorem 1 (Gunderson-Roédl-Sidorenko) For any d > 2, let s = s(d) be the smallest positive integer
s (if it exists) such that (sd — 1)/(2¢ — 1) is an integer. Then

_d-1/s
exd(n,Kéd) ,)=Q <nd 2 > .

-----

It is easy to see that the number s = s(d) exists precisely when d and 2¢ — 1 are relatively prime,
which holds, for instance, when d is a prime number or a power of 2, but does not hold for many other
numbers, such as d = 6, 12, 18, 20, 21. In fact, their result fails to apply for a positive proportion of the
positive integers, as may be seen by noting that if the condition (d,2¢ — 1) = 1 fails for a given d, then it
also fails for all multiples of d.

In this paper, we improve on the lower bound from Theorem 1 by establishing the following result,
whose proof refines the method from [9] by introducing algebraic structure on each side of the d-partition
and using random multilinear maps to define the edges.

Theorem 2 For any d > 2, let r and s be positive integers such that d(s — 1) < (2¢ — 1)r. Then

gooey
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This not only improves the lower bound for the box problem provided by Theorem 1 for any d which

is not a power of 2, but it also yields a gain over the probabilistic deletion bound (3) for al/l uniformities d.

To see this, note that if d > 2, then d never divides 2¢ — 1, so we may set r = 1 and s = (%1 > 2‘1[1_1.

Corollary 1 Foranyd > 2,

By a result of Ferber, McKinley and Samotij [7, Theorem 9], any polynomial gain over the deletion
lower bound for the extremal number of a uniform hypergraph J implies an optimal counting result for
the number of JH{-free graphs on n vertices. In combination with Corollary 1, this implies the following
result, generalizing a celebrated theorem of Kleitman and Winston [13] on the d = 2 case.

Corollary 2 Foranyd > 2, let I, (Kz(d) 2) be the set of all (labeled) Kz(d) ,+free d-uniform hypergraphs

with vertex set {1,...,n}. Then there exists a positive constant C depending only on d and an infinite
sequence of positive integers n for which

ey

For the reader’s convenience, we include below a table comparing the bounds provided by the deletion
bound (3), by Gunderson, Rodl and Sidorenko’s Theorem 1 and by our Corollary 1.

d Deletion GRS | Corollary 1
2 1.50 2.00 2.00
3 2.33 2.50 3.00
4 3.75 4.00 4.00
5 6.20 6.25 7.00
6 10.50 11.00
7 18.14 18.16 19.00
8 31.87 32.00 32.00
9 56.77 56.80 57.00
10 102.30 102.33 103.00
11 186.09 186.10 187.00
12 341.25 342.00
13 630.07 630.08 631.00
14 1170.21 1170.22 1171.00
15 2184.46 2184.50 2185.00
16 4095.93 4096.00 4096.00
17 7710.05 7710.06 7711.00
18 | 14563.50 14564.00
19 | 27594.05 | 27594.05 27595.00
20 | 52428.75 52429.00
21 | 99864.33 99865.00
22 | 190650.13 | 190650.14 | 190651.00
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A number o on the d" row of the table means that the corresponding method gives the lower bound

exq(n, Ky 2) =Q (nd—l/a> 7

while an empty cell in the GRS column means that the method does not apply for that value of d. In
particular, we note that our method recovers both the fact that ex(n, K 2) = @(rn*/?) and the lower bound

ex3 (”aKz(?z),z) = Q(n®/3) of Katz, Krop and Maggioni.

2 New lower bounds for the Erdos box problem

2.1 Linear algebra preliminaries

Let Vi,...,V;, be finite-dimensional vector spaces over the field ;. Following standard convention, we
call a function T : Vi x - - x Vg = F, multilinear if, for every i € {1,...,d} and every fixed choice of
x; € Vj for each j # i, the function T (x1,...,Xj_1,X,Xi11,...,X4), considered as a function on V, is linear
over IF,.

The vector space of all multilinear functions 7' : V; x --- x V; — [, can be naturally identified with
the space V| ®--- @V, where V* denotes the dual space of V. A uniformly random multilinear function
T:Vyx---xVg— T, is then a random element of the space V| ®--- @V, chosen according to the
uniform distribution.

If, for each i, we have a subspace U; C V;, then we can define a restriction map

rvVi®--V;, U/ ®---Uj.
We have the following simple, but important, claim about these restriction maps.

Claim 1 The restriction r(T) of a uniformly random multilinear function T is again uniformly random.

Proof: The map r is linear and surjective and so all 7/ € U] ® --- ® U} have the same number of
preimages in V' ®@--- @ V. a

It will also be useful to note the following simple consequence of multilinearity.

Proposition 1 Suppose that T : V| X --- x Vg — F, is multilinear and, for every i =1,...,d, there are

vectors V0, vl € V; such that

1771

T(v],....vi) =1
for all 2¢ choices of € € {0,1}. Then, for any u; which lie in the affine hull ofv?,vi1 foreachi=1,...,d,
T(uy,...,uq) =1.

Proof: Write u; = V) + a!v} for some &’ + o} = 1. Then, by multilinearity, we have

T(uy,...,uq) = Z (Xfl---ade(vfl,...,de)
81,...,8d€{0,1}
= & gl = (o oo (ol Iy 1
= Y oo=(gta)(ato) =1,
8174..78(16{071}
as required. O
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2.2 Proof of Theorem 2

Fix positive integers d, r and s and let g be a large prime power. Let V =F, and let 73,..., 7, € yred
be independent uniformly random multilinear functions. Let J{ be the d-partite d-uniform hypergraph
between d copies of V whose edge set € consists of all tuples (vi,...,vq) € V¥ such that T;(vy,...,vg) = 1
foralli=1,...,r. Let us estimate the expected number of edges in .

Claim2 E[|€|] = (¢ — 1)~ " ~ q™".

Proof: Note that if one of vy,...,v, is zero, then T;(vy,...,v4) = 0, so we may assume that (vq,...,vy)
is one of the (¢* — 1)¢ remaining sequences of non-zero vectors and calculate the probability that it
belongs to €. Let U; = (v;) C V, a one-dimensional subspace of V. By Claim 1, the restriction 7} of T;
to Uy X --- x Uy is uniformly distributed in U ® --- ® U;. But the latter space is one-dimensional and
so T} (vi,...,vq) takes the value 1 with probability g~ '. Since T1,...,T, are independent, the functions
T|,...,T! are independent, so they all are equal to one at (vy,...,vs) with probability exactly g~". O

Claim 3 Let F denote the family of all (), v},...,v9,vl) € V2 where v(} =+ v}for all jand T,(v{,... ,vzd) =
1 foralli=1,...,r and all choices of €1,...,€4 € {0,1}. Then E[|F|] ~ ¢*¥5=2r,

0

Proof: If, for some j = 1,...,d, the vectors Vi

allowing A = 0), then

1 . 1 _ 2,0
and v; are collinear, say v; = Av; for some A # 1 (but

T(v(l),...,v},...,vg) :lT(v(l),...,vg,...,vg),

so these two numbers cannot be equal to 1 simultaneously. Therefore, we may restrict attention to only

those tuples where v?- and v} are linearly independent forall j=1,...,d.

Fix one of the (¢° —1)9(¢° — g)¢ remaining tuples ¥ = (v,v1,...,19,v}) and let us compute the

probability that v € . Let U; = <v9, v}> be the two-dimensional vector space spanned by v? and v}. By
Claim 1, the restriction Tl-’ of T; to Uy X --- x Uy is uniformly distributed in U} ® - -- ® U;;. Moreover, the
independence of T, ..., T, implies that 7/, ...,T/ are also independent. Now observe that the set of 24
tensors

(i ®--@vi: g €{0,1}}

forms a basis for the space U; ® - - - ® Uy. Therefore, there exists a unique R € U ® --- ® U} such that

R(v{',...,vi") = 1 for all €; € {0,1}. Moreover, since there are ¢*" different choices for the value of a
function in Uf ® --- @ U} at the (v}, ... ,vj" ) and each such choice determines a unique function, the

probability that 7/ = R is q_zd. Since v € F if and only if 7/ = R for all i = 1,.. ., r, the independence of
the 7/ implies that the probability v € F is g 2", Thus,

, , _od, —od,
E[F] = (¢ - )¢ —q)'q > ~ " %",

as required. O

The next step is crucial.
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Lemma 1 Let B be the family of all (vi,...,vq) € € for which there exists (V,,...,v;) € V¥ such that
(vi, Vi, ... va, V) € F. Then
E[|B[] < (1+0(1))g “E[T]].

Proof: Given a sequence of affine lines /y,...,l; C V, denote by P(l,...,l;) the set of all sequences
(x1,X],...,X4,x;) € V?4 such that x; and x} are distinct and lie on /; for all j. Clearly,

P(,... 1) =g (g— 1) ~ g*.
Note that:

LI (L. lg) # (1, 1), then P(Ly, . .., Ig) NP(1Y,. .., 1)) = 0, since the lines /1, . . . , [z are uniquely
determined by any member of P(ly,...,1;).

2. It P(ly,...,I)NF £0, then P(ly,...,I;) C F by Proposition 1.
3. Any v € JF is contained in P(ly,...,l ) for some /y,...,1,.

Denote the family of all tuples (/y,...,l;) such that P(l;,...,l;) NF # 0 by L. By the observations
above, we have that
[Llg’(q—1)? =17].

On the other hand, it is clear that

B= U 11><12><...de,

(I,--lg)EL
so that
|B| < gL = (¢—1)~|F].
Taking expectations, we obtain the required result. O

By definition, the subgraph H’ of H with edge set £\ B is K, _,-free. By Lemma 1 and Claim 3,

ey

B[1B]) < (1+0(1)g “E[F] = (1+0(1))g* 2",

On the other hand, by Claim 2, E[|€|] ~ ¢%*~". By the assumption on r and s from the statement of
Theorem 2, we have
2ds—2%r—d <ds—r,

7777

H' on a ground set of size n = dq* with edge set &’ satisfying
€] = (140(1))g" " = (c+o(1))n"",

where ¢ = d ¢, completing the proof of Theorem 2.
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