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Abstract

Green security domains feature defenders who plan
patrols in the face of uncertainty about the adversar-
ial behavior of poachers, illegal loggers, and illegal
fishers. Importantly, the deterrence effect of patrols
on adversaries’ future behavior makes patrol plan-
ning a sequential decision-making problem. There-
fore, we focus on robust sequential patrol planning
for green security following the minimax regret cri-
terion, which has not been considered in the litera-
ture. We formulate the problem as a game between
the defender and nature who controls the parameter
values of the adversarial behavior and design an
algorithm MIRROR to find a robust policy. MIR-
ROR uses two reinforcement learning–based ora-
cles and solves a restricted game considering lim-
ited defender strategies and parameter values. We
evaluate MIRROR on real-world poaching data.

1 INTRODUCTION

Defenders in green security domains aim to protect wildlife,
forests, and fisheries and are tasked to strategically allocate
limited resources in a partially unknown environment [Fang
et al., 2015]. For example, to prevent poaching, rangers
will patrol a protected area to locate and remove snares (Fig-
ure 1). Over the past few years, predictive models of poacher
behavior have been developed and deployed to parks around
the world, creating both opportunity and urgency for effec-
tive patrol planning strategies [Kar et al., 2017, Gurumurthy
et al., 2018, Xu et al., 2020].

While patrol planning for security has been studied under
game-theoretic frameworks [Korzhyk et al., 2010, Basilico
et al., 2012, Marecki et al., 2012], green security domains
have two crucial challenges: uncertainty in adversaries’ be-
havior model and the deterrence effect of patrols — how
current patrols reduce the likelihood that adversaries attack

Figure 1: Rangers remove a snare in Srepok Wildlife Sanc-
tuary in Cambodia, where the Cambodian government plans
to reintroduce tigers in 2022.

in the future. Data is often scarce in these domains and it is
hard to learn an accurate adversarial behavior model [Fang
et al., 2015, Xu et al., 2016, Sessa et al., 2020]; patrols
planned without considering the imperfection of the behav-
ior model would have limited effectiveness in practice. De-
terrence is hypothesized to be a primary mechanism through
which patrols reduce illegal activity [Levitt, 1998], espe-
cially in domains such as wildlife protection, as rangers
rarely apprehend poachers and only remove an estimated
10% of snares [Moore et al., 2018]. These characteristics
make apparent the need for robust sequential patrol planning
for green security, which is the focus of this paper. We con-
firm the deterrence effect in green security domains for the
first time through analyzing real poaching data, providing
real-world footing for this research.

In this paper, we consider the minimax regret criterion for
robustness [Savage, 1951, Wang and Boutilier, 2003]: mini-
mize the maximum regret, which is defined as the maximum
difference under any uncertainty instantiation between the
expected return of the chosen strategy against the expected
return of an optimal strategy. Compared to maximin reward,
minimax regret is more psychologically grounded according
to phenomena such as risk aversion [Loomes and Sugden,
1982] and is less conservative and sensitive to worst-case
outcomes [Kouvelis and Yu, 2013]. However, optimizing for
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regret is challenging [Nguyen et al., 2014], especially for
complex sequential decision making problems as evidenced
by lack of past work on minimax regret in deep reinforce-
ment learning (RL), despite the success and popularity of
deep RL in recent years [Mnih et al., 2015, Lillicrap et al.,
2016]. The main obstacle is that when the environment pa-
rameters change, the reward of a strategy changes and there
may be a new optimal strategy, making it hard to quickly
estimate the maximum regret of a strategy.

We overcome this obstacle by developing a new method
named MIRROR* that enables minimax regret planning un-
der environment uncertainty using RL. We model the robust
planning problem as a two-player, zero-sum game between
an agent, who looks for minimax regret–optimal policies,
and nature, who looks for regret-maximizing instantiations
of the uncertain environment parameters (we refer to this
game as a max-regret game). This model enables us to use
the double oracle method [McMahan et al., 2003] and the
policy-space response oracle (PSRO) framework [Lanctot
et al., 2017] to incrementally generate strategies and en-
vironment parameters to be considered. More specifically,
MIRROR includes two RL-based oracles. The agent oracle
solves a typical sequential decision-making problem and
returns a defender strategy. The nature oracle finds the envi-
ronment parameters and the corresponding optimal defender
strategy that lead to the highest regret for a given defender
strategy. We use a policy-gradient approach for both oracles.
In the nature oracle, we treat the environment parameters
as input to the policy network and update the environment
parameters and the network parameters with a wake–sleep
procedure. We further enhance the algorithm with parameter
perturbation in both oracles.

Our contributions are summarized as follows. (1) We pro-
vide a realistic adversary model learned from real-world
poaching data from Queen Elizabeth National Park (QENP)
in Uganda, which demonstrates deterrence and opens the
door to further RL research in service of protecting the
environment. (2) We propose MIRROR, a framework to
calculate minimax regret–optimal policies using RL for the
first time, and apply this approach to green security domains.
(3) We prove that MIRROR converges to an ε–optimal strat-
egy in a finite number of iterations in our green security
setting. (4) We empirically evaluate MIRROR on real-world
poaching data from QENP.

2 RELATED WORK

Robust planning with minimax regret Minimax regret
has been considered for preference elicitation of additive
utilities [Braziunas and Boutilier, 2007] and rewards [Re-
gan and Boutilier, 2009], as well as robotics planning in
uncertain Markov decision processes with a model-based ap-

*Code available at https://github.com/lily-x/mirror

proach [Rigter et al., 2021]. Double oracle [McMahan et al.,
2003] has been used to optimize for minimax regret in secu-
rity games and in robust optimization [Nguyen et al., 2014,
Gilbert and Spanjaard, 2017] but in single-action settings,
not policy spaces. Double oracle has also been used without
minimax regret for solving large zero-sum games [Bosansky
et al., 2014, Jain et al., 2011].

Robust planning in RL Robustness in RL has been heav-
ily studied, both in the context of robust adversarial RL
[Pinto et al., 2017, Pan et al., 2019, Zhang et al., 2020a] and
nonstationarity in multi-agent RL settings [Li et al., 2019,
Zhang et al., 2020b]. For example, PSRO extends double or-
acle from state-independent pure strategies to policy-space
strategies to be used for multiplayer competitive games
[Lanctot et al., 2017]. Zhang et al. [2020a] consider robust-
ness against adversarial perturbations on state observations.
The line of work whose setting is most similar to our prob-
lem is robust RL with model uncertainty, specifically in the
transition and reward functions [Wang et al., 2020, Zhang
et al., 2020b]. However, these approaches all consider ro-
bustness subject to maximin reward, whereas we optimize
for minimax regret robustness. The two objectives are in-
compatible; we cannot simply substitute minimax regret
into the reward function and solve using minimax reward,
as computing the maximum regret incurs the challenge of
knowing the optimal strategy and its corresponding reward.

Green security games (GSGs) Literature on GSGs model
the problem in green security domains as a game between a
defender and boundedly rational attackers, with the assump-
tion that attacker models can be learned from data [Nguyen
et al., 2016, Yang et al., 2014, Fang et al., 2016, Xu et al.,
2017]. Most of this work does not consider uncertainty in
the learned attacker model and solve the patrol planning
problem using mathematical programming, which is not
scalable for planning sequential patrols over time horizons
going beyond 2 to 3 timesteps. Past work addressing un-
certainty in green security focuses on the setting with a
stochastic adversary [Xu et al., 2021], treating the problem
as one of learning a good strategy against the optimal strat-
egy in hindsight. RL has been used for planning in GSGs
with real-time information to model defenders responding
to footprints during a patrol [Wang et al., 2019] and strategic
signalling with drones [Venugopal et al., 2021]. However,
uncertainty and robustness have not been explicitly consid-
ered together in GSG literature and much existing work on
green security do not have access to real-world data and
realistic models of deterrence.

3 PROBLEM STATEMENT

In green security settings, we have a defender (e.g., ranger)
who conducts patrols in a protected area to prevent resource
extraction by an attacker (e.g., poacher or illegal logger).

258

https://github.com/lily-x/mirror


Let N be the number of targets, such as 1× 1 km regions
in a protected area, that we are trying to protect. We have
timesteps t = 1, 2, . . . , T up to some finite time horizon T
where each timestep represents, for example, a one-month
period. The defender needs to choose a patrol strategy (also
called the defender policy) π ∈ Π, which sequentially allo-
cates patrol effort at each timestep. We denote patrol effort
at time t as a(t), where a(t)i ∈ [0, 1] represents how much
effort the patrollers allocate to target i. We constrain total
effort by a budget B such that

∑
i a

(t)
i ≤ B for all t.

Consider the poaching scenario specifically. Let w(t) ∈
RN≥0 describe the distribution of wildlife in a protected area

at timestep t, with w(t)
i denoting wildlife density in target i.

What the rangers care about the most is the total wildlife
density by the end of the planning horizon, i.e.,

∑
i w

(T )
i .

Threatening the wildlife population are poachers, who come
into the park and place snares to trap animals. Their behav-
ior is governed by a number of factors including the current
patrol strategy, the past patrol strategy due to the deterrence
effect, geographic features including distance from the park
boundary, elevation, and land cover, and others. Lacking
complete and high-quality data about past poaching pat-
terns, we are not able to build an accurate model of poacher
behavior.

Therefore, we consider a parameterized model for attacker’s
behavior and assume that the values of some of the parame-
ters, denoted by z, are uncertain. We assume that z comes
from a given uncertainty region Z, which is a compact set
specifying a range zj ∈ [zj , zj ] for each uncertain param-
eter j. We have no a priori knowledge about distribution
over Z. We want to plan a patrol strategy π for the defender
that is robust to parameter uncertainty following the mini-
max regret criterion. Let r(π, z) be the defender’s expected
return for taking policy π under environment parameters
z, e.g., the expected total wildlife density at the end of the
planning horizon. Then the regret incurred by the agent
for playing strategy π when the parameter values are z is
regret(π, z) = r(π?(z), z) − r(π, z), where π?(z) is the
optimal policy that maximizes reward under parameters z.

Our objective is then to find a strategy π for the defender that
minimizes maximum possible regret under any parameter
values z that falls within the uncertainty region Z. Formally,
we want to solve the following optimization problem

min
π

max
z

(r(π?(z), z)− r(π, z)) . (1)

We can formulate this robust planning problem as a two-
player game between an agent who wants to learn an optimal
defender strategy (or policy) π against nature who selects
worst-case parameter values z. Then the agent’s payoff is
−regret(π, z) and nature’s payoff is regret(π, z).

Definition 1 (Max-regret game). We define the max-regret
game as a zero-sum game between the agent and nature,

where the agent’s payoff is

payoff(π, z) = −regret(π, z) = r(π, z)− r (π?(z), z) . (2)

The agent can also choose a mixed strategy (or randomized
policy) π̃, which is a probability distribution over Π. We
denote by ∆(Π) the set of the defender’s mixed strategies.
Likewise, we have mixed strategy z̃ ∈ ∆(Z) for nature.

Generalizability Our approach applies not just to green
security domains, but is in fact applicable to any setting in
which we must learn a sequential policy π with uncertainty
in some environment parameters z where our evaluation
is based on minimax regret. Our framework is also not
restricted to hyper-rectangular shaped uncertainty regions;
any form of uncertainty with a compact set on which we do
not have a prior belief would work.

3.1 REAL-WORLD DETERRENCE MODEL

No previous work in artificial intelligence or conservation
biology has provided evidence of deterrent effect of ranger
patrols on poaching, a topic critically important to planning
real-world ranger patrols. Thus in our work on planning
for green security domains, we began by exploring an open
question about how poachers respond to ranger patrols.

Past work has investigated deterrence to inconclusive re-
sults [Ford, 2017, Dancer, 2019]. Using real poaching data
from Queen Elizabeth National Park (QENP) in Uganda,
we study the effect of patrol effort on poacher response. We
find clear evidence of deterrence in that higher levels of past
patrols reduce the likelihood of poaching; we are the first
to do so. We also find that more past patrols on neighbor-
ing targets increase the likelihood of poaching, suggesting
displacement.

Figure 2: Snares.

For each target, we calculate
the total ranger patrol effort (in
kilometers patrolled) and count
the number of instances of ille-
gal activity detected per month.
We construct the patrol effort
from 138,000 GPS waypoints
across seven years of QENP
poaching data. Observations of illegal activity are predomi-
nantly snares, but also include bullet cartridges, traditional
weapons, and encounters with poachers.

Let zi be the attractiveness of target i to poachers. To un-
derstand the effect of patrol effort on poaching activity, we
learn the probability of detecting illegal activity in target i
as a linear combination of

zi + γ · a(t)i + β · a(t−1)i , (3)

which is then squashed through the logistic function. The
parameter β is the coefficient on past patrol effort a(t−1)i ,
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Table 1: Learned coefficients, revealing deterrence

zi γ β

1 month, 1 month −9.285 1.074 −0.165
3 month, 3 month −10.624 0.685 −0.077

1 year, 1 month −9.287 1.061 −0.217
1 year, 3 month −10.629 0.676 −0.042

1 year, 1 year −8.559 2.159 −0.306

Table 2: Learned coefficients, with neighbors included, re-
vealing displacement at a 1-month interval

zi γ β η

3× 3 −10.633 0.687 −0.098 0.696
5× 5 −10.636 0.688 −0.097 0.392
7× 7 −10.632 0.688 −0.097 0.518

measuring the deterrence effect we are trying to isolate, and
γ is the coefficient on current patrol effort a(t)i , measuring
the difficulty of detecting snares.

See Table 1 for the learned values of the average attractive-
ness of each target zi, the coefficient on current effort γ, and
the coefficient on past effort β. Each row studies this effect
for a different time interval. For example, 1 year, 3 months
looks at the impact of a year of previous patrol effort on
illegal activity in the subsequent three months. The values
for current and past patrol effort are normalized to highlight
relatively high or low effort; γ and β reflect coefficients after
normalization. The p-values for γ and β are all statistically
significant with p < 0.05. The learned value of β is negative
across all datasets and settings — thus, increased past patrol
effort does have a measurable effect of deterring poaching.

Ideally, when poachers are deterred by ranger patrols, they
would leave the park completely and desist their hunt of
wildlife. Alternatively, they may move to other areas of the
park. We show that the latter appears to be true. To do so, we
study the spatial relationship between neighboring targets,
using three spatial resolutions: 3× 3, 5× 5, and 7× 7. We
learn

zi + γ · a(t)i + β · a(t−1)i + η ·
∑

j∈neighbors(i)

a
(t−1)
j (4)

where η is the coefficient on past patrol effort on neighbor-
ing cells. As shown in Table 2, all learned values of η are
positive, indicating that increased patrols on neighboring
areas increases the likelihood of poaching on a target in
the next timestep. This result is consistent across the three
spatial resolutions, and strongest for the narrowest window
of 3× 3. Observe as well that the values for zi, γ, and β are
remarkably consistent, demonstrating the robustness of our
findings.

3.2 GREEN SECURITY MODEL

In green security settings, the environment dynamics, in-
cluding attacker behavior, can be described by an uncer-
tain Markov decision process (UMDP) defined by the tuple
〈S, s(0),A,T,R〉. The state s is a tuple (a(t−1),w(t−1), t)
of past patrol effort, past wildlife, and current timestep with
initial state s(0) = (0,w(0), 0). The action a(t) is an effort
vector describing time spent in each target, subject to a bud-
get B. Note that the model can be generalized to consider a
sequence of past effort and wildlife, which would model an
attacker with a longer memory length.

The environment dynamics are governed by the transitions,
a set T containing the possible mappings Tz : S 7→ S where
the transition Tz ∈ T depends on environment parameters
z. A mixed strategy z̃ would produce a distribution over
T. These transitions are what makes our Markov decision
process uncertain, as we do not know which mapping is
the true transition. We model the adversary behavior with
a simple logistic model, based on learned deterrence effect.
The probability that the poacher will attack a target i is given
by the function

p
(t)
i = logistic

zi + β · a(t−1)i + η ·
∑

j∈neighbors(i)

a
(t−1)
j

 (5)

where parameters β < 0 and η > 0 govern the strength
of the deterrence and displacement effects, as described
in Section 3.1. At each time step, the poacher takes some
action k(t)i ∈ {0, 1} where they either place a snare k(t)i = 1

or not k(t)i = 0. The realized adversary attack k(t)i is drawn
from Binomial distribution k(t)i ∼ B(p

(t)
i ).

The actions of the poacher and ranger then affect the wildlife
population of the park. We use a regression model as in

w
(t)
i = max{0, (w(t−1)

i )ψ − α · k(t−1)i · (1− a(t)i )} (6)

where α > 0 is the strength of poachers eliminating wildlife,
and ψ > 1 is the wildlife natural growth rate.

Our objective is to maximize the number of wildlife. The
reward R is the sum of wildlife at the time horizon, so
R(s(t)) =

∑N
i=1 w

(T )
i if t = T and R(s(t)) = 0 otherwise.

To understand the relationship between defender return R
in the game and the expected reward r of the agent oracle
from our objective in Equation 1, we have

r(π, z) = E
[
R(s(T ))

]
(7)

taking the expectation over states following the transition
s(t+1) ∼ Tz(s(t), π(s(t)), s(t+1)) with initial state s(0) =
(w(0),0, 0).
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Algorithm 1 MIRROR: MInimax Regret Robust ORacle
Input: Environment simulator and parameter uncertainty
set Z
Params: Convergence threshold ε, num perturbations O
Output: Minimax regret–optimal agent mixed strategy π̃?

1: Select an initial parameter setting z0 ∈ Z at random
2: Compute baseline and heuristic strategies πB1 , πB2 , . . .
3: Z0 = {z0}
4: Π0 = {πB1

, πB2
, . . .}

5: for epoch e = 1, 2, . . . do
6: (π̃e, z̃e) = COMPUTEMIXEDNASH(Πe−1, Ze−1)
7: πe = AGENTORACLE(z̃e)
8: (ze, π̂e) = NATUREORACLE(π̃e)
9: if regret(π̃e, ze) − regret(π̃e−1, z̃e−1) ≤ ε and

r(πe, z̃e)− r(π̃e−1, z̃e−1) ≤ ε then
10: return π̃e
11: for perturbation o = 1, . . . , O do
12: perturb ze as zoe
13: πoe = AGENTORACLE(zoe)
14: Compute expected returns as r(πe, z) for all z ∈

Ze−1 and r(π, ze) for all π ∈ Πe−1
15: Compute max-regret game payoffs as Equation 2
16: Ze = Ze−1 ∪ {ze, z1e, . . . , zOe }
17: Πe = Πe−1 ∪ {πe, π̂e, π1

e , . . . , π
O
e }

4 ROBUST PLANNING

We propose MIRROR, which stands for MInimax Regret
Robust ORacle. MIRROR is an algorithm for computing
minimax regret–optimal policies in green security settings
to plan patrols for a defender subject to uncertainty about
the attackers’ behavior. MIRROR also applies in generic RL
contexts with a compact uncertainty set over transitions and
rewards.

To learn a minimax regret–optimal policy for the defender,
we take an approach based on double oracle [McMahan
et al., 2003]. Given our sequential problem setting of green
security, we build on policy-space response oracle (PSRO)
[Lanctot et al., 2017]. As discussed in Section 3, we pose
the minimax regret optimization as a zero-sum game in
the max regret space, between an agent (representing park
rangers) who seeks to minimize max regret and nature (un-
certainty over the adversary behavior parameters) which
seeks to maximize regret. Our objective can be expressed as
an optimization problem, as defined in Equation 1.

The full MIRROR procedure for minimax regret optimiza-
tion using RL is given in Algorithm 1 and visualized in
Figure 3. The three necessary components are:

1. Agent oracle: An RL algorithm that, given mixed strat-
egy z̃e as a distribution over Ze, learns an optimal
policy πe for the defender to maximize reward in the
known environment described by z̃e.

2. Nature oracle: An RL algorithm to compute an al-
ternative policy π̂e and new environment parameters
ze given the current agent mixed strategy π̃e over all
policies Πe. The nature oracle’s objective is to maxi-
mize regret: the difference between expected value of
alternative policy π̂e and the agent strategy π̃e.
Ideally, the alternative policy would be the optimal
policy given environment parameters ze, that is, π̂e =
π?(ze). However, given that these RL approaches do
not guarantee perfect policies, we must account for
the imperfection in these oracles, which we discuss in
Section 4.4.

3. Mixed Nash equilibrium solver: A solver to compute
a mixed Nash equilibrium for each player as a distri-
bution over Πe for the agent and over Ze for nature in
the max-regret game defined in Definition 1.

The MIRROR procedure would unfold as follows. We be-
gin with arbitrary initial parameter values z0 and baseline
strategies (lines 1–4). The agent then learns a best-response
defender policy π1 against these initial parameter values
(line 7). Nature responds with z1 (line 8). We update the
payoff matrix in the max-regret game (lines 14–15), add the
best response strategies πe and ze to the strategy sets Πe

and Ze for the agent and nature respectively (lines 16–17),
and continue until convergence. Upon convergence (line 10),
we reach an ε-equilibrium in which neither player improves
their payoff by more than ε. In practice, for the sake of
runtime, we cap number of iterations of double oracle to
10, a strategy also employed by Lanctot et al. [2017]. We
also include parameter perturbation (lines 11–13), which we
discuss in Section 4.4.

In many double oracle settings, the process of computing
a best response is typically fast, as the problem is reduced
to single-player optimization. However, the nature oracle is
particularly challenging to implement due to our objective
of minimax regret. Additionally, the imperfect nature of
our oracles implies we are not guaranteed to find exact best
strategies. We discuss our approaches below.

4.1 THE AGENT ORACLE

We want to find the best policy in a given environment
setting. In our specific setting of poaching prevention, we
consider deep deterministic policy gradient (DDPG) [Lil-
licrap et al., 2016]. Policy gradient methods allow us to
differentiate directly through a parameterized policy, mak-
ing them well-suited to continuous state and action spaces,
which we have. Note again that MIRROR is agnostic to the
specific algorithm used. DDPG specifically is not necessary;
technically, the approach need not be RL-based as long as it
enables efficient computation of a best response strategy.

We initialize the agent’s strategy set Π with the baseline
algorithms, described in Section 6. Other heuristic strate-
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initialize add baselines compute max 
regret game

solve max 
regret game

learn best responses

terminate
perturb

expand game

Π = {} Π ∪ {πB1, πB2,…}
Z = {z0}

π̃, z̃

z′ e, z′ ′ e, z′ ′ ′ e

πe, ze

Π ∪ {πe, π′ e, π′ ′ e , π′ ′ ′ e }
Z ∪ {ze, z′ e, z′ ′ e, z′ ′ ′ e }

π2

z1z0
π1

⋮

⋯
π̃*

Figure 3: Our MIRROR algorithm, with figure design inspired by the double oracle figure from Bošanskỳ et al. [2016].

Algorithm 2 Nature Oracle
Input: Agent mixed strategy π̃ ∈ ∆(Π)
Parameters: Wake–sleep frequency κ, num episodes J
Output: Nature best response environment parameters z
and alternative policy π̂

1: Randomly initialize z and π̂
2: for episode j = 1, 2, . . . , J do
3: Sample agent policy π ∼ π̃
4: for timestep t = 1, . . . , T do
5: if j mod 2κ = 0 then Unfreeze π̂ and z
6: else if j mod κ = 0 then Freeze π̂ parameters
7: else Freeze z parameters
8: Update π̂ and z using gradient ascent to maximize

regret: r(π̂, z)− r(π, z)
9: return z, π̂

gies, based on expert knowledge from the rangers, could be
added as part of the initialization. Hyperparameters used to
implement DDPG for the agent oracle are 2 hidden layers
of size 16 and 32 nodes, actor learning rate 10−4, and critic
learning rate 10−3.

4.2 THE NATURE ORACLE

Learning the nature oracle is one of the key challenges.
Our insight is that the nature oracle’s task is to perform
the same task as the agent oracle, combined with the (non-
inconsequential) task of learning the optimal environment
parameters, made difficult by the minimax regret criterion.
The nature oracle may use a similar RL setup as the agent
oracle, but we now face the challenging task of updating
both the alternative policy π̂ as well as the environment pa-
rameters z — and the setting of z changes both the rewards
of the policies π and π̂.

An initial approach might be to use two separate optimiz-
ers, one to train π̂ and another to learn z. However, as the
environment parameters z and the alternative policy π̂ are
strongly correlated, optimizing them independently would

lead to sub-optimal solutions. Therefore, we integrate z
and π̂ in the same actor and critic networks in DDPG and
optimize the two together.

Our approach for the nature oracle is given in Algorithm 2.
Similar to the agent oracle to learn a best response policy
π, we use policy gradient to learn the alternative policy π̂,
which enables us to take the derivative directly through the
parameters of π̂ and z to perform gradient descent. Note
that the input to the DDPG policy learner is not just the
state s(t) = (a(t−1),w(t−1), t) but also the attractiveness
z: (z,a(t−1),w(t−1), t). Ideally, we would incrementally
change the parameters z, then optimally learn each time.
But that would be very slow in practice, requiring full con-
vergence of DDPG to train π̂ at every step. We compromise
by adopting a wake–sleep procedure [Hinton et al., 1995]
where we alternately update only π̂, only z, or both π̂ and
z together. We describe the procedure in lines 5–7 of Algo-
rithm 2, were κ is a parameter controlling the frequency of
updates between z and π̂.

4.3 MIXED NASH EQUILIBRIUM SOLVER

We solve for the mixed Nash equilibrium in the max-regret
game with the support enumeration algorithm [Roughgar-
den, 2010], a solution approach based on linear program-
ming, using the Nashpy implementation [Knight and Camp-
bell, 2018]. There may be multiple mixed Nash equilibria,
but given that the game is zero-sum, we may take any one
of them as we discuss in Section 5.

4.4 PARAMETER PERTURBATION

Ideally, the learned alternative policy would be the optimal
policy given environment parameters z, that is, π̂ = π?(z).
However, the RL approaches do not guarantee perfect poli-
cies. With RL oracles, we must consider the question: what
to do when the oracles (inevitably) fail to find the optimal
policy? Empirically, we observe that for a given environ-
ment parameter setting z, the policy π learned by DDPG
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occasionally yields a reward r(π, z) that is surpassed by
another policy π′ trained on a different parameter setting
z′, with r(π, z) < r(π′, z). So clearly the defender oracle is
not guaranteed to produce a best response for a given nature
strategy.

Inspired by this observation, we make parameter perturba-
tion a key feature of our approach (Algorithm 1 lines 11–13),
inspired by reward randomization which has been success-
ful in RL [Tang et al., 2021, Wang et al., 2020]. In doing so,
we leverage the property that, in theory, any valid policy can
be added to the set of agent strategies Πe. So we include all
of the best responses to perturbed strategies by the nature
oracle (see Figure 3 for an illustration), which enables us
to be more thorough in looking for an optimal policy π?

for each parameter setting as well as find the defender best
response. In that way, the double oracle serves a role similar
to an ensemble in practice.

Parameter perturbation is grounded in three key insights.
First, the oracles may be imprecise, but evaluation is highly
accurate (relative to the nature parameters). Second, we only
have to evaluate reward once, then max regret can be com-
puted with simple subtraction. So the step does not add much
computational overhead. Third, adding more strategies to
the strategy set comes at relatively low cost, as computing
a mixed Nash equilibrium is relatively fast and scalable.
Specifically, the problem of finding an equilibrium in a zero-
sum game can be solved with linear programming, which
has polynomial complexity in the size of the game tree.
Thus, even if the oracles add many bad strategies, growing
the payoff matrix, the computational penalty is low, and the
solution quality penalty is zero as it never takes us further
from a solution.

5 CONVERGENCE AND CORRECTNESS

We prove that Algorithm 1 converges to an ε–minimax re-
gret optimal strategy for the agent in a finite number of
epochs if the uncertain Markov decision process (UMDP)
satisfies a technical condition. The key idea of the proof
is to exploit the equivalence of the value of the max-regret
game and the minimax regret–optimal payoff in the UMDP.
For these quantities to be equivalent, the max-regret game
induced by the UMDP must satisfy a variant of the minimax
theorem. Two broad classes of games that satisfy this con-
dition are games with finite strategy spaces and continuous
games; we show that the green security model of Section 3.2
induces a continuous max-regret game.

We begin by observing that the lower value of the max-regret
game is equal to the payoff of the minimax regret–optimal
policy of the UMDP. Using Definition 1, we can write the
lower value of the max-regret game as:

v := max
π̃

min
z̃

(r(π̃, z̃)− r(π̃?(z̃), z̃)) (8)

which is algebraically equivalent to Equation 1 by the defi-
nition of the optimal mixed strategy π̃? and rearrangement.

The connection between the lower value and the payoff re-
ceived by the row player is well-known in games with finite
strategy spaces as a consequence of the seminal minimax
theorem [von Neumann, 1928]. However, no such result
holds in general for games with infinite strategy spaces,
where a mixed Nash equilibrium may fail to exist. For so-
called continuous games, Glicksberg [1952] shows that a
mixed Nash equilibrium exists and the analogy to the mini-
max theorem holds.

Definition 2. A game is continuous if the strategy space
for each player is non-empty and compact and the utility
function is continuous in strategy space.

We formalize the required connection in Condition 1, which
holds for both finite and continuous games.

Condition 1. Let (π̃, z̃) be any ε–mixed Nash equilibrium
of the max-regret game and v be the lower value of the
max-regret game. Then, |v − (r(π̃, z̃)− r(π̃?(z̃), z̃))| ≤ ε.

We show that our green security UMDP induces a continu-
ous max-regret game.

Proposition 1. The max-regret game induced by the model
of Section 3.2 is continuous.

Proof. The defender’s strategy space consists of an action in
[0, 1]N responding to each state. Because each action space
is compact, the defender’s strategy space is compact. Nature
has a compact uncertainty space. Both are non-empty.

The defender’s expected return in the max regret game (Def-
inition 1 and Equation 7) can be written as a composition
of continuous functions: addition, multiplication, the max
(required to compute max regret), the logistic function (re-
quired for Equation 5), and exponentiation (Equation 6).
The composition of these functions is also continuous.

We now prove the main technical lemma: that the defender
oracle and the nature oracle calculate best responses in the
max-regret game. Doing so implies that the mixed Nash
equilibrium returned by Algorithm 1 in the final subgame
over finite strategy sets (Πe, Ze) is an ε–mixed Nash equilib-
rium of the entire max-regret game. This result allows us to
apply Condition 1, showing equivalence of the lower value
of the max-regret game and the minimax regret–optimal
payoff.

Lemma 1. At epoch e, policy πe and environment parame-
ters ze are best responses in the max-regret game to mixed
strategies z̃e and π̃e, respectively.

Proof. For the nature oracle, this is immediate because the
reward of the nature oracle is exactly the payoff nature
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Figure 4: Comparing performance across varied settings, our MIRROR algorithm leads to the lowest max regret in all
settings. We evaluate max regret by calculating the average reward difference between the selected policy and the optimal
policy, with reward averaged over 100 episodes. We use as the default setting H = 5, N = 25, B = 5, uncertainty interval
3, β = −5, and random wildlife initialization. Standard error shown averaged over 30 trials.

would receive in the max-regret game when playing against
π̃e−1. For the agent oracle, the expected payoff of a strategy
π against z̃e−1 in the max-regret game is Ez∼z̃e−1

[r(π, z)−
r(π?(z), z)]. Because r(π?(z), z) does not depend on π,
the policy that maximizes Ez∼z̃e−1

[r(π, z)] also maximizes
the agent’s utility in the max-regret game. This quantity is
exactly the reward for the agent oracle.

Theorem 2. If Condition 1 holds and Algorithm 1 con-
verges, the agent mixed strategy returned by Algorithm 1
achieves a minimax regret that is at most ε less than the min-
imax regret–optimal policy. If the max-regret game is either
continuous with ε > 0 or finite, Algorithm 1 converges in a
finite number of epochs.

Proof. Because the convergence condition for Algorithm 1
is satisfied, (π̃e, z̃e) is an ε–mixed Nash equilibrium in the
max-regret game by Lemma 1. Applying Condition 1 yields
the result that the payoff of π̃e is within ε of the minimax
regret–optimal policy of the original UMDP.

If the max-regret game is finite, there are only finite num-
ber of strategies to add for each player and each strategy
may be added only once—thus, Algorithm 1 converges in
finitely many epochs. If the max-regret game is continuous,
Theorem 3.1 of Adam et al. [2021] guarantees convergence
in finite epochs due to Lemma 1.

6 EXPERIMENTS

We conduct experiments using a simulator built from real
poaching data from Queen Elizabeth National Park in
Uganda, based on our analysis in Section 3.1. We consider

robust patrol planning in the park with N = 25 to 100
targets representing reasonably the area accessible from a
patrol post. Each target is a 1× 1 km region.

We compare against the following four baselines. Middle
computes an optimal defender strategy assuming the true
value of each parameter is the middle of the uncertainty
interval. Random takes a random strategy regardless of state.
We apply the same parameter perturbations to the base-
lines as we do to the others and report the top-performing
baseline variant. RARL maximin uses robust adversarial
learning Pinto et al. [2017], a robust approach optimizing
for maximin reward (instead of minimax regret). We also
add a variant we introduce of RARL, RARL regret, which
has a regret-maximizing adversary (instead of the reward-
maximizing adversary typical in RARL) that leverages novel
innovations of our nature oracle. We evaluate performance
of all algorithms in terms of maximum regret, computed
using the augmented payoff matrix (with baselines and per-
turbed strategies) described in Section 4. The max regret
is calculated by determining, for each parameter value, the
defender strategy with the highest reward. In every experi-
ment setting, we use the same strategy sets to compute max
regret for all of the approaches shown. Note that we would
not expect any algorithm that optimizes for maximin reward
to perform significantly better in terms of max regret than
the middle strategy due to the regret criterion.

Figure 4 shows the performance of our MIRROR algorithm
compared to the baselines. Across variations of episode
horizon, park size, deterrence strength, wildlife initial distri-
butions, budget, and uncertainty interval size, MIRROR sig-
nificantly reduces max regret. Deterrence strength changes
the value of β in Equation 5 to reveal the potential effective-
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Figure 5: The runtime of MIRROR remains reasonable as
we increase the park size N (which also increases the num-
ber of uncertain parameters) and horizon H .

ness of our actions. The wildlife initializations options are a
uniform random distribution, a peaked Gaussian kernel (rep-
resenting a core animal sanctuary in the park center), and
a flatter Gaussian kernel (representing animals distributed
more throughout the park, although more concentrated in the
center). The uncertainty interval size restricts the maximum
uncertainty range zi − zi for any target i.

One of the most notable strengths for MIRROR is shown
in Figure 4(a). As the episode horizon increases, thus the
defender is tasked with planning longer-term sequences of
decisions, MIRROR suffers only mildly more regret while
the regret of the baseline strategies increases significantly.
The scalability of MIRROR is evidenced in Figure 4(b) as
our relative performance holds when we consider larger-
sized parks.

The runtime is shown in Figure 5, where we show that MIR-
ROR is able to run in reasonable time as we scale to larger
problem sizes, including in settings with 100 uncertain pa-
rameters (N = 100). Rangers typically plan patrols once a
month, so it is reasonable in practice to allot 5 to 15 hours
of compute per month to plan. Tests were run on a cluster
running CentOS with Intel(R) Xeon(R) CPU E5-2683 v4 @
2.1 GHz with 16 GB RAM and 4 cores.

Our strong empirical performance offers promise for effec-
tive real-world deployment for MIRROR. Uncertainty in the
exact environment parameters is one of the most prominent
challenges of sequential planning in the complex real-world
setting of green security.

7 CONCLUSION

Our work is the first, across artificial intelligence and con-
servation biology literature, to show ranger patrols do deter
poachers on real-world poaching data. Following this find-
ing, we identify the problem of sequential planning for green
security that is robust to parameter uncertainty following
the minimax regret criterion, a problem that has not been
studied in the literature. We address this challenge with our
novel RL-based framework, MIRROR, which enables us to
learn policies evaluated on minimax regret. We show the
strength of MIRROR both theoretically, as it converges to

an ε–max regret optimal strategy in finite iterations, and
empirically, as it leads to low-regret policies. We hope that
our results inspire more work in green security based on our
realistic adversary model and that our MIRROR framework
is useful for future work on learning RL-policies that are
optimal under minimax regret.

Acknowledgements

We are thankful to the Uganda Wildlife Authority for grant-
ing us access to incident data from Murchison Falls Na-
tional Park. This work was supported in part by the Army
Research Office (MURI W911NF1810208), NSF grant IIS-
1850477, and IIS-2046640 (CAREER). Perrault and Chen
were supported by the Center for Research on Computation
and Society.

References

Lukáš Adam, Rostislav Horčík, Tomáš Kasl, and Tomáš
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