
SIMPLIFICATION OF INDOOR SPACE FOOTPRINTS

Joon-Seok Kim
Department of Geography and Geoinformation Science

George Mason University
Fairfax, VA 22030
jkim258@gmu.edu

Carola Wenk∗
Department of Computer Science

Tulane University
New Orleans, LA 70118
cwenk@tulane.edu

ABSTRACT

Simplification is one of the fundamental operations used in geoinformation science (GIS) to reduce
size or representation complexity of geometric objects. Although different simplification methods can
be applied depending on one’s purpose, a simplification that many applications employ is designed to
preserve their spatial properties after simplification. This article addresses one of the 2D simplification
methods, especially working well on human-made structures such as 2D footprints of buildings and
indoor spaces. The method simplifies polygons in an iterative manner. The simplification is segment-
wise and takes account of intrusion, extrusion, offset, and corner portions of 2D structures preserving
its dominant frame.

Keywords simplification · building · indoor space · footprint

1 Introduction

Simplification is one of the methods used for generating data at different levels of detail (LoDs) from precise data.
The more compact size of simplified data is desirable in a variety of data processing tasks including data transmission.
Let P be a polygon, P ′ be a simplified polygon, and D(P, P ′) be the distance between P and P ′. The computational
geometry community distinguishes between two variants of curve simplification: While the min–# problem is to
find P ′ with the minimum number of vertices such that D(P, P ′) ≤ ε, the min-ε problem is to find P ′ of at most
k vertices such that D(P, P ′) is minimized. Depending on the constraints on the location of vertices of P ′, the
problem can be categorized into (1) vertex-restricted, (2) curve-restricted, and (3) non-restricted simplification, see
[1]. The Ramer-Douglas-Peucker (RDP) algorithm [2, 3] is widely used in practice and provides a vertex-restricted
approximation to simplify 2D polylines and polygons. However, it does not provide any quality guarantees and it
may not preserve essential shape of the entire footprint because it does not reflect a specific form (see Figure 1b).
Although Figures 1b and 1c are similar in terms of the number of segments, the figures demonstrate the RDP cannot
preserve spatial features such as intrusion, extrusion, offset, and corners. In geographic information science (GIS),
simplification is considered a type of generalization process [4]. These processes or operations consider not only metric
constraints but also topological, semantic, and Gestalt constraints. In particular, Gestalt constraints are used to preserve
the characteristics of spatial features such as a room.

This article presents a method that progressively simplifies 2D polygons by preserving their spatial properties in a
iterative manner. The method was originally introduced by Kim and Li [5] to simplify 3D indoor spaces (e.g., rooms
and hallways) that can be represented with the prism model [6, 7], which is an alternative 3D data model. As shown
in Figure 1c, the simplification can be applied to footprints of complex buildings such as shopping malls or subway

∗This research was supported by National Science Foundation grant CCF 1637576.

(a) initial (b) Ramer-Douglas-Peucker algorithm (c) simplification preserving spatial proper-
ties

Figure 1: Example of simplification of a complex indoor space: (b) and (c) have 103 and 102 segments, respectively

stations. This article elaborates on the simplification of 2D footprints of [5] so that anyone can implement and apply it
to their applications. In the next section, the detailed method is described.

2 Simplification of Polygons

Let P be a simple planar polygon without holes. P can be represented by the circular sequence of n line segments
〈s0, . . . , sn−1〉 describing the boundary of P in counterclockwise order, where pi ∈ R2 and each pair of vertices
si = (pi, pi+1) represents a line segment, for all 0 ≤ i < n. The sequence of vertices of P is circular such that
pi = p(i mod n) for i ∈ Z. Let si be the length of si, and let ŝi be the internal angle between two consecutive segments
si and si+1, i.e., ŝi = ∠pipi+1pi+2. In the following, Q denotes a priority queue containing line segments si sorted by
their length si. Given a distance threshold τ , an angle threshold ε, a collinearity threshold δ, and a joining distance
threshold γ, the simplification is designed to preserve the overall shape of a 2D polygon according to the following
rules:

• Rule-1: The shorter the line segment, the smaller the effect on the overall shape of the geometry.
• Rule-2: Only segments longer than the tolerance τ are considered to reflect the overall shape of the polygon.
• Rule-3: Consistent simplifications should be performed for feature types such as intrusion/extrusion, offset, and

corner.

Dequeue

Update Q

Enqueue all segments of polygon into priority queue Q

Simplified polygon Remove middle point Segment regression Translate segmentJoin segments

yes

no

𝜏	
𝛿
𝑞
𝑠&'(
𝑠&
𝑠&)(

Polygon P

otherwise

yes
no

0 ≤ 𝛼 ≤ 𝜀 𝜋 − 𝛼 ≤ 𝜀

𝛼 = 𝑠&'(1 − 𝑠&2

𝑠& ≤ 𝜏

𝑑𝑖𝑠𝑡(𝑠&, 𝑞) ≤ 𝛾

Is Q empty?
yes

no

𝜋 − 𝛿 ≤ 𝑠&2 ≤ 𝜋 + 𝛿

yesno

: tolerance distance
: collinearity threshold
: intersection of 𝑠&'(and 𝑠&)(
: previous segment
: current segment
: next segment

Figure 2: Flow chart of the algorithm of simplification of 2D polygon

Figure 2 depicts the flow of the simplification algorithm2 that considers the rules, and Algorithm 1 shows the corre-
sponding pseudo-code. In order to simplify shorter segments first in accordance with Rule-1, all segments of P are

2The flow chart of [5] was modified according to the notation and context.

2

Algorithm 1: Simplification
input :P // Polygon to simplify
input :τ // Tolerance distance
input :ε // Tolerance angle
input :δ // Angle threshold used to determine if consecutive segments are collinear
input :γ // Distance threshold used to determine whether to join neighboring segments

1 Q← ∅ ; // Initialize a priority queue
2 foreach s ∈ P do
3 Q← Q ∪ s ; // Insert all segments of polygon P into the queue Q

4 while |Q| ≥ 0 and |P | ≥ 3 do
5 si ← Q.dequeue() ; // Dequeue next segment
6 α← |ŝi−1 − ŝi| ; // Angle difference between the angles entering and leaving si
7 if π − δ < ŝi < π + δ then
8 RemoveMiddlePoint(si) ; // Merge two approximately collinear consecutive segments
9 else if si ≤ τ then

10 if 0 ≤ α ≤ ε then
11 SegmentRegression(si);
12 else if π − α ≤ ε then
13 TranslateSegment(si);
14 else
15 q ← Intersect(si−1, si+1) ; // Intersection of two lines obtained by extending si−1 and si+1

16 if dist(si, q) ≤ γ then
17 JoinSegment(si, q);
18 else if si−1 < si+1 then
19 RemoveMiddlePoint(si−1);
20 else
21 RemoveMiddlePoint(si);

22 return P ; // Return the simplified polygon

sorted by length and inserted into a priority queue Q (lines 1-3). Simplification is repeatedly carried out on the next
segment in the queue until the queue is empty (line 4). The shortest line segment is dequeued from the queue as the
current segment si (line 5). To merge collinear segments, it is checked whether π − δ < ŝi < π + δ, where δ > 0
is a small angle threshold that is used to evaluate collinearity (line 7). If so, the middle point between si and si+1 is
removed so that a new line segment between the two end points is created (line 8; see also Algorithm 2). If the length of
current segment is less than or equal to τ , simplification is performed (lines 9-21). In consideration of Rule-3, one of
four methods is chosen depending on the angle difference α = |ŝi−1 − ŝi| ≤ π (lines 10-21). Figures 3-5 illustrate this
process.

• If 0 ≤ α ≤ ε, regress two segments si−1 and si+1, considering their lengths and tangents as shown in Figures 3(c),
(d) and (e). The detailed process is outlined in Algorithm 3.

• If π − α ≤ ε, this is considered an intrusion/extrusion, and the current segment is translated in order to remove the
intrusion/extrusion as shown in Figure 4 (see Algorithm 4).

• Otherwise, it is checked whether the two segments can be joined by extending si−1 and si+1 until si−1 and si+1

intersect (see Figure 6). Let q be the intersection point, dist a distance function, and γ the distance threshold.

– If dist(si, q) ≤ γ as shown in Figures 6(a)-(d), then remove si and join si−1 and si+1 (see Algorithm 5 and Figure
6(e)-(h)).

– Otherwise, do not join the segments because the extended part of the segments is too long as shown in Figures
7(a)-(e). Instead, remove the middle point between si and si−1 (or si+1) (see Figure 7(f)-(k)).

Pseudocode for the functions invoked in Algorithm 1 is described as Algorithms 2, 3, 4, and 5. Assume that P and Q
defined in Algorithm 1 can be accessed from Algorithms 2, 3, 4, and 5. Python implementation and examples can be
found at the git repository (https://github.com/joonseok-kim/simplification).

3

https://github.com/joonseok-kim/simplification

Algorithm 2: RemoveMiddlePoint
input :sk // Segment

1 Q← Q \ sk+1 ; // Remove sk+1 from the queue Q
2 s′ ← (pk, pk+2) ; // Create a new segment (pk, pk+2) by merging sk and sk+1

3 P ← P \ (sk ∪ sk+1) ; // Remove existing sk and sk+1 from P
4 Q← Q ∪ s′ ; // Insert the new segment into the queue Q

Algorithm 3: SegmentRegression
input :sk // Segment

1 Q← Q \ (sk−1 ∪ sk+1);
2 r ← sk−1/(sk−1 + sk+1) ; // Ratio to be used as a weight.
3 p← sk.PointAlong(r) ; // A point p on sk such that p is at distance sk · r from pk.
4 θ ← tan(ŝk−1 · r + ŝk+1 · (1− r)) ; // The slope of a regression line for sk−1 and sk+1.
5 q1 ← Projection(sk−2, p, θ) ; // Intersection of sk−2 with the line through p with slope θ.
6 q2 ← Projection(sk+2, p, θ) ; // Intersection of sk+2 with the line through p with slope θ.
7 sk ← (q1, q2) ; // A regression line segment for sk−1 and sk+1.
8 sk−1 ← (pk−1, q1) ; // Update sk−1

9 sk+1 ← (q2, pk+2) ; // Update sk+1

10 Q← Q ∪ sk−1 ∪ sk ∪ sk+1 ; // Add the new three segments into the queue

Algorithm 4: TranslateSegment
input :sk // Segment

1 Q← Q \ (sk−1 ∪ sk+1) ; // Remove sk−1 and sk+1 from the queue Q
2 if sk−1 < sk+1 then
3 p′ ← −−→pk+1 −−−→sk−1 ; // Translate vertex pk+1 by vector sk−1

4 sk ← (pk−1, p
′) ; // Update sk

5 sk+1 ← (p′, pk+2) ; // Update sk+1

6 P ← P \ sk−1 ; // Remove existing sk−1

7 Q← Q ∪ (sk ∪ sk+1) ; // Add sk and sk+1 into Q

8 else if sk−1 > sk+1 then
9 p′ ← −→pk −−−→sk+1 ; // Translate vertex pk by vector sk+1

10 sk−1 ← (pk−1, p
′) ; // Update sk−1

11 sk ← (p′, pk+2) ; // Update sk
12 P ← P \ sk+1 ; // Remove existing sk+1

13 Q← Q ∪ (sk−1 ∪ sk) ; // Add sk−1 and sk into Q

14 else
15 sk ← (pk−1, pk+2) ; // Update sk
16 P ← P \ (sk−1 ∪ sk+1) ; // Remove existing sk−1 and sk+1

17 Q← Q ∪ sk ; // Add sk into Q

Algorithm 5: JoinSegment
input :sk // Segment
input :q // Intersection point

1 Q← Q \ (sk−1 ∪ sk+1) ; // Remove sk−1 and sk+1 from the queue Q
2 sk−1 ← (pk−1, q) ; // Update sk−1

3 sk+1 ← (q, pk+2) ; // Update sk+1

4 P ← P \ sk ; // Remove existing sk
5 Q← Q ∪ (sk−1 ∪ sk+1) ; // Add sk−1 and sk+1 into Q

4

si
si-1

si+1
si

si-1si+1
si

si-1

si+1
si

si-1

si

si-1

si+1
si

si-1si+1

(a)

si+1

(c)

(e) (g)

(b) (d)

(f) (h)

Figure 3: Removing points and merging into regression segment

si

si-1si+1
si

si-1si+1

Figure 4: Translating current segment

si
si-1

si+1

si
si-1

si+1
si

si-1
si+1

si

si-1

si+1

(a)

(d)

(b)

(e)

(c)

(f)

Figure 5: Removing of points and joining segments

si

si-1

si+1

si

si-1
si+1

si

si-1

si+1

si

si-1

si+1

si-1

si+1

si-1
si+1

si-1

si+1

si-1

si+1

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 6: Joining segments (γ = si)

5

si
si-1

si+1 sisi-1
si+1

si si-1
si+1

si
si-1

si+1
si

si-1

si+1

si-1

si+1 si-1
si+1

si-1
si+1

si-1

si+1

si-1

si+1

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (k)

Figure 7: Removing middle points (γ = si)

3 Experiments

IndoorGML data for the Lotte World Mall3 (LWM), see Figure 8, one of the most complex shopping malls in Seoul, is
used to conduct a comparative experiment on the performance of the introduced simplification. IndoorGML is one of
OGC standards to provide a standard framework of semantic, topological, and geometric models for indoor spatial
information [8]. The dataset for the experiment is compatible with CityGML LoD4 [9] so that data can be visualzed
via any CityGML viewer. Figures 9 and 10 show the visual and quantitative results of simplification of one large and
complex corridor for varying τ , given ε = π/36, δ = π/180, γ = si. As τ increases, gradual simplification of shorter
segments is observed, in particular at extremities, dominant features such as intrusions, extrusions, offsets, and corners
are preserved.

While Figure 10 focuses on simplification results for one polygon, Figure 11 shows the comparison between the original
LWM data, the indoor simplification, and RDP for all spaces on a floor. Note that a needle-shaped polygon will vanish
after simplification if the length of its width is less than τ .

Figure 8: Lotte World Mall dataset

0

50

100

150

200

250

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

of

 se
gm

en
ts

distance tolerance 𝛕

Figure 9: The number of segments left after simplification
of the corridor shown in Figure 10

References

[1] M. van de Kerkhof, M. Löffler I. Kostitsyna, M. Mirzanezhad, and C. Wenk. Global curve simplification. In 27th
Annual European Symposium on Algorithms (ESA 2019), page 67:1–67:14, 2019.

3IndoorGML data (core module) for Lotte World Mall (IndoorGML 1.0.3), http://www.indoorgml.net/resources/

6

http://www.indoorgml.net/resources/

(a) initial (b) τ = 1.5 (c) τ = 2 (d) τ = 2.5

(e) τ = 3 (f) τ = 3.5 (g) τ = 4 (h) τ = 4.5

Figure 10: Results of simplification for varying τ

Ramer-Douglas-Peucker Indoor Simplification

Average Hausdorff Distance 0.17493661130877297 2.0721168063640185

Total Number of Points 1807 1794

250 200 150 100 50 0 50 100 150

100

80

60

40

20

0

20

Simplification Method
Original
Ramer-Douglas-Peucker
Indoor Simplification

Figure 11: Comparison between the original data, the indoor simplification (τ=2), and RDP (tolerance=1.2)

[2] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information
and Geovisualization, 10:112–122, 1973.

[3] Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer graphics and image
processing, 1(3):244–256, 1972.

[4] Robert Weibel and Geoffrey Dutton. Generalising spatial data and dealing with multiple representations. Geo-
graphical information systems 1, 1:125–155, 1999.

[5] Joon-Seok Kim and Ki-Joune Li. Simplification of geometric objects in an indoor space. ISPRS journal of
photogrammetry and remote sensing, 147:146–162, 2019.

[6] Joon-Seok Kim, Tae-Hun Lee, and Ki-Joune Li. Prism geometry: Simple and efficient 3-d spatial model. In The
Proceedings of the 3rd International Workshop on 3D Geo-information, pages 139–145, Seoul, South Korea, 2008.

[7] Wm Randolph Franklin and Harry R. Lewis. 3-D graphic display of discrete spatial data by prism maps. In Proc.
SIGGRAPH’78, volume 12(3), pages 70–75, August 1978.

[8] Hae-Kyong Kang and Ki-Joune Li. A standard indoor spatial data model—ogc indoorgml and implementation
approaches. ISPRS International Journal of Geo-Information, 6(4):116, 2017.

[9] Joon-Seok Kim, Sung-Jae Yoo, and Ki-Joune Li. Integrating indoorgml and citygml for indoor space. In
International Symposium on Web and Wireless Geographical Information Systems, pages 184–196. Springer, 2014.

7

	Introduction
	Simplification of Polygons
	Experiments

