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Abstract

The main purpose of this paper is to analyze the stability of the implicit-explicit (IMEX)
time-marching methods coupled with high order finite difference spatial discretization for
solving the linear convection-diffusion and convection-dispersion equations in one dimen-
sion. Both Runge-Kutta and multistep IMEX methods are considered. Stability analysis
is performed on the above mentioned schemes with uniform meshes and periodic boundary
condition by the aid of the Fourier method. For the convection-diffusion equations, the re-
sult shows that the high order IMEX finite difference schemes are subject to the time step
restriction At < max{ry,cAx}, where 7y is a positive constant proportional to the diffu-
sion coefficient and ¢ is the Courant number. For the convection-dispersion equations, we
show that the IMEX finite difference schemes are stable under the standard CFL condition

At < cAz. Numerical experiments are also given to verify the main results.
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1 Introduction

In this paper, the stability property of the high order finite difference schemes with certain
implicit-explicit (IMEX) time-marching methods is studied for the convection-diffusion and
convection-dispersion equations respectively. For the spatial derivative terms of these equa-
tions, we use a high order upwind biased finite difference scheme, which is a prototype of the
weighted essentially non-oscillatory (WENO) schemes [12,14], to discretize the convection
term, a high order central difference method to discretize the diffusion term, and a high
order upwind biased finite difference scheme to discretize the dispersion term.

The time derivative term for the convection-diffusion and convection-dispersion equations
should be discretized carefully. If explicit time-marching methods are used, then the time
step is dominated by the highest order derivative term, which may be very small, result-
ing in excessive computational cost. For example, for the convection-dispersion equations
involving third order spatial derivatives which are not convection-dominated, the explicit
time discretization may suffer from a strict time step restriction At ~ O(Ax3) for stability,
where At is the time step and Az is the spatial mesh size. If the fully implicit time-marching
methods are used, then the time step restriction may be relaxed, and usually unconditionally
stable such as A-stable schemes can be designed. However, in many practical applications
the lower order convection terms are often nonlinear, hence the implicit methods may be
much more expensive per time step than the explicit methods, because an iterative solution
of the nonlinear algebraic equations is needed.

When it comes to such problems, a natural consideration is to treat different derivative
terms differently, that is, the higher order derivative terms are treated implicitly, whereas
the rest of the terms are treated explicitly. The IMEX time-marching methods, which have
been proposed and studied by many authors [1-7,9, 10, 13,16, 17|, have considered such a
strategy. This can not only alleviate the stringent time step restriction, but also reduce
the difficulty of solving the algebraic equations, especially when the higher order derivative

terms are linear. Even when the higher order derivative terms are nonlinear, the IMEX



time-marching methods might still show their advantages in obtaining a better algebraic
system, for example for diffusive higher order derivatives the algebraic system might have
some symmetry and positive definite properties, which can be easily solved by many iterative
methods.

For the convection-diffusion equations, there have been many studies in the literature
on the IMEX methods. In [1], a pair of multistep IMEX time-marching methods are con-
structed. Coupled with the traditional second order central difference method, the multistep
IMEX finite difference schemes are shown to be stable under the standard CFL condition
At < cAzx, where c¢ is the Courant number. However, most of them tend to have an undesir-
ably small ¢, unless diffusion strongly dominates and an appropriate backward differentiation
formula is selected for the diffusion term. In [9], the authors designed several stable multistep
IMEX time discretizations, which are specially tailored for stability when coupled with the
pseudospectral method. These schemes are shown to be stable provided that the time step
and the spatial mesh size are bounded by two constants. Combined with the local discontin-
uous Galerkin (LDG) method, a variety of IMEX schemes [16,17], including Runge-Kutta
type and multistep type IMEX schemes, have been discussed. These schemes are stable
provided that the time step is upper-bounded by a positive constant 7y which is proportional
to d/v?, where v and d are the convection and diffusion coefficients, respectively. However,
when d is very small in comparison with the spatial mesh size, 7y is too small to be the
true bound for stability. For the above mentioned equations without the diffusion terms,
the explicit scheme is usually stable under the standard CFL condition. We could therefore
reasonably expect that the IMEX method for this convection-diffusion equation should also
be stable under the same CFL condition. The schemes in [18], where the explicit part is
treated by a strong-stability-preserving Runge-Kutta method [8], and the implicit part is
treated by an L-stable diagonally implicit Runge-Kutta method, are also subject to the time
step restriction At < 75. They also face the problem that 7y is too small to be the true

bound for stability when d is very small in comparison with the spatial mesh size.



For the convection-dispersion equations, there are also some studies in the literature on
the IMEX methods. In [6], some multistep IMEX time-marching methods with the spectral
spatial discretization for the KdV equation have been presented. Coupled with the finite
volume spatial discretization, some IMEX Runge-Kutta methods are tested in the case of
the KdV equation in [5]. These schemes are shown to be stable under the standard CFL
condition At < cAz. In [10], the IMEX method with the discontinuous Galerkin (DG)
spatial discretization is proposed for the KdV equation, where the stability analysis is not
discussed.

If we summarize the stability conditions of the schemes mentioned above, we could find
that the explicit, implicit and IMEX schemes coupled with appropriate spatial discretizations

are subject to the time step restrictions shown in Table 1.1. Notice that the specific choices

Table 1.1: The time step restriction for the explicit, implicit and IMEX schemes

equation explicit implicit (A-stable) IMEX
: e 9 . At < 71y (constant)
convection-diffusion | At < cAz?® | unconditionally stable
or At < cAx
convection-dispersion | At < cAz?® | unconditionally stable At < cAzx

of spatial discretizations may change the values of ¢ and 7y, but not the generic types of
stability conditions listed in this table.

In this paper, we will consider certain IMEX finite difference schemes for the convection-
diffusion and convection-dispersion equations. For the spatial discretization, we use a high
order upwind biased finite difference scheme for the convection term, a high order central
difference method for the diffusion term, and a high order upwind biased finite difference
scheme for the dispersion term. For simplicity, the stability analysis is performed on the linear
equations with the periodic boundary condition using the Fourier method. The following

results will be obtained.

1. For the convection-diffusion equations, we obtain two stable third order IMEX finite

difference schemes, including Runge-Kutta type and multistep type IMEX schemes,
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which are subject to the time step restriction At < max{r, cAzx}, where 7y is a positive

constant proportional to the diffusion coefficient and ¢ is the Courant number;

2. For the convection-dispersion equations, we obtain two stable third order IMEX Runge-
Kutta finite difference schemes and a second order multistep IMEX finite difference
scheme, which are subject to the time step restriction At < cAz, where ¢ is the Courant

number.

Although the stability analysis is performed on linear equations, the schemes are also appli-
cable to nonlinear equations which will be demonstrated by numerical tests.

The organization of this paper is as follows. In Section 2, we will present two IMEX
finite difference schemes for the linear convection-diffusion equation, and will concentrate on
the stability analysis of the corresponding schemes. Numerical experiments are also given to
demonstrate the stability results given by our analysis. In Section 3, we will provide several
numerical examples, including linear and nonlinear equations, to numerically validate the
stability condition and the error accuracy for the schemes. Section 4 is similar to Section 2,
and Section 5 is similar to Section 3, but they are for the convection-dispersion equations.

Finally, the concluding remarks are presented in Section 6.

2 The IMEX finite difference schemes for the convection-
diffusion equations

Consider the linear convection-diffusion equation

{ut -+ Uy = dumma (*Tv t) S (a7 b> U (O’T] (21)

u(z,0) =up(x), x € |a,b]
with periodic boundary condition, where d > 0 is the diffusion coefficient. Assume that [a, 0]
. . o, . . . . . . b—CL
is uniformly partitioned into N cells with the spatial mesh size given by Az = °&*. For

the spatial discretization, we use the third order upwind biased finite difference scheme for

the convection term, which is just the standard third order WENO scheme with the linear



weights, and the fourth order central difference method for the diffusion term to get the

semidiscrete scheme,

du

g = L(t,u); + N(t,u); (2.2)

in which N(t,u); represents the spatial discretization of the convection term

3u; + 2uip1 — 6u;—1 + U2

(t,u) — (23
and L(t,u); represents the spatial discretization of the diffusion term
L(t, U)Z —d —(UH_Q + u,-_g) + 16('&,'_,_1 + u,-_l) — 30u; (24)

12Ax22

The numerical solution u; approximates the exact solution wu(z,t) at the grid point x;. In
the following subsections, we will consider two types of IMEX time-marching methods, i.e.,
Runge-Kutta and multistep methods given in [17]. We will give the stability analysis on these
two high order IMEX methods coupled with the above finite difference spatial discretization
by the Fourier method. Numerical experiments are also given to demonstrate the stability

results given by our analysis.

2.1 The third order IMEX Runge-Kutta finite difference scheme

Let {t" = nAt € [0, ]}, be the time at the n-th time step, in which At is the time step.
Given u", the third order IMEX Runge-Kutta time-marching method [17] coupled with the
above finite difference spatial discretization is given in the following form,

(u(l) =u"

s s—1
ul®) = um + At Z as L(t7, u?) + At Z as N (t7, u?)
j=1

Jj=2

,2<s<4 (2.5)
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where u(*) approximates u(t" + c.At), cs = Y7, ay = Zj;i asj, and t7 = t" + c;At. The

Butcher coefficients as;, as;, b;, and Ej of (2.5) are specified in the following table.

0 0 0 O 0 0 0 O
0 7y 0 0 7y 0 0 0].
s; 1— 1+ ts;
0 5 1 v 0 5 1 aq aq 0 0 (2.6)
0 B Ba 0 l—ay ay O
‘ bj ‘ 0 51 52 Y H 0 1—Oég 9 0 ‘ bj ‘

The left half of the table lists a,; and b;, with the four rows from top to bottom corresponding
to s =1,2,3,4, and the columns from left to right corresponding to j = 1,2, 3,4. Similarly,

the right half lists a,; and I;j in (2.6), v ~ 0.435866521508459, 3, = —27* + 4y — 1 and

327" —2B2a17

By = %72 — b5y + %. The parameter o, is chosen as —0.35 in [16] and oy = ST

2.1.1 Stability analysis

We know that when the spatial discretization operator is LDG, the IMEX schemes [16,17] are
shown to be stable as long as the time step is upper-bounded by a constant, which depends
on the ratio of the diffusion coefficient and the square of the convection coefficient. For the
IMEX Runge-Kutta finite difference scheme (2.5), we expect to obtain similar stability, that
is, the scheme could be stable under the condition At < 7y, where 7y is a positive constant
depending solely on the diffusion coefficient d (notice that the convection coefficient is the
constant 1). Next, we would like to explore whether the scheme would allow us to achieve
such stability by the aid of the Fourier method.
The Fourier method, which is a powerful tool for stability analysis, consists of examining
the following Fourier modes
n nplhe;

uj =v ,

I? = —1. (2.7)
for appropriate wave number k. Substituting (2.7) into (2.5) yields
"t = G (2.8)

where the amplification factor G is a function of k, Az, At,d. The specific formula of G for

the scheme (2.5) is listed in Appendix A. The necessary and sufficient stability condition on
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G is given by the following theorem.

Theorem: (von Neumann condition) Consider the difference approximation shown in
(2.8), where G is a scalar, on a finite interval 0 < nAt < T. Assume that Z is the set of all

integers. If there is a constant K such that for all k € Z
1G] <1+ KA, (2.9)

then the approximation is stable.

Because the L? norm of the exact solution to the equation (2.1) does not increase in
time, we would look for strong stability, namely the von Neumann stability requirement is
|G| < 1. If |G| < 1 holds for At < 7, then the scheme is stable under the condition At < 7.
If 79 is a sharp bound, then |G| will be greater than 1 when At = 75 + ¢ (we take ¢ = 0.01
in our tests). As shown in Appendix A, the specific formula for G is very complex. Thus it
is difficult to obtain 7y analytically. Considering the algebraic complexity, we will try to get
it numerically. The specific procedure to obtain 7 is as follows.

To reduce the numerical error arisen from the calculation of Az, in the code, we directly
take Ax as l’z_—N“ Besides, to reduce computational complexity, we only impose the condition

|G| <1 for each of the following discrete k values
k:no, nOI—N+1,—N—|—2,,N (210)

It is therefore a slightly looser condition than that required for all £ € Z, but for large N
the two conditions become essentially equivalent within O(1/N?) in general [11]. During the
search for 7y we take N = 10°. For each set of At, N, k, the value of |G| is computed. By
checking whether the inequality |G| < 1 is satisfied for all discrete k values in (2.10), we can
get a range of the time step. The maximum value of this range is recorded as 7y. The code
to determine the stability condition for the scheme (2.5) implemented in the Matlab is given
in Appendix B. When the period is 27, the maximum time step 7y for the different diffusion

coefficient d is listed in Table 2.1. Fig. 2.1 shows the approximately linear relationship



Table 2.1: The mazimum time step Tg.
d | 0]0.0001L]|0.001]001]005|01]021]03] 04] 0.5
70 | 0| 0.0005 | 0.004 | 0.04 | 0.24 | 0.48 | 0.97 | 1.45 | 1.94 | 2.43

25F°

The maximum time step

05F

T N T T S T S E R TS R R S SR
0.1 0.2 0.3 0.4 0.5

Figure 2.1: The fitting curve of the maximum time step 1o and the diffusion coefficient d.

between d and 79, which can be described as
7o ~ 4.859d. (2.11)

Notice that when d is very small or even zero, 1y would be too small to be the true bound

for stability, because this scheme can also be stable under the standard CFL condition
At < cAx (2.12)

if the diffusion term is not considered. Next, we would like to further find the possible
CFL-like stability condition (2.12) for the scheme (2.5).

Similarly, we obtain ¢ in (2.12) numerically. When d = 0, we get the Courant number ¢
as follows,

¢ = 1.3599. (2.13)

We also observe the following two important facts.



1. When max{cAzx, 79} = 79, |G| < 1 holds. When At = 75+ 0.01, |G| tends to be greater

than 1.

2. For d > 0, we find that ¢ = 1.3599 may not be the optimal Courant number; that is,
|G| may not be greater than 1 if we take At = (¢ + 0.01)Az. But for any d, it seems

sufficient to ensure that if At = max{cAx, 7o} = cAz, then |G| < 1.

Therefore, we conclude that the third order IMEX Runge-Kutta finite difference scheme

(2.5) is stable under the condition
At < max{ry, cAx} (2.14)

where 79 = 4.859d, ¢ = 1.3599.
In order to further verify whether the scheme is subject to the above time step restriction,

we consider the following equation

{ut -+ Uy = dumma (.flf,t) S (_77-7 ﬂ-) U (O’T] (215)

u(z,0) =sinz, =€ [—m, 7|
with periodic boundary condition. The exact solution of (2.15) is u(z,t) = e~ %sin(x — t).
We use the scheme (2.5) to solve the above equation.

On the one hand, we take N,, = 640 in the tests so that max{cAz, 70} = 75, where
Azr = ]\2,—:) For any fixed diffusion coefficient d, we take At as 79 — 0.01, 79 and 75 + 0.01,
respectively. Table 2.2 lists the L' error of the scheme (2.5) for solving (2.15) with the
different time step. As expected, the error will blow up if we take At = 79+ 0.01 but is small
when At < 15. Therefore, when max{cAx, 79} = 79, 7 is the precise bound of the time step
restriction for stability. This clearly demonstrates the stability result (2.14) given by our
analysis in such situation.

On the other hand, we take N, = 40 in the tests such that max{cAz, 70} = cAx, where
Azxr = JQV—’Z For any given diffusion coefficient d, we take the time step At as (¢ — 0.01)Ax,

cAzx and (c+ 0.01)Ax, respectively. We can clearly observe from Table 2.3 that when d is

small enough, the error will blow up if we take At = (¢ + 0.01)Az but is tolerable under
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Table 2.2: The error of the scheme (2.5) for solving the equation (2.15) with the different
time step in the case of max{ry, cAxr} = 19, Ax = 2=

Nog

d At | N, | T L' error
2.42 9.10E-14

d=0.5 | 2.43 | 640 | 50000 | 2.04E-14
2.44 2.63E+16
1.93 0.12E-14

d=0.4 | 1.94 | 640 | 50000 | 2.91E-14
1.95 4.13E+07
0.96 8.19E-15

d=0.2 | 0.97 | 640 | 10000 | 6.74E-15
0.98 5.32E+08

Table 2.3: The error of the scheme (2.5) for solving the equation (2.15) with the different

time step in the case of max{ry, cAr} = cAx, Az = 2T,

Ne

d At N, T L' error
1.3499Ax 0.537

d=0 1.3599Az | 40 | 10000 0.539
1.3699Ax 3.88E+217
1.3499Ax 0.1975
d=0.0001 | 1.3599Ax | 40 | 10000 0.1982
1.3699Ax 4.61E+157
1.3499Ax 2.52E-16

d=0.001 | 1.3599Az | 40 | 100000 | 4.68E-16
1.3699Ax 2.87E-16
1.3499Ax 1.61E-16

d=0.01 | 1.3599Ax | 40 | 100000 | 1.58E-16
1.3699Ax 1.13E-16

the condition At < cAx, and when d is relatively larger, the error will not blow up when
At = (¢ + 0.01)Az, which verifies our observation in the stability analysis.
Thus, combining the results in Tables 2.2-2.3, we conclude that the third order IMEX

Runge-Kutta finite difference scheme (2.5) is stable under the time step restriction (2.14).
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2.2 The third order multistep IMEX finite difference scheme

Considering the semidiscrete scheme (2.2), we use the third order multistep IMEX time-

marching method given in [17] to discretize it to obtain a finite difference scheme as follows

n n 23 n on 4 n— n— D n— n—
2 5 1 ’
+ At(gL(t"H, u" ) + EL(tn_l, u" ) — EL(tn_g, un_g)i)

where N (t,u); and L(t,u); are defined as (2.3) and (2.4) respectively. Next, we will perform

the stability analysis on this scheme.
2.2.1 Stability analysis

When the spatial discretization operator is LDG, we know that the multistep IMEX schemes
[17] are shown to be stable provided that the time step is upper-bounded by a positive con-
stant, which depends on the ratio of the diffusion coefficient and the square of the convection
coefficient. For the multistep IMEX finite difference scheme (2.16), we expect to obtain sim-
ilar stability, that is, the scheme could also be stable under the condition At < 7y, where
Ty is a positive constant proportional to the diffusion coefficient d. Next, we would like to
explore whether the scheme can achieve such stability by the aid of the Fourier method.
Substituting the Fourier modes (2.7) into the scheme, we obtain

V" = 0™ + a4 agv™ % + a3 (2.17)

The specific formulas for a;,i = 1, ..,4 are listed in Appendix A.

To solve (2.17), we make the ansatz
vt =2" (2.18)

where z is a complex number. Substituting (2.18) into (2.17) gives us

2 a2 —an2 T — a3 — a2 =0 (2.19)

Therefore, (2.18) is a solution of (2.17) if, and only if, 2 satisfies the so called characteristic
equation

A — a2 —ag2? —asz —ay = 0. (2.20)
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The necessary and sufficient stability condition on the characteristic root z is defined as

follows.

Theorem: Consider the difference approximation shown in (2.17) on a finite interval 0 <
nAt < T. Assume that Z is the set of all integers. If there is a constant K such that for all
kel

2.21
|z| <14 KAt, else (2:21)

then the approrimation is stable.

{|z| <1, if z is a multiple root

Applying to the case of interest here, we would like to derive the values of 7y for strong
stability, namely

(2.22)

|z| <1, when z is a simple root of (2.20).
|z| <1, when z is a multiple root of (2.20).

since the L? norm of the exact solution to the equation (2.1) does not increase in time.
Considering the algebraic complexity, we still get 7 numerically. When the period is 2,
the maximum time step 7y is obtained in the similar way as that for the third order IMEX
Runge-Kutta finite difference scheme (2.5). We refer to Section 2.1.1 for more details. Here

we just summarize the result in Table 2.4.

Table 2.4: The mazimum time step 1.
d | 0| 0.001 | 0.01 | 0.05 0.1 0.2 0.3 0.4 0.5
7o | 0 | 0.0002 | 0.002 | 0.012 | 0.025 | 0.051 | 0.077 | 0.103 | 0.128

Similarly Fig.2.2 shows the approximately linear relationship between d and 7y, which
can be expressed as

7o ~ 0.2566d. (2.23)

We observe that the IMEX Runge-Kutta finite difference scheme (2.5) admits larger time
step than the multistep IMEX finite difference scheme (2.16). Similar to the scheme (2.5),
when d is very small in comparison with the spatial mesh size, 7y determined by (2.23) is
too small to be true for stability. Thus, we will further find the similar CFL-like stability

condition for the scheme (2.16).
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Figure 2.2: The fitting curve of the mazimum time step 19 and the diffusion coefficient d.

In order to get stability, ¢ should satisfy (2.22). We get the value of ¢ numerically. When

d = 0, we obtain ¢ = 0.39, that is, the scheme is stable when the time step satisfies
At < 0.39Azx. (2.24)
Besides, we also observe the following two important facts.

1. When max{cAx, 1o} = 70, (2.22) holds if At < 7y. If we take At = 79+ 0.01, the roots

of the characteristic equation will lie outside the complex unit disk.

2. When d > 0, ¢ = 0.39 may not be the optimal Courant number, that is, the roots
of the characteristic equation may not lie outside the complex unit disk if we take
At = (¢ + 0.01)Az. However, it seems sufficient to ensure that (2.22) holds if At =

max{cAx, 0} = cAx for any d.

Therefore, we conclude that the third order multistep IMEX finite difference scheme

(2.16) is stable under the condition

At < max{ry, cAx} (2.25)

where 75 ~ 0.2566d, ¢ = 0.39.
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Table 2.5: The error of the scheme (2.16) for solving (2.15) with the different time step in

the case of max{ry,cAx} =1y, Ax = ]\250

d At | N, | T L' error
0.127 7.20E-15

d=0.5 | 0.128 | 640 | 30000 | 8.42E-16
0.129 1.22E+29

0.102 6.68E-14

d=0.4 | 0.103 | 640 | 30000 | 6.11E-14
0.104 1.16E+161

0.05 6.09E-15

d=0.2 | 0.051 | 640 | 30000 | 6.16E-14
0.052 9.30E+303

In order to further verify whether the scheme is subject to the above time step restriction
(2.25), we still verify it on the equation (2.15). Since the third order multistep IMEX finite
difference scheme is not self-starting, we adopt the third order IMEX Runge-Kutta finite

difference scheme (2.5) to compute the solutions at the first three time levels.

We first take N,, = 640 in the test such that max{cAx, 7o} = 79, where Az = ]\foo For
any fixed diffusion coefficient d, we take At as 79 — 0.001, 75 and 79 + 0.001 respectively.
Table 2.5 lists the L! error of the scheme (2.16) solving (2.15) with the different time step.
As expected, the error will blow up if we take At = 79 + 0.001 but is small when At < 7.
Therefore, when max{cAx, 7y} = 79, 7o is the precise bound of time step restriction for
stability. This verifies the stability result produced by our analysis.

Then we take N, = 40 in the test so that max{cAx, 70} = cAx, where Az = ]2\,—“ For any
given diffusion coefficient d, we take the time step At as (¢—0.01)Az, cAz and (c+0.01)Az
respectively. When d is relatively large, the L' norm of the error does not blow up even in
the case At = (¢ + 0.01)Az, as shown in Table 2.6. When d is sufficiently small, we can
clearly observe that the error will blow up if we take At = (¢ + 0.01)Ax but is tolerable
under the condition At < cAz. This clearly demonstrates the stability result predicted by

our analysis.

Therefore, we conclude that the third order multistep IMEX finite difference scheme
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Table 2.6: The error of the scheme (2.16) for solving (2.15) with the different time step in

the case of max{ry,cAx} = cAzx, Ax = ]2\,—7;

d At N, T L' error

0.38Ax 0.2259

d=0 0.39Az | 40 | 1000 0.2288
0.40Azx 9.34E+39

0.38Ax 0.0831

d=0.001 | 0.39Axz | 40 | 1000 0.0842
0.40Azx 1.58E+06
0.38Ax 2.27E-16
d=0.01 | 0.39Az | 40 | 100000 | 1.50E-17
0.40Ax 6.95E-16
0.38Azx 6.41E-16
d=0.05 | 0.39Az | 40 | 100000 | 1.07E-15
0.40Azx 3.44E-16

(2.16) is stable under the condition (2.25).

3 Numerical experiments

The purpose of this section is to numerically validate the error accuracy of the third order
IMEX Runge-Kutta finite difference scheme (2.5) and the third order multistep IMEX finite
difference scheme (2.16) under the above discussed stability conditions. In the implementa-
tion of the multistep IMEX finite difference scheme, we use the IMEX Runge-Kutta finite
difference scheme to compute the solutions at the first three time levels. In the experiments,
we will take the final computing time 7" = 10 and the diffusion coefficient d = 0.5, unless
otherwise stated.

First, consider the linear equation (2.15). For the third order IMEX Runge-Kutta finite
difference scheme (2.5) and the third order multistep IMEX finite difference scheme (2.16),
we take the time step At = 0.6Az and At = 0.1Az respectively. The L' and L* error and
order of accuracy are contained in Table 3.1. We can clearly observe the designed order of
accuracy from this table.

In order to test the order of accuracy with respect to time, we take N = 2560 and the

proper time step so that the temporal error is always dominant. The L' and L* error and
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Table 3.1: Error and order for the schemes (2.5) and (2.16) solving the equation (2.15).

N IMEX Runge-Kutta scheme multistep IMEX scheme
L error | order | L™ error | order | L! error | order | L™ error | order
40 | 1.46E-05 2.31E-05 1.49E-05 2.34E-05

80 | 1.79E-06 | 3.03 | 2.83E-06 | 3.03 | 1.83E-06 | 3.03 | 2.87E-06 | 3.03
160 | 2.22E-07 | 3.01 | 3.49E-07 | 3.02 | 2.30E-07 | 2.99 | 3.61E-07 | 2.99
320 | 2.76E-08 | 3.01 | 4.34E-08 | 3.01 | 2.78E-08 | 3.05 | 4.36E-08 | 3.05
640 | 3.44E-09 | 3.00 | 5.41E-09 | 3.00 | 3.41E-09 | 3.02 | 5.36E-09 | 3.02
1280 | 4.30E-10 | 3.00 | 6.76E-10 | 3.00 | 4.69E-10 | 2.86 | 7.36E-10 | 2.86

Table 3.2: The error and order for the schemes (2.5) and (2.16) solving the equation (2.15),

N = 2560.
At IMEX Runge-Kutta scheme AL multistep IMEX scheme

L' error | order | L® error | order L' error | order | L* error | order
0.6 3.27E-04 5.14E-04 0.1 2.55E-05 4.01E-05
0.3 4.88E-05 | 2.75 | 7.66E-05 | 2.75 0.05 3.17E-06 | 3.01 | 4.98E-06 | 3.01
0.15 6.64E-06 | 2.88 | 1.04E-05 | 2.88 0.025 3.95E-07 | 3.01 | 6.20E-07 | 3.01
0.075 | 8.68E-07 | 2.93 | 1.36E-06 | 2.93 0.0125 | 4.93E-08 | 3.00 | 7.73E-08 | 3.00
0.0375 | 1.11E-07 | 2.97 | 1.74E-07 | 2.97 | 0.00625 | 6.18E-09 | 3.00 | 9.70E-09 | 2.99
0.01875 | 1.40E-08 | 2.98 | 2.20E-08 | 2.98 | 0.003125 | 8.01E-10 | 2.95 | 1.26E-09 | 2.95

order of accuracy for the schemes (2.5) and (2.16) solving the equation (2.15) can be observed
from Table 3.2. The optimal order of accuracy can be observed in this table.

Although we only perform the stability analysis on the linear convection-diffusion equa-
tions, numerical experiments show that the obtained stability conditions are also applicable
to the equations with the nonlinear convection term. Next, we will perform the test on the

nonlinear Burgers’ equation,

ug + (7)951: 0, (x,t) € (—m,m) U (0,T] (3.1)

u(z,0) = 5t sinz, =€ [-m, 7]

with the periodic boundary condition. Even though the initial condition is quite smooth, the
solution of the equation will become discontinuous in finite time. The third order upwind
biased finite difference scheme, which is the standard third order WENO scheme [12,14] with
linear weights (when the smoothness indicators and nonlinear weights are turned off), pro-
duces oscillations near the discontinuity, see the left figure of Fig 3.1. The multi-resolution

WENO scheme [20] is a good choice to eliminate or reduce the oscillations near the discon-
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Figure 3.1: The third order upwind biased scheme (left) and the third order multi-resolution
WENO scheme (right) for the Burgers’ equation. Solid line: exact solution; Circle symbol:
the numerical solution at T'=1.1. N = 500.

Table 3.3: The error and order of the third order upwind biased scheme (left) and multi-
resolution WENO scheme (right) coupled with the third order IMEX Runge-Kutta time dis-
cretization solving the equation (3.1). The time step is At = 0.6Ax.

N the upwind biased scheme the multi-resolution WENO scheme
L' error | order | L* error | order | L' error | order | L™ error | order
80 | 7.32E-05 5.67E-04 7.91E-04 7.00E-03

160 | 8.15E-06 | 3.17 | 6.66E-05 | 3.09 | 1.82E-04 | 2.12 | 2.60E-03 | 1.43
320 | 9.52E-07 | 3.10 | 7.99E-06 | 3.06 | 3.56E-05 | 2.36 | 8.95E-04 | 1.55
640 | 1.15E-07 | 3.05 | 9.73E-07 | 3.04 | 5.84E-06 | 2.61 | 2.69E-04 | 1.73
1280 | 1.41E-08 | 3.03 | 1.20E-07 | 3.02 | 6.51E-07 | 3.16 | 5.97E-05 | 2.17
2560 | 1.75E-09 | 3.01 | 1.49E-08 | 3.01 | 5.53E-08 | 3.56 | 8.71E-06 | 2.78

tinuity, see the right figure of Fig 3.1.

For the Burgers’ equation, we consider both the third order upwind biased scheme and
the third order multi-resolution WENO scheme for the spatial discretization. In order to
ensure correct upwind biasing and stability, a simple Lax-Friedrichs flux splitting [15] is used.
We take At = 0.6Ax for the scheme with the IMEX Runge-Kutta time discretization and
take At = 0.1Ax for the scheme with the multistep IMEX time discretization. Tables 3.3
and 3.4 are the L' and L™ error and order of accuracy for the above mentioned schemes.
We compute the solution up to 7' = 0.5 in the test, when the solution is still smooth. The

optimal order of accuracy can be observed from both tables.
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Table 3.4: The error and order of the third order upwind biased scheme (left) and multi-
resolution WENQO scheme (right) coupled with the third order multistep IMEX time dis-
cretization solving the equation (3.1). The time step is At = 0.1Ax.

N the upwind biased scheme the multi-resolution WENO scheme
L' error | order | L™ error | order | L' error | order | L™ error | order
80 | 6.59E-04 4.40E-03 7.16E-04 6.20E-03

160 | 6.98E-05 | 3.24 | 5.36E-04 | 3.03 | 1.61E-04 | 2.15 | 2.30E-03 | 1.43
320 | 7.86E-06 | 3.15 | 6.27E-05 | 3.10 | 3.28E-05 | 2.30 | 8.15E-04 | 1.51
640 | 9.24E-07 | 3.09 | 7.43E-06 | 3.08 | 5.32E-06 | 2.62 | 2.42E-04 | 1.75
1280 | 1.12E-07 | 3.05 | 9.03E-07 | 3.04 | 6.10E-07 | 3.12 | 547E-05 | 2.14
2560 | 1.38E-08 | 3.02 | 1.11E-07 | 3.02 | 5.54E-08 | 3.46 | 8.27E-06 | 2.73

Table 3.5: The error and order for the schemes (2.5) and (2.16) solving the equation (3.2).

N IMEX Runge-Kutta multistep IMEX
L error | order | L™ error | order | L! error | order | L™ error | order
100 | 1.62E-07 2.57E-07 1.59E-07 2.53E-07

200 | 2.05E-08 | 2.98 | 3.24E-08 | 2.99 | 2.03E-08 | 2.97 | 3.20E-08 | 2.98
300 | 6.11E-09 | 2.99 | 9.63E-09 | 2.99 | 6.11E-09 | 2.96 | 9.63E-09 | 2.96
400 | 2.58E-09 | 2.99 | 4.07E-09 | 3.00 | 2.61E-09 | 2.96 | 4.11E-09 | 2.96
500 | 1.32E-09 | 2.99 | 2.09E-09 | 3.00 | 1.33E-09 | 3.02 | 2.09E-09 | 3.02
600 | 7.67E-10 | 3.00 | 1.21E-09 | 3.00 | 7.94E-10 | 2.83 | 1.25E-09 | 2.83

Finally, we consider the viscous Burgers’ equation [16] with a source term

u2

2
u(x,0) = sinz, x € [—m, 7]

U + (=) = dug, + g(z,t), (x,t) € (—m,m)U (0,7

(3.2)

~2dtsin(2x), and the exact solution is u(z,t) = e~%sin(z). In

The source term is g(x,t) = se
order to ensure correct upwind biasing and stability, a simple Lax-Friedrichs flux splitting
is used for the convection term. For the third order IMEX Runge-Kutta finite difference
scheme (2.5) and the third order multistep IMEX finite difference scheme (2.16), we take
the time step At = 0.6Ax and At = 0.1Az, respectively. Then we can again clearly observe

the designed order of accuracy for the schemes solving the equation (3.2) in Table 3.5.
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4 The IMEX finite difference schemes for the convection-
dispersion equations

In this section, we will extend our work in Section 2 to the linear convection-dispersion
equation

{Ut + Uy + du:c:c:c = Oa (ZIZ’, t) € (CL, b) U (0’ T] (41)

u(z,0) = up(x), x € |a,b]
with periodic boundary condition, where the dispersion coefficient d > 0 is a constant.
Since this is a wave equation and the third order derivative term du,,, does not provide any
diffusion to help control the convection term u,, we do not expect a better stability condition
for d > 0 than for d = 0. This is different from the situation of convection-diffusion equations
discussed in previous sections. In this section, we will focus our attention on the stability
analysis for the third order IMEX Runge-Kutta method [16], the third order additive Runge-
Kutta method [10] and the second order multistep IMEX method [17] coupled with certain
high order finite difference spatial discretization respectively. Numerical experiments are

also given to demonstrate the stability results given by the analysis.

4.1 The spatial discretization

In this subsection, we present the spatial discretization of (4.1). We adopt the third order
upwind biased finite difference scheme, which is a prototype of the third order WENO scheme
to discretize the convection term, and the third order one-point upwind biased scheme to

discretize the dispersion term. Then we can get the following semidiscrete scheme

du

— = + N ; 4.2
G|~ ElewE N, (42)

where L(t,u); arises from the spatial discretization of the dispersion term

—Uip3 + Tujre — Hugy + 10w — wiq — w2

(4.3)

and N(t,u); is derived from the spatial discretization of the convection term. The specific

formula for N(t,u); is given by (2.3).
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4.2 The

temporal discretization

In this subsection, we consider the fully discrete schemes for the ODE system (4.2). Both

Runge-Kutta

and multistep IMEX time-marching methods are considered. For a detailed

introduction to IMEX time-marching methods, please refer to [13,16,17].

4.2.1 The third order Runge-Kutta type finite difference scheme

We use the third order IMEX Runge-Kutta method [16] and the third order additive Runge-

Kutta method [10] to fully discretize the semidiscrete scheme (4.2) and obtain

\

i i—1
(@) — Lt 9 Qs n ,,(7)
ul =ur+ ALY a L7, V) + Ay a i N(tT, u)
; T ; o 2<i<4 (4.4)

4 4
untl = 4 Atz bjﬁ(t;-‘,u(j)) + Atzng(t;z, u)

J=1 J=1

where I = t" + ¢;At, u' approximates u(¢?). The third order IMEX Runge-Kutta method

has been described in detail in the previous subsection for solving the convection-diffusion

equations. For details on the Butcher coefficients of this method, please refer to (2.6). The

coefficients of the additive Runge-Kutta method are given in the following tabular data.

0 0 0 0
¥ 0 0
A5 2746238789719 —640167445237 v 0
1104 5123286668??969(3”)77098 fﬁtg’gzﬁlfﬁl?ggéﬁ 11266239266428
7840856788654 7529755066697 11593286722821 gl
b, 1471266399579 —4482444167858 11266239266428 v
7
| ¢ | 0 2y 2 1]
: (4.5)
0 0 0 0
. 2y 0 0 0
A5 5535828885825 788022342437 0 0
10492691773637 10882634858940
6485989280629 —4246266847089 10755448449292 0
16251701735622 9704473918619 10357097424841
‘ b 1471266399579 —4482444167858 11266239266428
i 7840856788654 7529755066697 11593286722821 gl

The first table in (4.5) lists a;; ,b; and ¢;, with the four rows from top to bottom corre-

sponding to 7 = 1,2, 3,4, and the columns from left to right corresponding to 7 = 1,2,3,4
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respectively. Similarly, the second table lists a,; and Ej. In (4.5), the value of v is set as

1767732205903
4055673282236 *

The additive Runge-Kutta method is a combination of the traditional explicit Runge-
Kutta method and an L-stable, stiffly-accurate, singly diagonally implicit Runge-Kutta
method. Compared with the IMEX Runge-Kutta finite difference scheme of the same order
which has the advantage of simplicity, the additive Runge-Kutta finite difference scheme

exhibits excellent stability in the existence of stiffness [13].
4.2.2 The second order multistep IMEX finite difference scheme

Because no multistep method of order greater than 2 can be A-stable [7], we will consider

the second order multistep IMEX time-marching method [17] with an A-stable trapezoidal

rule for the implicit part in this paper. The finite difference scheme is in the form
ultt — :At<g]\7(t", u”); — N(t" Y _1),-) +

(4.6)

3 1
At = n+1 n+1 n— 1 n—l )
t( SL( )i+ 7L )Z)

where N (t,u); stems from the spatial discretization of the convection term and L£(¢, u); arises
from the spatial discretization of the dispersion term. The formulas for N(t,u); and L(¢,u);
are specified in (2.3) and (4.3), respectively. In the following subsection, we would like to

analyze the stability of the above schemes.

4.3 Stability analysis

In [5], some IMEX Runge-Kutta methods coupled with the finite volume spatial discretiza-
tion are shown to be stable for the KdV equation under the standard CFL condition
At < c¢Azx. For the IMEX schemes (2.6), (4.5), (4.6) coupled with finite difference spa-
tial discretizations solving the linear convection-dispersion equation, in which we treat the
dispersion term implicitly and the convection term explicitly, we can reasonably expect to
obtain similar stability. Because of the algebraic complexity, we will proceed in the similar

way as that in Section 2.1.1 to get the values of ¢. When the period is 27 and d = 0, Table
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Table 4.1: The Courant number c.

scheme c
(2.6) 1.3599
(4.5) 2.03
(4.6) 0.58

4.1 lists the maximum Courant number ¢ which can guarantee the stability. We also find
that when d > 0, ¢ may not be the optimal Courant number in the sense that, if we take
At = (¢ + 0.01)Az, the norm of the amplification factor may not be greater than 1 (or the
roots of the characteristic equation may not lie outside the complex unit disk), but we can
ensure that |G| <1 (or (2.22)) holds if At < cAzx for any d.

In order to further verify whether the above listed ¢ can ensure the numerical stability

of the schemes, we consider the following equation

{ut + Up + dttgge = 0, (2,t) € (—m,m) U (0,T] (4.7)

u(z,0) = sin(z), x € [—m, 7]
with periodic boundary condition. The exact solution is u(x,t) = sin (z — (1 — d)t). Since
the second order multistep IMEX finite difference scheme (4.6) is not self-starting, we adopt
the third order IMEX Runge-Kutta finite difference scheme (2.6) to compute the solution
at the first time level. In the tests, we take the time step At as (¢ — 0.01)Az, cAz and
(c+0.01)Ax, respectively. Tables 4.2, 4.3 and 4.4 show that when d = 0, the error will blow
up if we take At = (¢ + 0.01)Az, but is tolerable under the condition At < cAz. When
d # 0, the L' and L* error is bounded as shown in these three tables.

In general, these three schemes are stable under the standard CFL condition. Besides,
it is worth noting that the Runge-Kutta type IMEX finite difference schemes (2.6), (4.5)
admit larger time step than the multistep IMEX finite difference scheme (4.6), and the
additive Runge-Kutta finite difference scheme (4.5) admits larger time step than the IMEX

Runge-Kutta finite difference scheme (2.6).
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Table 4.2: The error of the scheme (2.6) for solving the equation (4.7) with the different

time step.

Table 4.3: The error of the scheme

time step.

d At N, T L' error L error
1.3499Ax 0.5370 0.8446
d=0 1.3599Az | 40 | 10000 0.5390 0.8471
1.3699Azx 3.88E+217 | 6.20E+217
1.3499Azx 0.6325 0.9996
d=0.001 | 1.3599Az | 40 | 100000 0.6325 0.9996
1.3699Azx 0.6325 0.9996
1.3499Azx 0.6420 1
d=0.01 | 1.3599Az | 40 | 100000 0.6420 1
1.3699Ax 0.6420 1
1.3499Ax 0.6451 0.9996
d=0.05 | 1.3599Ax | 40 | 100000 0.6451 0.9996
1.3699Ax 0.6451 0.9996

(4.5) for solving the equation (4.7) with the different

d At N, T L' error | L™ error
2.02Ax 0.6281 0.9993
d=0 2.03Az | 40 | 10000 0.6281 0.9993
2.04Az 2.16E+51 | 3.21E+51
2.02Ax 0.6325 0.9996
d=0.001 | 2.03Az | 40 | 100000 | 0.6325 0.9996
2.04Ax 0.6325 0.9996
2.02Ax 0.642 1
d=0.01 | 2.03Az | 40 | 100000 0.642 1
2.04Ax 0.642 1
2.02Ax 0.6451 0.9996
d=0.05 | 2.03Az | 40 | 100000 | 0.6451 0.9996
2.04Ax 0.6451 0.9996

24




Table 4.4: The error of the scheme (4.6) for solving (4.7) with the different time step.

d At N, T L' error | L™ error
0.57Ax 1.1745 1.8248
d=0 0.58Ax | 40 | 1000 1.1651 1.8086
0.59Ax 3.45E+82 | 5.35E+82
0.57Ax 0.6325 0.9996
d=0.001 | 0.58 Az | 40 | 100000 0.6325 0.9996
0.59Az 0.6325 0.9996
0.57Az 0.642 1
d=0.01 | 0.58 Az | 40 | 100000 0.642 1
0.59Az 0.642 1
0.57Azx 0.6451 0.9996
d=0.05 | 0.58 Az | 40 | 100000 0.6451 0.9996
0.59Ax 0.6451 0.9996

5 Numerical experiments

In this section, we provide a few numerical examples, including the linear and nonlinear
convection-dispersion problems, to illustrate stability condition and the error accuracy for the
third order IMEX Runge-Kutta finite difference scheme (2.6), the third order additive Runge-
Kutta finite difference scheme (4.5) and the second order multistep IMEX finite difference
scheme (4.6) respectively. In order to implement the scheme (4.6), we use the self-starting
scheme (2.6) to compute the solution at the first time level.

Consider the linear convection-dispersion equation (4.7). We take d = 0.5, and the final
computing time is 7" = 10. Table 5.1 lists the L' and L* error and order of accuracy for
these three schemes solving (4.7). We take At = 0.5Az in all the tests. Optimal order of
accuracy can be observed in this table.

Although we only perform the stability analysis on the linear convection-dispersion equa-
tions, numerical experiments show that the stability conditions we obtained are also appli-
cable to nonlinear equations. In the following, we would like to test the error and order
of accuracy for the convection-dispersion equations with the nonlinear convection term. In
order to ensure correct upwind biasing and stability, a simple Lax-Friedrichs flux [15] is used

for the convection term.
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Table 5.1: The error and order for the schemes (2.6), (4.5) and (4.6) solving the equation
(4.7). At = 0.5Ax.

N | Norm IMEX Runge-Kutta | Additive Runge-Kutta | multistep IMEX
error order error order error order
40 Lt 3.90E-03 3.90E-03 9.50E-03
L>* | 6.10E-03 6.10E-03 1.50E-02
60 Lt 1.10E-03 3.06 1.10E-03 3.06 4.00E-03 | 2.16
L> | 1.80E-03 3.05 1.80E-03 3.05 6.20E-03 | 2.15
20 Lt 4.71E-04 3.05 4.74E-04 3.05 2.20E-03 | 2.09
L> | 7.35E-04 3.04 7.40E-04 3.04 3.40E-03 | 2.09
100 Lt 2.39E-04 3.04 2.41E-04 3.04 1.40E-03 | 2.06
L> | 3.74E-04 3.03 3.76E-04 3.03 2.20E-03 | 2.06
120 Lt 1.38E-04 3.03 1.38E-04 3.03 9.43E-04 | 2.05
L> | 2.15E-04 3.03 2.17E-04 3.03 1.50E-03 | 2.05

Table 5.2: The error and order for the schemes (2.6), (4.5) and (4.6) solving the equation
(5.1). At = 0.3Ax.

N | Norm IMEX Runge-Kutta | Additive Runge-Kutta | multistep IMEX
error order error order error order
20 L' 1.20E-03 1.20E-03 1.10E-03
L> | 1.97E-02 1.98E-02 2.11E-02
160 L' 2.49E-04 2.23 2.52E-04 2.23 2.63E-04 | 2.07
L> | 6.50E-03 1.60 6.50E-03 1.60 7.00E-03 | 1.59
220 L' 3.76E-05 2.73 3.80E-05 2.73 5.88E-05 | 2.16
L>* | 1.30E-03 2.31 1.30E-03 2.30 1.70E-03 | 2.02
640 L' 5.03E-06 2.90 5.09E-06 2.90 1.36E-05 | 2.12
L>* | 1.91E-04 2.77 1.94E-04 2.77 3.88E-04 | 2.15
1230 L' 6.35E-07 2.98 6.43E-07 2.98 3.34E-06 | 2.02
L*> | 2.45E-05 2.97 2.47E-05 2.97 9.49E-05 | 2.03

First, we compute the classical soliton solution of the generalized KdV problem [19]

{ut + Uy + WU, + EUpyy = 0, (x,t) € (—2,3) U (0,T] (5.1)

u(z,0) = Asech%(K(x —1x9)), x€[—2,3]

[NIES

where € = 2.058 x 107, A = 0.2275, 2o = 0.5, K = 3(%1) . The exact solution is u(z,t) =
Asechg(K(x —1x9) —wt), w=K(1+ f—g). We take At = 0.3Az in all the tests. We choose
a large domain and use the exact solution to serve as the boundary condition. Then we can

clearly observe the designed order of accuracy from Table 5.2.
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Table 5.3: The error and order for the schemes (2.6), (4.5) and (4.6) solving the equation
(5.2). At =0.1Az.

IMEX Runge-Kutta | Additive Runge-Kutta | multistep IMEX

N | Norm

error order error order error order

30 Lt 1.60E-02 1.61E-02 1.75E-02

L*>* | 1.18E-01 1.20E-01 1.45E-01
160 Lt 2.50E-03 2.68 2.50E-03 2.68 3.90E-03 | 2.18
L*> | 1.79E-02 2.72 1.83E-02 2.71 3.05E-02 | 2.25
390 Lt 3.23E-04 2.95 3.28E-04 2.94 9.21E-04 | 2.07
L> | 2.30E-03 2.95 2.40E-03 2.94 6.90E-03 | 2.15
640 Lt 4.08 E-05 2.99 4.15E-05 2.98 2.31E-04 | 1.99
L> | 2.88E-04 3.01 2.96E-04 3.01 1.70E-03 | 1.98
1230 L! 5.11E-06 3.00 5.20E-06 3.00 5.84E-05 | 1.98

L*> | 3.56E-05 3.01 3.66E-05 3.01 4.30E-04 | 2.02

Next, we compute the classical soliton solution of the KdV problem [19]

u(z,0) = —2sech®(z), =z € [-10,12]
The exact solution is u(z,t) = —2sech?(x —4t). We take At = 0.1Az in all the tests. Table
5.3 gives the L' and L® error and order of accuracy at 7" = 0.5 using the exact solution to
serve as the boundary condition. The optimal order of accuracy can be observed from this
table.
Finally, we consider the soliton solution of the mKdV problem

{ut F6uPuy + Ugee = 0, (x,1) € (—40,40) U (0, T] 53)

u(z,0) = /esech(y/cx), x € [—40,40]
The exact solution is u(z,t) = y/csech (y/c(z — ct)). Here, we take ¢ = 1. We take At =
0.1Az in all the tests. Table 5.4 gives the L' and L* error and order of accuracy at 7' = 0.5
using the exact solution to serve as the boundary condition. We can clearly observe the

designed order of accuracy from this table.

6 Concluding remarks

We have considered some carefully chosen IMEX time marching methods coupled with high

order finite difference spatial discretization for solving the linear convection-diffusion and the
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Table 5.4: The error and order for the schemes (2.6), (4.5) and (4.6) solving the equation
(5.3). The time step is At = 0.1Ax.
IMEX Runge-Kutta | Additive Runge-Kutta | multistep IMEX

N | Norm

error order error order error order

160 L' 5.36E-04 5.36E-04 6.40E-04

L*> | 1.29E-02 1.29E-02 1.88E-02
290 Lt 9.18E-05 2.55 9.18E-05 2.55 1.15E-04 | 2.48
L*> | 2.00E-03 2.68 2.00E-03 2.68 3.70E-03 | 2.34
640 Lt 1.27E-05 2.85 1.27E-05 2.85 2.28E-05 | 2.33
L> | 2.65E-04 2.92 2.65E-04 2.92 6.75E-04 | 2.46
1280 Lt 1.64E-06 2.96 1.64E-06 2.95 4.96E-06 | 2.20
L*> | 3.35E-05 2.99 3.35E-05 2.99 1.18E-04 | 2.51
9560 L! 2.07E-07 2.99 2.07E-07 2.99 1.23E-06 | 2.01

L | 4.20E-06 3.00 4.20E-06 3.00 2.63E-05 | 2.17

convection-dispersion equations with periodic boundary conditions. By the aid of the Fourier
method, a procedure in Matlab is used to get the time step restriction of the schemes. For the
convection-diffusion equations, the result shows that the IMEX finite difference schemes are
stable under the condition At < max{7y, cAx}, in which 7y is a positive constant proportional
to the diffusion coefficient and ¢ is the Courant number. For the convection-dispersion
equations, the result shows that the IMEX finite difference schemes are stable under the
standard CFL condition At < c¢Az. In addition, we can find that the Runge-Kutta type
IMEX finite difference schemes admit larger time step than the multistep type IMEX finite
difference schemes. The numerical tests verify the designed order of accuracy for these IMEX

finite difference schemes under the stability condition.
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Appendix A
1. The amplification factor G of the third order IMEX Runge-Kutta finite

difference scheme (2.5) solving the convection-diffusion equation.

= yef®®i 2 = —1 into the first four difference

n

Substituting the Fourier modes u;]
equations in (2.5) yields

where

14+ AtGNay,

2= 1— AtGLCLQQ
1+ AtGN (a1 + as2Ms) + AtG Laz, My

Ms 1 — AtG Lag;
M. 1+ AtGN (ag + GioMa + a3Ms) + AtGL(apnMs + a3 Ms)
T 1 — AtGLay,
= —12%11'2( — 32008§+20082€—|—30)
GN = —i<1 + 1Cos§ + 1]sing —cos§ + Isiné + 1cos2§ — lIsin%)
Az \2 3 3 6 6

with £ given by £ = kAz. The Butcher coefficients ay;, as;, b;, Bj, s=1,..,4;7=1,...,4 are

specified in (2.6). Substitute the above formula into the last term of (2.5), and we can get

the amplification factor GG after a simple arithmetic operation.

G =1+ AtGN (b + byMa + byMs + by My) + AtGL (b My + by M + by My)

2. The coefficients of the characteristic equation (2.20).

1+ ZAtGN —3AtGN + SAIGL
G = — S5~ W= 3
1 - 2AtGL 1-2AtGL
SAIGN _ —$AIGL

“ T IANGL YT IANGE
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Appendix B

For the IMEX Runge-Kutta finite difference scheme (2.5), the Courant number ¢ and the
maximum time step 79 have been obtained numerically using the Matlab code. Note that
the stability analysis described in Section 2.1.1 is carried out by considering whether the
condition |G| < 1is satisfied. Taking the maximum time step 7y as an example, the algorithm

developed for the scheme is presented below.

Algorithm 1 : Numerical stability analysis of the third order IMEX Runge-Kutta finite
difference scheme (2.5) for solving the linear convection-diffusion equation with periodic

boundary condition.

Input: d: diffusion coefficient
Output: 75: the maximum time step

1: function MAINFUNCTION(d)

2: 70+ 0

3: bool; + 1
4 N+ 10°
5: Ax +

6: while (1) do

7 At <+ 19

8: for k=—N+1— N do

9: compute |G|, where G is a function of d, At, Az, k
10: if |G| > 1 then

11: bool; + 0

12: break;

13: end if

14: end for

15: if bool; # 0 then

16: To ¢ 7o + 0.01
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17:

18:

19:

20:

21:

22:

else
break;
end if
end while
return 7

end function
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