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Abstract

In many real-world problems, first-order (FO) derivative eval-
uations are too expensive or even inaccessible. For solving
these problems, zeroth-order (ZO) methods that only need
function evaluations are often more efficient than FO meth-
ods or sometimes the only options. In this paper, we propose
a novel zeroth-order inexact augmented Lagrangian method
(ZO-iALM) to solve black-box optimization problems, which
involve a composite (i.e., smooth+nonsmooth) objective and
functional constraints. This appears to be the first work that de-
velops an iALM-based ZO method for functional constrained
optimization and meanwhile achieves query complexity results
matching the best-known FO complexity results up to a factor
of variable dimension.With an extensive experimental study,
we show the effectiveness of our method. The applications of
our method span from classical optimization problems to prac-
tical machine learning examples such as resource allocation
in sensor networks and adversarial example generation.

Introduction
In many practical optimization problems such as black-box
attack (Chen et al. 2017), we only have access to zeroth-
order (ZO) function values but no access to first-order (FO)
or higher order derivatives (Liu et al. 2020a). In this paper,
we consider nonconvex problems with possibly nonconvex
constraints:

f∗0 := min
x∈Rd

{
f0(x) := g(x) + h(x), s.t. c(x) = 0

}
, (1)

where g is smooth but possibly nonconvex, c = (c1, . . . , cl) :
Rd → Rl is a vector function with continuously differ-
entiable components, and h is closed convex but possibly
nonsmooth and has a coordinate structure, i.e., h(x) =∑d
i=1 h(xi). This formulation follows from (Li et al. 2021),

except that in this paper, only the function evaluations of g
and c, but not their gradients, are accessible. Such a formula-
tion includes a large class of nonlinear constrained problems.
We remark that an inequality constraint t(x) ≤ 0 can be
equivalently formulated as an equality constraint t(x)+s = 0
by enforcing the nonnegativity of s, with equivalent stationar-
ity conditions (c.f. (Li et al. 2021)). Note in (1), the inclusion
of a coordinate-separable constraint set X is equivalent to the
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addition of IX to the nonsmooth term h in the objective f0,
where IX (x) = 0 if x ∈ X and +∞ otherwise.

Contributions
Our contributions are three-fold. First, we design a zeroth-
order accelerated proximal coordinate update (ZO-APCU)
method for solving coordinate-structured strongly-convex
composite (i.e., smooth+nonsmooth) problems. ZO-APCU
appears to be the first PCU method with acceleration by
just using function values. It can be viewed as a ZO variant
of the APCG in (Lin, Lu, and Xiao 2014). To solve black-
box optimization in the form of (1), we propose a novel
zeroth-order inexact augmented Lagrangian method (ZO-
iALM), by using ZO-APCU to design a zeroth-order inexact
proximal point method (ZO-iPPM) to approximately solve
each ALM subproblem. Though any ZO method can be used
as a subroutine in the iALM, the use of ZO-iPPM with the
developed ZO-APCU is crucial to yield best-known query
complexity results and also good numerical performance, as
we demonstrate in the experiments.

Second, query complexity analysis is conducted on
the proposed methods. We show that ZO-APCU needs
O(d
√
κ log 1

ε ) queries to produce an ε-stationary point of
a d-dimensional strongly-convex composite problem with a
condition number κ. The ZO-iPPM has an Õ(dε−2) complex-
ity to give an ε-stationary point of a nonconvex composite
problem. On solving (1) that satisfies a regularity condition,
the ZO-iALM has an Õ(dε−3) overall complexity to pro-
duce an ε-KKT point, and the complexity can be reduced
to Õ(dε−

5
2 ) if the constraints are affine. All our complexity

results are (near) optimal or the best known. To the best of
our knowledge, complexity of ZO methods on nonconvex
functional constrained problem (1) has not been studied in
the literature, thus our Õ(dε−3) result is completely new.

Third, we use a coordinate gradient estimator while im-
plementing the core solver ZO-APCU. To be able to yield
high-accuracy solutions, we give a multi-point coordinate-
wise gradient estimator and analyze its error bound. Under
the j-th order smoothness assumption for some j ∈ Z+, we
show that the error of a max{2, 2(j − 1)}-point coordinate-
wise gradient estimator is upper bounded by O(aj), where a
is the sampling radius. This result is meaningful and impor-
tant to yield high accuracy, because in practice a cannot be



too small, otherwise round-off errors will dominate.
Overall, we conduct a comprehensive study on ZO meth-

ods on solving nonconvex functional constrained black-box
optimization, from multiple perspectives including complex-
ity analysis, gradient estimator, and significantly improved
performance on practical machine learning tasks and classical
optimization problems.

Related Works
In this subsection, we review previous works on the inexact
augmented Lagrangian methods (iALMs) in the usual FO
settings and the zeroth-order methods (ZOMs).

The iALM is one of the most common methods for solving
constrained problems. It alternatingly updates the primal
variable by inexactly minimizing the augmented Lagrangian
(AL) function and the Lagrangian multiplier by dual gradient
ascent. If the multiplier is fixed to zero, then iALM reduces
to a standard penalty method, which usually has a worse
practical performance than iALM. Previous works on iALM
assume that FO derivatives of the objective function can be
evaluated, therefore use FOMs to inexactly minimize the AL
function in each primal update.

For convex nonlinear constrained problems, the iALM in
(Li and Xu 2021) and the proximal-iALM in (Li and Qu
2021) can produce an ε-KKT point with O(ε−1| log ε|) gra-
dient evaluations, and the AL-based FOMs in (Xu 2021b,a;
Ouyang et al. 2015; Li and Qu 2021; Nedelcu, Necoara, and
Tran-Dinh 2014) can produce an ε-optimal solution with
O(ε−1) complexity. For strongly-convex problems, the com-
plexity results can be respectively reduced to O(ε−

1
2 | log ε|)

for an ε-KKT point and O(ε−
1
2 ) for an ε-optimal solution,

e.g., (Li and Xu 2021; Li and Qu 2021; Xu 2021b; Nedelcu,
Necoara, and Tran-Dinh 2014; Necoara and Nedelcu 2014).

For nonconvex problems with nonlinear convex constraints,
when Slater’s condition holds, Õ(ε−

5
2 ) complexity results

have been obtained by the AL or quadratic-penalty based
FOMs in (Li and Xu 2021; Lin, Ma, and Xu 2019) and the
proximal ALM in (Melo, Monteiro, and Wang 2020a). When
a regularity condition (see Assumption 5 below) holds, the
ALM in (Li et al. 2021) achieves Õ(ε−

5
2 ) complexity for

nonconvex problems with nonlinear convex constraints and
Õ(ε−3) complexity for problems with nonconvex constraints.

When gradients of the objective function are unavailable,
ZOMs are the only tools available. Previous ZO works mainly
focus on problems without nonlinear functional constraints.
Many existing ZOMs are modified from some gradient de-
scent type FOMs, replacing the exact gradient ∇f(x) by
some gradient estimator ∇̃f(x). In the next section, we
briefly review some existing gradient estimation frameworks
including random search and finite difference. A more de-
tailed overview can be found in (Liu et al. 2020a) for ZOMs.

Notations, Definitions, and Assumptions
We use ‖ · ‖ for the Euclidean norm of a vector and the
spectral norm of a matrix. [n] denotes the set {1, . . . , n}. We
use Õ to suppress all log terms of ε from the big-O notation.
We denote Jc(x) as the Jacobian of c at x. The distance

between a vector x and a set X is denoted as dist(x,X ) =
miny∈X ‖x− y‖. For a function f , we use ∂f to denote the
subdifferetial of f . For a differentiable function f , we use
∇̃f as an estimator of the gradient∇f . The AL function of
(1) is

Lβ(x,y) = f0(x) + y>c(x) + β
2 ‖c(x)‖2, (2)

where β > 0 is the penalty parameter, and y ∈ Rl is the
multiplier or the dual variable.

Definition 1 (ε-KKT point) A point x ∈ Rd is an ε-KKT
point of (1) if there is y ∈ Rl such that

‖c(x)‖ ≤ ε, dist
(
0, ∂f0(x) + J>c (x) y

)
≤ ε. (3)

Definition 2 (k-smoothness) For some k ≥ 1, we say f is
Mk k-smooth, if the k-th derivative of f is Mk Lipschitz
continuous.

Remark 1 Letting k = 1 above corresponds to the standard
smoothness assumption.

Definition 3 (coordinate k-smooth) For some k ≥ 1, we
say f is Mk coordinate k-smooth, if the partial function
Fi(xi) := f(x<i,xi,x>i) is Mk k-smooth, ∀ i ∈ [d], where
x<i := (x1, . . . , xi−1) and x>i := (xi+1, . . . , xd) are fixed.

Remark 2 If f is Mk k-smooth, then it must be M c
k coordi-

nate k-smooth with some M c
k ≤Mk.

Definition 4 (ρ-weakly convex) A function f is ρ-weakly
convex if f + ρ

2‖ · ‖
2 is convex.

Remark 3 A function that is L-smooth is also L-weakly
convex. However, its weak convexity constant can be much
smaller than its smoothness constant.

Throughout this paper, we make the following assump-
tions.

Assumption 1 (smoothness and weak convexity) In (1), g
is L0-smooth and ρ0-weakly convex. For each j ∈ [l], cj is
Lj-smooth and ρj-weakly convex.

Assumption 2 (bounded domain) In (1), h is closed con-
vex with a compact domain, i.e.,

D := max
x,x′∈dom(h)

‖x− x′‖ <∞, (4a)

Di := max
x,x′∈dom(h)
x[d]\i=x′[d]\i

‖x− x′‖ ≤ D,∀i ∈ [d], (4b)

where x[d]\i = (x1, . . . ,xi−1,xi+1, . . . ,xd).

Due to the page limit, all proofs in this paper are given in the
supplementary material.

Multi-point Gradient Estimator
In this section, we provide backgrounds on gradient esti-
mators and propose the zeroth-order multi-point coordinate
gradient estimator.



Backgrounds on Gradient Estimators
Let a denote the sampling radius (also called the smooth-
ing parameter) of a random gradient estimator, and u ∼ p
denote some random direction sampled from a distribu-
tion p. Denote fa as the smoothed version of f defined as
fa(x) := Eu∼p′ [f(x + au)], where p′ is a certain distribu-
tion determined by p. All random gradients in this subsection
are biased with respect to ∇f but unbiased with respect to
∇fa, satisfying Eu∼p[∇̃f(x)] = ∇fa(x),

The 1-point random gradient estimator of f has the form

∇̃f(x) := φ(d)
a f(x + au)u, (5)

where φ(d) is a dimension-dependent factor given by the
distribution of u. If p = N (0, I), then φ(d) = 1; if p =
U(S(0, I)) is the uniform distribution on the unit sphere,
then φ(d) = d. In practice, the 1-point estimator in (5) is not
commonly used due to high variance (Flaxman, Kalai, and
McMahan 2004). This motivates the 2-point random gradient
estimator (Nesterov and Spokoiny 2017; Duchi et al. 2015)

∇̃f(x) := φ(d)
a (f(x + au)− f(x))u, (6)

where Eu∼p[u] = 0 is required for unbiasedness to hold. The
2-point estimator has the following upper bound of expected
estimation error (Berahas et al. 2021; Liu et al. 2018)

E[‖∇̃f(x)−∇f(x)‖] = O(
√
d)‖∇f(x)‖+O

(
ad1.5

φ(d)

)
.

(7)
Note that the O(

√
d)‖∇f(x)‖ term in (7) does not vanish

even if a→ 0. Mini-batch sampling can be used to reduce the
estimation error, leading to the multi-point random gradient
estimator (Duchi et al. 2015; Liu et al. 2018)

∇̃f(x) :=
φ(d)

a

b∑
i=1

(f(x + aui)− f(x))ui, (8)

where b is the mini-batch size, and {ui}bi=1 are random di-
rections drawn from some zero-mean distribution p. The
multi-point estimator has the improved error bound (Berahas
et al. 2021)

E[‖∇̃f(x)−∇f(x)‖]

= O

(√
d

b

)
‖∇f(x)‖+O

(
ad1.5

φ(d)b

)
+O

(
ad0.5

φ(d)

)
.

To further reduce the estimation error, one can use
coordinate-wise gradient which requires O(d) queries per
gradient estimate. Existing works use forward difference
∇̃f(x) := 1

a

∑d
i=1(f(x + aei) − f(x))ei or central dif-

ference ∇̃f(x) := 1
2a

∑d
i=1(f(x + aei) − f(x − aei))ei

as the coordinate gradient, where ei is the ith basis vector.
Under the standard smoothness assumption, both forward dif-
ference and central difference have the error bounds (Kiefer,
Wolfowitz et al. 1952; Berahas et al. 2021; Lian et al. 2016)

E[|∇̃if(x)−∇if(x)|] = O(a),

E[‖∇̃f(x)−∇f(x)‖] = O
(
a
√
d
)
.

Zeroth-order Multi-point Coordinate Gradient
Estimator
In this subsection, assuming f to be coordinate p-smooth,
we construct the zeroth-order multi-point coordinate gradi-
ent estimator (ZO-MCGE) ∇̃if(x) with p = max{2(j −
1), 2} function value queries at x + p

2aei, . . . ,x + aei,x−
aei, . . . ,x − p

2aei, and analyze its error bound. The main
difference between our proposed ZO-MCGE and the estima-
tors in the previous subsection is that the use of multi-point
function evaluation allows for a better control for the gra-
dient estimation error. We observe numerically that using
more points in the gradient estimator enables us to reach a
higher accuracy; see the logistic regression experiment in the
Appendix.

The following lemma directly follows from the coordinate
j-smoothness of f .

Lemma 1 Assume f is Mj coordinate j-smooth. Let

∇lif(x) := ∂lf(x)
(∂xi)l

be the l-th order derivative of f at x
with respect to xi. Then∣∣∣∣f(x + bei)− f(x)− b∇if(x)− · · · − bj

j!
∇jif(x)

∣∣∣∣
≤ Mj

(j + 1)!
|b|j+1,∀x ∈ Rd, and b ∈ R. (9)

Let a be the sampling radius. The following theorem states
how to estimate the coordinate gradient∇if(·) of a Mj coor-
dinate j-smooth function f by p = max{2(j−1), 2} queries
at x+ p

2aei, . . . ,x+aei,x−aei, . . . ,x− p
2aei, and provides

the error bound.

Theorem 1 (multi-point coordinate gradient estimator)
Assume f is Mj coordinate j-smooth for some j ∈ Z+.
Let p = max{2(j − 1), 2} and m = p

2 . Define the p-point
coordinate gradient estimator of f with respect to some
i ∈ [d] as

∇̃if(x) := C p
2
f(x +

p

2
aei) + · · ·+ C1f(x + aei)

− C1f(x− aei)− · · · − C p
2
f(x− p

2
aei), (10)

where
C1

C2

...
C p

2

 =


1 2 · · · p

2
1 23 · · · (p2 )3

...
1 2p−1 · · · (p2 )p−1


−1 

1
2a
0
...
0

 .
Then we have the following error bound

|∇̃if(x)−∇if(x)| ≤
m∑
q=1

|Cq|
Mjq

j+1

(j + 1)!
aj+1. (11)

Remark 4 Theorem 1 implies that if f is M1 coordinate
1-smooth (which holds if f is M1-smooth in the standard
notion) or M2 coordinate 2-smooth, then the coordinate gra-
dient estimator given in (10) corresponds to the central dif-
ference ∇̃if(x) = 1

2a (f(x+ aei)− f(x− aei)), with error
bounds of M1

2 a and M2

6 a2 respectively, because C1 = 1
2a .



Algorithm 1: Zeroth-order inexact augmented La-
grangian method (ZO-iALM) for (1)

1 Initialization: choose x0 ∈ dom(f0),y0 = 0,
β0 > 0 and σ > 1

2 for k = 0, 1, . . . , do
3 Let βk = β0σ

k, φ(·) = Lβk(·, yk)− h(·), and

ρ̂k = ρ0 + L̄‖yk‖+ βkρc,

L̂k = L0 + L̄‖yk‖+ βkLc.
(13)

4 xk+1 ← ZO-iPPM(φ, h,xk, ρ̂k, L̂k, ε)
5 Update y by

yk+1 = yk + wkc(xk+1). (14)

1 subroutine ZO-iPPM(φ, ψ,x0, ρ, Lφ, ε)
2 for t = 0, 1, . . . , do
3 Let G(·) = φ(·) + ρ‖ · −xt‖2
4 Obtain xt+1 by a ZOM such that

dist(0, ∂(G+ ψ)(xt+1)) ≤ ε
4

5 if 2ρ‖xt+1 − xt‖ ≤ ε
2 , then return xt+1.

In general, we establish that under the j-th order smooth-
ness assumption for some j ∈ Z+, the error of the
max{2, 2(j − 1)}-point coordinate gradient estimator is up-
per bounded by O(aj), where a is the sampling radius.

A Novel AL-based ZOM
In this section, we present a novel ZOM for solving (1) under
the ALM framework, with each ALM subproblem approxi-
mately solved by an inexact proximal point method (iPPM).

The pseudocode of our AL-based ZOM for (1) is shown
in Algorithm 1 that uses the following notations

B0 = max
x∈dom(h)

max
{
|f0(x)|, ‖∇g(x)‖

}
,

Bc = max
x∈dom(h)

‖Jc(x)‖, (12a)

Bi = max
x∈dom(h)

max
{
|ci(x)|, ‖∇ci(x)‖

}
,∀ i ∈ [l], (12b)

B̄c =
√∑l

i=1B
2
i , L̄ =

√∑l
i=1 L

2
i ,

ρc =

l∑
i=1

Biρi, Lc =

l∑
i=1

BiLi +B2
i , (12c)

where {ρi} and {Li} are given in Assumption 1.
Notice that Algorithm 1 follows the standard framework

of the ALM and uses ZO-iPPM to solve each ALM subprob-
lem. In principle, one can use any ZOM as a subroutine to
solve ALM subproblems, such as ZO-AdaMM (Chen et al.
2019) and ZO-proxSGD (Ghadimi, Lan, and Zhang 2016).
However, the use of ZO-iPPM (together with our developed
zeroth-order accelerated proximal coordinate update) not
only leads to best known complexity results, but also gives
better numerical performance, as we show in Section 11.

The proposed ZO-iALM is triple-looped. An algorithm
with fewer loops would be preferable. However, we are not
aware of any existing simpler ZOMs with the same theoretical
guarantees as our method for solving functional constrained
black-box optimization. An important future direction is to
reduce the number of loops and achieve the same theoretical
guarantees. Nevertheless, as we demonstrate in Section 11,
our algorithm can be efficiently implemented without much
difficulty. Specifically, to have a good practical performance,
all parameters except the smoothness constant do not require
much tuning at all, and most can be constant across different
problems. Even with triple loops, the proposed ZO-iALM per-
forms well numerically. Furthermore, some existing FOMs
are also triple-looped and can perform better than double-
looped FOMs; see (Li et al. 2021) for example.

The kernel problems that we solve within the iPPM are
strongly-convex composite problems. Below, we design a
zeroth-order accelerated proximal coordinate update (ZO-
APCU) method.

Core subsolver: ZO-APCU
In this subsection, we give our core ZO subsolver, called ZO-
APCU, to obtain xt+1 in the ZO-iPPM subroutine. Though
ZO-APCU will be used for solving subproblems of our pro-
posed ZOM for (1), it has its own merit and appears to be the
first proximal coordinate update method with acceleration
by only using function values of the smooth part. It solves
strongly-convex composite problems in the form of

min
x∈Rd

F (x) := G(x) +H(x), (15)

where G is a black-box µ-strongly convex and L-smooth
function, and H is a white-box closed convex function.

We make the following assumptions on G and H .
Assumption 3 (coordinate smooth) G is Mj coordinate j-
smooth, for some j ∈ Z+.

Note that if G is L-smooth, Assumption 3 must hold for
j = 1 and M1 = L.
Assumption 4 The function H is coordinate-separable, i.e.,
H(x) =

∑d
i=1Hi(xi), where each Hi(·) is convex.

The pseudocode of ZO-APCU is shown in Algorithm 2,
with its equivalent and efficient implementation (which
avoids full-dimensional vector operations) given in the Ap-
pendix. The design is inspired from the APCG method in
(Lin, Lu, and Xiao 2014). A zeroth-order accelerated random
search (ZO-ARS) method has been designed in (Nesterov
and Spokoiny 2017) to solve (15). Although our ZO-APCU
has the same-order query complexity as ZO-ARS, it signifi-
cantly outperforms ZO-ARS in practice, because ZO-APCU
exploits the coordinate-structure and uses more accurate co-
ordinate gradient estimator.

In Algorithm 2, to obtain the required (coordinate) gradient
estimates, we use the p-point coordinate gradient estimator
defined in (10), where p = max{2(j − 1), 2}. Let

Ei =

m∑
q=1

|Cq|
Mjq

j+1

(j + 1)!
aj+1,∀i ∈ [d]; E =

√√√√ d∑
i=1

E2
i ,

(16)



Algorithm 2: Zeroth-order accelerated proximal co-
ordinate update for (15): ZO-APCU(G,H, µ, L, ε)

1 Input: x0 ∈ dom(H), tolerance ε, smoothness L,
strong convexity µ, and epoch length l.

2 Initialization: z0 = x0, α = 1
d

√
µ
L

3 for k = 0, 1, . . . do
4 Let yk = xk+αzk

1+α

5 Sample ik ∈ [d] uniformly; compute ∇̃ikG(yk)

such that ‖∇̃ikG(yk)−∇ikG(yk)‖ ≤ Eik .
6 Compute

zk+1 = arg minx∈Rd{dLα2 ‖x− (1− α)zk −
αyk‖2 + 〈∇̃ikG(yk),xik − ykik〉+Hik(xik)}.

7 xk+1 = yk + dα(zk+1 − zk) + dα2(zk − yk).
8 if k + 1 ≡ 0 (mod l) then
9 Compute ∇̃G(xk+1) such that

‖∇̃G(xk+1)−∇G(xk+1)‖ ≤ E
10 x̂k+1 = arg minx∈Rd{〈∇̃G(xk+1),x−

xk+1〉+ L
2 ‖x− xk+1‖2 +H(x)}

11 Return x̂k+1 and stop if
dist

(
0, ∇̃G(x̂k+1) + ∂H(x̂k+1)

)
≤ 3ε

4 .

where m = p
2 and a is the sampling radius. By Theorem 1, E

and Ei are upper bounds of the gradient estimation errors for
∇G(·) and ∇iG(·). Let ε̄ = µ

512Lε
2. We choose a > 0 and

p such that the error bounds E and {Ei}di=1 in (16) satisfy

2L

√
2ED

µ
+ E ≤ ε

4
, ED +

d∑
i=1

EiDi ≤
ε̄

2
. (17)

Complexity Results
In this subsection, we establish the total query complexity
result of Algorithm 1. We first show that the core subsolver
ZO-APCU can produce xt+1 desired in the ZO-iPPM sub-
routine. The theorem below gives the complexity result of
ZO-APCU to produce an expected ε-stationary point of (15).
The proof is highly nontrivial and given in the appendix.

Theorem 2 Let {xk}, {x̂k} be generated from Algo-
rithm 2. Suppose the gradient error bounds E and
{Ei}di=1 satisfy (17). Let ε̄ = µ

512L2 ε
2. Then T =⌈

d
√

L
µ log 2(F (x0)−F∗)+µ‖x0−x∗‖2

ε̄

⌉
iterations of ZO-APCU

suffice to generate x̂T satisfying E[dist(0, ∂F (x̂T ))] ≤ ε.

Theorem 2 only guarantees that the output x̂T nearly sat-
isfies the stationarity condition in expectation. In order to
show the complexity results of Algorithm 1, we need, in
Line 4 of ZO-iALM, the iterate xk+1 obtained from ZO-
iPPM deterministically satisfies the near-stationarity condi-
tion of Lβk(·, yk) so that we can uniformly bound the AL
function at the generated iterates. For this technical reason,
we will require the output from Algorithm 2 to satisfy the
near-stationarity condition deterministically instead of in an

expectation sense. Theorem 3 below serves as a bridge to con-
vert deterministic iteration bound until expected convergence
to expected iteration bound until deterministic convergence,
by only sacrificing a log factor in the iteration bound. The re-
sult is not difficult to prove but is essential in our complexity
analysis of ZO-iALM.

Theorem 3 (expected complexity) For a sequence of non-
negative random numbers {qk}∞k=1, suppose E[qk] ≤
Cηk,∀k ≥ 1 for some η ∈ (0, 1) and C > 0. Given
ε > 0, define K(ε) = mink∈Z+{k : qk ≤ ε}. Then
E[K(ε)] ≤ 2−η

1−η log C
ε(1−η)2 + 3− η.

By Theorem 2 (and its proof for linear convergence) and
Theorem 3, we have the following expected iteration com-
plexity result of Algorithm 2 until deterministic convergence.
Corollary 1 Under the same assumptions as Theorem 2, T
iterations of ZO-APCU are enough to generate x̂T satisfying
dist(0, ∂F (x̂T )) ≤ ε, where E[T ] = Õ

(
d
√

L
µ

)
.

Relying on Corollary 1, the next theorem gives the com-
plexity result of the subroutine ZO-iPPM applied on the
nonconvex composite problem

Φ∗ = min
x∈Rd

{
Φ(x) := φ(x) + ψ(x)

}
, (18)

where φ is a black-box Lφ-smooth and ρ-weakly convex
function, and ψ is a white-box closed convex function.
Theorem 4 Suppose Φ∗ in (18) is finite. Then the subrou-
tine ZO-iPPM in Algorithm 1 must stop within T iterations,
where T =

⌈
32ρ
ε2 (Φ(x0)− Φ∗)

⌉
. The output xT must satisfy

dist(0, ∂Φ(xT )) ≤ ε. In addition, if dom(ψ) has diame-
ter Dψ < ∞ and ZO-APCU is applied to find each xt+1

in ZO-iPPM, then the expected total query complexity is

Õ

(
d
√
ρLφ
ε2 [Φ(x0)− Φ∗] log

Dψ
ε

)
.

Now we are ready to establish the query complexity of
the proposed ZO-iALM. Due to the difficulty of the possibly
nonconvex constraints, a certain regularity condition must
be made in order to guarantee (near) feasibility in a polyno-
mial time. Following (Li et al. 2021; Lin, Ma, and Xu 2019;
Sahin et al. 2019) that study FOMs, we assume the following
regularity condition on (1).

Assumption 5 (regularity) There is some v > 0 such that
for any k ≥ 1,

v‖c(xk)‖ ≤ dist
(
−Jc(xk)>c(xk), ∂h(xk)

βk−1

)
. (19)

Remark 5 Notice that we only need the existence of v in As-
sumption 5 but do not need to know its value in our algorithm.
The assumption ensures that a near-stationary point of the
AL function is near feasible. In (Li et al. 2021), the regularity
condition is proven to hold for all affine-equality constrained
problems possibly with either an additional polyhedral or
ball constraint set. Moreover, several nonconvex examples
satisfying Assumption 5 are given in (Lin, Ma, and Xu 2019;
Sahin et al. 2019).

With Assumption 5, we can simply solve a quadratic-
penalty problem of (1) with a large enough penalty parameter,



in order to find a near-KKT point of (1). However, this ap-
proach is numerically much slower than the iALM framework
in Algorithm 1; see the tests in (Li et al. 2021) for example.

Remark 6 To solve the nonconvex constrained problem (1),
a few existing works about FOMs have made key assump-
tions different from Assumption 5. For example, the uni-
form Slater’s condition was assumed in (Ma, Lin, and Yang
2020), and a strong MFCQ condition was assumed in (Boob,
Deng, and Lan 2019). These assumptions are neither strictly
stronger nor strictly weaker than Assumption 5.

The theorem below gives the total query complexity of
ZO-iALM with general dual step sizes.

Theorem 5 (total complexity of ZO-iALM) Suppose that
Assumptions 1, 2, and 5 hold. In Algorithm 1, for some fixed
q ∈ Z+∪{0} andM > 0, letwk = M(k+1)q

‖c(xk+1)‖ ,∀k ≥ 0. Then
given ε > 0, Algorithm 1 can produce an ε-KKT solution of
(1) with Õ(dε−3) queries to g and c in expectation, by using
Algorithm 2 to find each xt+1 in ZO-iPPM. In addition, if
c(x) = Ax − b, then Õ(dε−

5
2 ) queries in expectation are

enough for Algorithm 1 to produce an ε-KKT solution of (1).

Remark 7 The results in Theorem 5 are novel. To the best
of our knowledge, they are the first such results for ZOMs on
solving functional constrained black-box optimization. The
order-dependence on ε matches with the best-known results
for FOMs on solving nonconvex composite optimization with
convex or nonconvex constraints, e.g., see (Lin, Ma, and Xu
2019; Melo, Monteiro, and Wang 2020b; Li et al. 2021). For
the affine-constrained case, we conjecture that the Õ(dε−

5
2 )

query complexity may be reduced to Õ(dε−2) if the nons-
mooth term h has some special structure.

Numerical Results
In this section, we conduct numerical experiments to demon-
strate the performance of our proposed ZO-iALM. We con-
sider the problem of resource allocation in sensor networks
and the adversarial example generation problem. All the tests
were performed in MATLAB 2019b on a Macbook Pro with
4 cores and 16GB memory. Due to the page limitation, we
put additional numerical experiments in the Appendix. They
are on nonconvex linearly-constrained quadratic programs
(LCQP), on the unconstrained strongly-convex quadratic pro-
grams (USCQP) to test the core solver ZO-APCU, and on
the logistic regression to test different multi-point coordinate
gradient estimators. We emphasize here that the proposed
ZO-APCU requires significantly fewer queries to reach a
near-stationary point to the USCQP problem compared to
a few existing methods, and that the use of more points in
coordinate gradient estimator can lead to higher accuracy.

Resource Allocation in Sensor Networks
In this subsection, we test our proposed ZO-iALM on the
resource allocation problem in sensor networks (Liu et al.
2016). The problem aims at minimizing the estimation error
of a random vector with a Gaussian prior probability density
function, subject to a constraint on the total number of sensor

activations. It can be formulated as

min
w∈Rd

tr(Σ−1 + H>(ww> ◦R−1)H)−1,

s.t. 1>w ≤ s,w ∈ {0, 1}d,
(20)

where each wi ∈ {0, 1} denotes whether the ith sensor is
selected, H ∈ Rd×d is the observation matrix, Σ ∈ Rd×d is
the MSE source statistics, and R ∈ Rd×d is the noise covari-
ance matrix. We assume that Σ and R are symmetric, and
R has small off-diagonal entries. Details of the formulation
(20) can be found in (Liu et al. 2016).

ZO optimization methods have been applied in the liter-
ature to problem (20), in order to avoid the involved first-
order gradient computation (Liu et al. 2018). The use of a
ZO solver enables the design of resource management with
least prior knowledge, e.g., without having access to the
sensing model information encoded in H. The constraint
w ∈ {0, 1}d is combinatorial. Below, we rewrite the 0-1 con-
straint to w2 − w = 0 and also incorporate the constraint
1>w ≤ s into the objective by introducing a (fixed) multi-
plier λ > 0. More precisely, we apply our ZO-iALM to the
problem:

min
w∈Rd

tr(Σ−1 + H>(ww> ◦R−1)H)−1 + λ1>w,

s.t. w2 −w = 0.
(21)

Since no existing ZOMs are able to handle nonconvex
constrained problems, we compare the proposed ZO-iALM to
two other methods that replace our ZO-iPPM subroutine with
ZO-AdaMM (Chen et al. 2019) and ZO-ProxSGD (Ghadimi,
Lan, and Zhang 2016) respectively.

We set d = 80, λ = 0.5, and ε = 0.5. Following (Liu
et al. 2016), we construct H = 1

2 (H̄ + H̄>) with each en-
try of H̄ ∈ Rd×d generated from the uniform distribution
U(0, 1), R = ( 1

2 (R̄+R̄>))−1 with each entry of R̄ ∈ Rd×d
generated from U(0, 10−3), and Σ = I. In each call to the
ZO-iPPM subroutine, we set the smoothness parameter to
L̂k = 50 + 0.3βk. We tune the parameters of ZO-AdaMM
to α = 1, β1 = 0.75, β2 = 1, and fix the step size to 0.01 in
ZO-ProxSGD. For each method, we choose a = 10−6 as the
sampling radius and wk = 1

‖c(xk)‖ as the dual step size.
In Figure 1, we compare the primal residual trajectories of

the proposed ZO-iALM, and the iALM with subroutine ZO-
AdaMM in (Chen et al. 2019) and ZO-ProxSGD in (Ghadimi,
Lan, and Zhang 2016). The dual residuals by all compared
methods are below the error tolerance ε at the end of each
outer loop. In Table 5 in the supplementary material, we also
report the primal residual, dual residual, running time (in
seconds), and the query count, shortened as pres, dres,
time, and #Obj, for each method. From the results, we
conclude that the proposed ZO-iALM with any of the three
subroutines is able to reach an ε-KKT point to the resource
allocation problem (21). Moreover, the proposed ZO-iPPM
subroutine requires fewer queries than other compared ZOMs
to find a specified-accurate stationary point to the nonconvex
subproblems.
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Figure 1: Comparison of iALM on solving (21) with different
subroutines: the proposed ZO-iALM, ZO-AdaMM in (Chen
et al. 2019), and ZO-ProxSGD in (Ghadimi, Lan, and Zhang
2016). The plots show primal residuals. The markers denote
the outer iterations in iALM. Dual residuals for all methods
are below the given tolerance ε.

Adversarial Example Generation
The problem of adversarial example generation for a black-
box regression model (Liu et al. 2020b) under both L0 and
L∞-norm constraints can be formulated as

max
‖∆‖∞≤ε∞

fθ(x + ∆), s.t. ‖∆‖0 ≤ ε0, (22)

where fθ(·) is a loss function of a black-box regression
model parameterized by θ that is trained over the dataset
x = [x>1 ; . . . ;x>m] ∈ Rm×d, ∆ ∈ Rd is the data perturba-
tion, and x + ∆ denotes adding ∆ to each xi.

The constraint ‖∆‖0 ≤ ε0 is combinatorial. To relax it to
a continuous one, we introduce a binary vector M̂ as a mask
and put the constraint onto M̂ . More precisely, replace ∆ in
(22) by M̂ ◦∆, where ◦ denotes the Hadamard (component-
wise) product. Then the constraint ‖∆‖0 ≤ ε0 is relaxed to
M̂i ∈ {0, 1},∀ i and 1>M̂ ≤ ε0. By further incorporating
the constraint 1>M̂ ≤ ε0 into the objective by introducing
a (fixed) multiplier −λ < 0 and rewrite M̂i ∈ {0, 1},∀ i
into M̂2 − M̂ = 0, where M̂2 denotes the component-wise
square of M̂ , we have the following reformulation:

max
M̂,∆∈Rd
‖∆‖∞≤ε∞

fθ(x0 + M̂ ◦∆)− λ1>M̂, s.t. M̂2 − M̂ = 0.

(23)
We test the proposed ZO-iALM on the adversarial example

generation problem (23). In the test, we use the ovarian cancer
dataset (Conrads et al. 2004; Petricoin III et al. 2002) that
are from m = 216 patients. Each data point has d = 4, 000
features and a label indicating whether the corresponding
patient has ovarian cancer. We first use MATLAB’s built-in
lasso function (with λ = 0.01) to train a LASSO regression
model parameterized by θ. With the trained model, we treat
the regression loss fθ(·) as a ZO oracle and perform black-
box attack on it. Let x ∈ Rm×d denote the data matrix. We
then solve the ZO formulation (23) to find an adversarial
perturbation M ◦ ∆ to each row of x that near-maximally
increases the regression loss fθ(·). In (23), we set λ = 0.01

Adversarial Example Generation
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Figure 2: Comparison of iALM on solving (23) with different
subroutines: the proposed ZO-iALM, ZO-AdaMM in (Chen
et al. 2019), and ZO-ProxSGD in (Ghadimi, Lan, and Zhang
2016). The plots show the loss objective that we attack under
the same L0 and L∞ constraints.

and ε∞ = 0.1. Due to the large variable dimension, we set
ε = 1 in stopping conditions.

The same as the previous test, we compare the proposed
ZO-iALM to two other methods that replace our ZO-iPPM
subroutine with ZO-AdaMM (Chen et al. 2019) and ZO-
ProxSGD (Ghadimi, Lan, and Zhang 2016) respectively. In
each method, we set a = 10−6 as the sampling radius and
wk = 1

‖c(xk)‖ as the dual step size.

Let (M̂,∆) be one iterate obtained by one method on
solving (23). Then ∆̃ ← M̂ ◦ ∆ is the data perturbation.
To recover the solution to (22), we project ∆̃ to the set
{∆ : ‖∆‖0 ≤ 20, ‖∆‖∞ ≤ 0.1}. In Figure 2, we plot
the trajectory of the loss objective fθ by all methods at the
processed iterates of perturbed data. From the results, we
see that the data perturbation created by the proposed ZO-
iALM increases the loss function faster (namely, creates more
successful attacks) than other compared methods.

Conclusion
In this paper, we propose a novel zeroth-order inexact aug-
mented Lagrangian method (ZO-iALM) to solve black-
box optimization problems that involve a composite (i.e.,
smooth+nonsmooth) objective and nonlinear functional con-
straints. The kernel subproblems that we solve during the
ZO-iALM are black-box strongly-convex composite prob-
lems with coordinate structure. To most efficiently solve these
subproblems, we design a zeroth-order accelerated proximal
coordinate update (ZO-APCU) method. In addition, in order
to be able to produce high-accurate solutions, we give a new
multi-point coordinate gradient estimator and use it in our
designed ZO-APCU. All our proposed zeroth-order methods
achieve similar-order complexity results as the best-known
results obtained by first-order methods, with a difference up
to a factor of variable dimension. Besides the novel and best
theoretical results, our proposed ZO-iALM can also perform
well numerically, which is demonstrated by experiments on
practical machine learning tasks and classical optimization
problems.
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A Proofs

In this section, we provide detailed proofs of our theorems.

A.1 Proof of Theorem 1

Denote m = p
2 . Note that the constants C1, · · · , Cm in The-

orem 1 satisfy the following m equalities:

C1 + 2C2 + · · ·+mCm =
1

2a
,

C1 + 23C2 + · · ·+m3Cm = 0,

...

C1 + 22m−1C2 + · · ·+m2m−1Cm = 0.

(24)

Since f is Mj coordinate j-smooth, by plugging b ∈
{ma, · · · , a,−a, · · · ,−ma} into Lemma 1, we have the fol-
lowing 2m inequalities:

− |Cm|Mj

(j+1)! (ma)j+1 ≤ Cm
(
f(x +maei)− f(x)

−ma∇if(x)− · · · − mjaj

j!
∇jif(x)

)
≤ |Cm|Mj

(j + 1)!
(ma)j+1,

...

− |C1|Mj

(j+1)! a
j+1 ≤ C1

(
f(x + aei)− f(x)− a∇if(x)

− · · · − aj

j!
∇jif(x)

)
≤ |C1|Mj

(j + 1)!
aj+1,

− |C1|Mj

(j+1)! a
j+1 ≤ − C1

(
f(x− aei)− f(x) + a∇if(x)

− · · · − (−1)jaj

j!
∇jif(x)

)
≤ |C1|Mj

(j + 1)!
aj+1,

...

− |Cm|Mj

(j+1)! (ma)j+1 ≤ − Cm
(
f(x−maei)− f(x)

+ma∇if(x)− · · · − (−1)jmjaj

j!
∇jif(x)

)
≤ |Cm|Mj

(j + 1)!
(ma)j+1.

Summing up the above 2m inequalities, we have∣∣∣∇̃if(x)− (C1 + 2C2 + · · ·+mCm)2a∇if(x)

− (C1 + 23C2 + · · ·+m3Cm)
2a3

3!
∇3
i f(x)−

· · · − (C1 + 22m−1C2 + · · ·+m2m−1Cm)

2a2m−1

(2m− 1)!
∇2m−1
i f(x)

∣∣∣
≤

m∑
q=1

|Cq|
Mj

(j + 1)!
(qa)j+1.

The above equality combined with (24) gives us

|∇̃if(x)−∇if(x)| ≤
m∑
q=1

|Cq|
Mjq

j+1

(j + 1)!
aj+1,

which is exactly (11).

A.2 Proof of Theorem 2
To prove Theorem 2, first we bound the objective error in
Theorem 6 below, next we bound the stationarity gap by the
objective error in Theorem 7 below, then we combine these
two theorems with the assumed parameter settings and get
the desired results. Below, we present the detailed proof of
Theorem 2.

Denote
∂̃F (x) = ∇̃G(x) + ∂H(x).

By the updates of Algorithm 2, following the proof of Lem-
mas 2 and 3 in (Lin, Lu, and Xiao 2014), we immediately
have the following two lemmas.
Lemma 2 Let {xk} be generated from Algorithm 2. Then we
have xk =

∑k
l=0 θ

k
l z
l, where θ0

0 = 1, θ1
0 = 1 − √µ, θ1

1 =√
µ
L , and ∀k ≥ 1,

θk+1
l =


√
µ, if l = k + 1,

(1− µ
dL ) (d+1)α

α+1 −
(1−α)µ
dLα , if l = k,

(1− µ
dL ) 1

α+1θ
k
l , if l = 0, . . . , k − 1.

Lemma 3 Let ψ̂k :=
∑k
l=0 θ

k
l H(zl). Then ∀k ≥ 0, we have

H(xk) ≤ ψ̂k and

Eik [ψ̂k+1] ≤ αH(z̃k+1) + (1− α)ψ̂k,

where

z̃k+1 := arg min
x∈Rd

{dαL
2
‖x− (1− α)zk − αyk‖2

+〈∇̃G(yk),x− yk〉+H(x)
}
. (25)

Theorem 6 below extends from Theorem 1 in (Lin, Lu, and
Xiao 2014), and gives the convergence rate of Algorithm 2.
Theorem 6 (ZO-APCU convergence rate) Let {xt}Kt=0 be
generated from Algorithm 2. Then

E[F (xK)]− F ∗ ≤
(

1− 1

d

√
µ

L

)K(
F (x0)− F ∗

+
µ

2
‖x0 − x∗‖2

)
+ ED +

d∑
i=1

EiDi. (26)



Proof: By updates of zk+1 and xk+1 in Algorithm 2,

xk+1
i =

{
yki + dα(zk+1

i − zki ) + µ
dL (zki − yki ), if i = ik

yki , if i 6= ik.
(27)

By the update of yk,

zk − yk = − 1

α
(xk − yk). (28)

Also by the update of xk+1 and α = 1
d

√
µ
L , we have

xk+1 − yk =

√
µ

L
zk+1 − (1− α)

√
µ

L
zk − µ

dL
yk

=

√
µ

L
zk+1 − (1− α)

√
µ

L
(zk − yk)

−
(

(1− α)

√
µ

L
+

µ

dL

)
yk,

which combined with (28) gives us

xk+1 − yk = d
(
α(zk+1 − yk) + (1− α)(xk − yk)

)
.

Combining the above equation with (27) and L smoothness
of G, we have

G(xk+1) ≤ G(yk) +∇ikG(yk)(xk+1
ik
− ykik)

+
L

2
‖xk+1

ik
− ykik‖

2

≤ (1− α)(G(yk) + d∇ikG(yk)(xkik − y
k
ik

))

+ α(G(yk) + d∇̃ikG(yk)(zk+1
ik
− ykik))

+
d2L

2
[α(zk+1 − yk) + (1− α)(xk − yk)]2ik

+ αdEikDik .

Thus by µ-strong convexity of G, the choice of ik, and the
definition of z̃k+1, it holds

Eik [G(xk+1)] ≤ (1− α)G(xk) + α
(
G(yk) + 〈∇̃G(yk),

z̃k+1 − yk〉
)

+
dL

2
‖α(z̃k+1 − yk)

+ (1− α)(xk − yk)‖2 + α

n∑
i=1

EiDi.

(29)

In addition, by (28),
dL

2
‖α(z̃k+1 − yk) + (1− α)(xk − yk)‖2

=
µ

2d
‖z̃k+1 − (1− α)zk − αyk‖2. (30)

Combining the above equality with (29) and α = 1
d

√
µ
L , we

have

Eik [G(xk+1)]

≤ (1− α)G(xk) + α
[
G(yk) + 〈∇̃G(yk), z̃k+1 − yk〉

+

√
µL

2
‖z̃k+1 − (1− α)zk − αyk‖2

]
+ α

d∑
i=1

EiDi,

which combined with Lemma 3 gives

Eik [G(xk+1) + ψ̂k+1] ≤ (1− α)(G(xk) + ψ̂k)

+ αV (z̃k+1) + α

d∑
i=1

EiDi.

(31)

In the above

V (x) := G(yk) + 〈∇̃G(yk),x− yk〉

+

√
µL

2
‖x− (1− α)zk − αyk‖2 +H(x).

By (25),
z̃k+1 = arg min

x∈Rd
V (x). (32)

Note V is
√
µL-strongly convex, so by (32), V (x∗) ≥

V (z̃k+1) +
√
µL
2 ‖x

∗ − z̃k+1‖2. Thus,

V (z̃k+1) ≤ V (x∗)−
√
µL

2
‖x∗ − z̃k+1‖2

= G(yk) + 〈∇̃G(yk),x∗ − yk〉+

√
µL

2
‖x∗

− (1− α)zk − αyk‖2 +H(x∗)

−
√
µL

2
‖x∗ − z̃k+1‖2

≤ G(yk) + 〈∇G(yk),x∗ − yk〉+

√
µL

2
‖x∗

− (1− α)zk − αyk‖2 +H(x∗)

−
√
µL

2
‖x∗ − z̃k+1‖2 + ED

≤ G(x∗)− µ

2
‖x∗ − yk‖2 +

√
µL

2
‖x∗

− (1− α)zk − αyk‖2 +H(x∗),

−
√
µL

2
‖x∗ − z̃k+1‖2 + ED,

where the last inequality holds by µ-strong convexity of G.
Combining the last inequality with (31), we have

Eik [G(xk+1) + ψ̂k+1]

≤ (1− α)(G(xk) + ψ̂k) + αF ∗ − αµ

2
‖x∗ − yk‖2

− µ

2d
‖x∗ − z̃k+1‖2 +

µ

2d
‖x∗ − (1− α)zk − αyk‖2

+ αED + α

d∑
i=1

EiDi.

(33)

Now, by the convexity of ‖ · ‖2, it holds

‖x∗ − (1− α)zk − αyk‖2

≤ (1− α)‖x∗ − zk‖2 + α‖x∗ − yk‖2.
(34)

Note from the updates of Algorithm 2,

zk+1
i =

{
z̃k+1
i , if i = ik,

(1− α)zki + αyki , if i 6= ik,
(35)



which implies

Eik [
µ

2
‖x∗ − zk+1‖2]

=
µ

2

[
d− 1

d
‖x∗ − (1− α)zk − αyk‖2 +

1

d
‖x∗ − z̃k+1‖2

]
=
µ(d− 1)

2d
‖x∗ − (1− α)zk − αyk‖2 +

µ

2d
‖x∗ − z̃k+1‖2

=
µ

2
‖x∗ − (1− α)zk − αyk‖2 − µ

2d
‖x∗ − (1− α)zk

− αyk‖2 +
µ

2d
‖x∗ − z̃k+1‖2

≤ (1− α)µ

2
‖x∗ − zk‖2 +

αµ

2
‖x∗ − yk‖2

− µ

2d
‖x∗ − (1− α)zk − αyk‖2 +

µ

2d
‖x∗ − z̃k+1‖2,

where the last inequality follows from (34). Combining the
last inequality with (33), we get

Eik
[
G(xk+1) + ψ̂k+1 +

µ

2
‖x∗ − zk+1‖2

]
≤ (1− α)(G(xk) + ψ̂k +

µ

2
‖x∗ − zk‖2) + αF ∗

+ αED + α

d∑
i=1

EiDi,

which implies

Eik
[
G(xk+1) + ψ̂k+1 − F ∗ +

µ

2
‖x∗ − zk+1‖2

]
≤ (1− α)(G(xk) + ψ̂k − F ∗ +

µ

2
‖x∗ − zk‖2)

+ αED + α

d∑
i=1

EiDi.

Thus,

E
[
G(xk) + ψ̂k − F ∗ +

µ

2
‖x∗ − zk‖2

]
≤ (1− α)k

[
F (x0)− F ∗ +

µ

2
‖x∗ − x0‖2

]
+

(
αED + α

d∑
i=1

EiDi

)
k−1∑
t=0

(1− α)t.

Hence,

E
[
F (xk)− F ∗ +

µ

2
‖x∗ − zk‖2

]
≤ (1− α)k[F (x0)− F ∗

+
µ

2
‖x∗ − x0‖2] + ED +

d∑
i=1

EiDi.

where the inequality holds by F (xk) ≤ G(xk) + ψ̂k, xk =∑k
l=0 θ

k
l z
l, and the definition of ψ̂k. �

Theorem 7 below bounds the subdifferential by the objec-
tive error.

Theorem 7 Let

x̂ = arg min
x′∈Rd

〈∇̃G(x),x′−x〉+L

2
‖x′−x‖2+H(x′), (36)

as in the postprocessing step of Algorithm 2, where
‖∇̃G(x)−∇G(x)‖ ≤ E. Then

dist(0, ∂F (x̂)) ≤ 4L

√
2(F (x)− F ∗)

µ
+ 2L

√
2ED

µ
+ E.

(37)

Proof: First, observe that

F (x̂) ≤ G(x) + 〈∇G(x), x̂− x〉+
L

2
‖x̂− x‖2 +H(x̂)

≤ G(x) + 〈∇̃G(x), x̂− x〉+
L

2
‖x̂− x‖2 +H(x̂)

+ ED

≤ G(x) +H(x) + ED

= F (x) + ED, (38)

where in above, the first inequality follows from L smooth-
ness of G, and the third inequality follows from (36).

Then, by the µ-strong convexity of G, we have

µ

2
‖x′ − x∗‖2 ≤ F (x′)− F ∗,∀x′ ∈ Rd. (39)

Furthermore, by (36), we have

0 ∈ ∇̃G(x) + L(x̂− x) + ∂H(x̂). (40)

Thus,

dist(0, ∂F (x̂))

≤ ‖∇G(x̂)−∇G(x) +∇G(x)− ∇̃G(x)− L(x̂− x)‖
≤ ‖∇G(x̂)−∇G(x)‖+ ‖∇G(x)− ∇̃G(x)‖

+ ‖L(x̂− x)‖
≤ 2L‖x̂− x‖+ E

≤ 2L(‖x̂− x∗‖+ ‖x− x∗‖) + E

≤ 2L

√
2

µ
(
√
F (x̂)− F ∗ +

√
F (x)− F ∗) + E

≤ 4L

√
2(F (x)− F ∗)

µ
+ 2L

√
2ED

µ
+ E

where in above, the first inequality follows from (40), the
third inequality follows from L smoothness of G, the fifth
inequality follows from (39), and the last inequality uses (38).
�

Based on Theorem 6 and Theorem 7 above, now we are
ready to prove Theorem 2.

By Theorem 6, (17), and the definition of T , we have

E[F (xT )]− F ∗ ≤ ε̄

2
+
ε̄

2
= ε̄,



where ε̄ = µ
512L2 ε

2. Combining above inequality with Theo-
rem 7 and (17), we have

E[dist(0, ∂F (x̂T ))]

≤ 4L

√
2(F (xT )− F ∗)

µ
+ 2L

√
2ED

µ
+ E

≤ ε

4
+
ε

4
=
ε

2
.

Thus,

E[dist(0, ∂̃F (x̂T ))] ≤ E[dist(0, ∂F (x̂T ))] + E ≤ 3ε

4
,

and Algorithm 2 must stop within T iterations. This com-
pletes the proof of Theorem 2.

A.3 Proof of Theorem 3
Observe that

E[K(ε)] =

∞∑
k=1

kP (K(ε) = k)

≤ t+

∞∑
k=t+1

kP (K(ε) = k),∀t ∈ Z+.

Note

P (K(ε) = k) = P (q1 > ε, . . . , qk−1 > ε, qk ≤ ε)

≤ P (qk−1 > ε) ≤ E[qk−1]

ε
≤ Cηk−1

ε
.

Thus,

E[K(ε)] ≤ t+

∞∑
k=t

(k + 1)
Cηk

ε

= t+
C

ε

∞∑
k=t

(k + 1)ηk

= t+
C

ε
(
ηt

1− η
+

∞∑
k=t

kηk). (41)

Let St =
∑∞
k=t kη

k. So ηSt =
∑∞
k=t kη

k+1, and

St − ηSt =
∞∑
k=t

kηk −
∞∑
k=t

kηk+1 = tηt +

∞∑
k=t+1

ηk

= tηt +
ηt+1

1− η
.

Thus St = 1
1−η (tηt + ηt+1

1−η ). Combining the above equation
with (41), we have ∀t ∈ Z+,

E[K(ε)] ≤ t+
C

ε
(
ηt

1− η
+

1

1− η
(tηt +

ηt+1

1− η
))

= t+
C

ε(1− η)
(t+

1

1− η
)ηt.

Let ψ(t) = t+ C
ε(1−η) (t+ 1

1−η )ηt. Now we want to choose
some t ∈ Z+ to bound ψ(t) well. Here we choose t = dse,

where s = log 1
η

[ C
ε(1−η)2 ]. So we have t ∈ [s, s + 1) and

ηt ∈ (ηs+1, ηs] = (ηε(1−η)2

C , ε(1−η)2

C ]. Hence,

E[K(ε)] ≤ ψ(t)

≤ s+ 1 +
C

ε(1− η)
(s+ 1 +

1

1− η
)
ε(1− η)2

C

= (2− η)(s+ 1) + 1

=
2− η
log 1

η

log
C

ε(1− η)2
+ 3− η

≤ 2− η
1− η

log
C

ε(1− η)2
+ 3− η.

A.4 Proof of Theorem 4
Let Φt(x) := Φ(x) +ρ‖x−xt‖2 and Φ∗t = minx Φt(x) for
each t ≥ 0. Note we have dist(0, ∂Φt(x

t+1)) ≤ δ = ε
4 , and

also Φt is ρ-strongly convex. Hence Φt(x
t+1) − Φ∗t ≤ δ2

2ρ ,

and Φ(xt+1) + ρ‖xt+1 − xt‖2 − Φ(xt) ≤ δ2

2ρ . Thus,

Φ(xT )− Φ(x0) + ρ

T−1∑
t=0

‖xt+1 − xt‖2 ≤ Tδ2

2ρ

T min
0≤t≤T−1

‖xt+1 − xt‖2 ≤ 1

ρ

(
Tδ2

2ρ
+ [Φ(x0)− Φ(xT )]

)
2ρ min

0≤t≤T−1
‖xt+1 − xt‖ ≤ 2

√
δ2

2
+
ρ[Φ(x0)− Φ∗]

T
.

(42)

Since T ≥ 32ρ
ε2 [Φ(x0)− Φ∗] and δ = ε

4 , we have

ρ

T
[Φ(x0)− Φ∗] ≤ ε2

32
, (43)

and thus (42) implies

2ρ min
0≤t≤T−1

‖xt+1 − xt‖ ≤ ε

2
. (44)

Therefore, the ZO-iPPM subroutine in Algorithm 1 must stop
within T iterations, from its stopping condition, and when it
stops, the output xS satisfies 2ρ‖xS − xS−1‖ ≤ ε

2 .
Now recall dist(0, ∂Φt(x

t+1)) ≤ δ = ε
4 , i.e.,

dist(0, ∂Φ(xt+1) + 2ρ(xt+1 − xt)) ≤ ε

4
,∀t ≥ 0. (45)

The above inequality together with 2ρ‖xS − xS−1‖ ≤ ε
2

gives
dist(0, ∂Φ(xS)) ≤ ε,

which implies that xS is an ε-stationary point to (18).
Finally, we apply Corollary 1 to obtain the expected overall

complexity and complete the proof.

A.5 Proof of Theorem 5
To prove Theorem 5, first we bound the dual variable
‖yk‖, next we establish upper and lower bounds of the AL
objective value inside every outer iteration, then we combine
above results with Theorem 4 and Corollary 1 to show the



total query complexity to reach a near-KKT point, finally
we establish the improved query complexity in the special
case when the constraints are convex. Below, we present the
detailed proof of Theorem 5.

First, by (14), y0 = 0, and the definition of wk in Theo-
rem 5, we have

‖yk‖ ≤
k−1∑
t=0

wt‖c(xt+1)‖ =

k−1∑
t=0

M(t+ 1)q =: yk

= O(kq+1),∀k ≥ 0. (46)

Following the first part of the proof of Theorem 2 in (Li et al.
2021), we can easily show that at most K = O(log ε−1)
outer iALM iterations are needed to guarantee xK to be an
ε-KKT point of (1). Hence, βk = O(ε−1),∀ 0 ≤ k ≤ K.

Combining the above bound on K with (46), we have

‖yk‖ ≤ yK :=

K−1∑
t=0

M(K + 1)q = O(Kq+1)

= O
(
(log ε−1)q+1

)
, ∀1 ≤ k ≤ K.

Hence from (13), we have ρ̂k = O(βk) = O(ε−1), L̂k =
O(βk) = O(ε−1), ∀ 0 ≤ k ≤ K.

Notice that equations (41) and (42) in (Li et al. 2021)
still hold with ymax replaced by yk. Hence, ∀k ≤ K,∀x ∈
dom(h),

Lβk(xk,yk)− Lβk(x,yk) = O

(
yk

(
1 +

yk
βk

))
.

The above equation together with Theorem 4 gives that for
any k ≤ K, at most TPPM

k iPPM iterations are needed to
terminate the ZO-iPPM subroutine in Algorithm 1 at the k-th
outer iALM iteration, where

TPPM
k =

⌈
32ρ̂k
ε2

(
Lβk(xk,yk)−min

x
Lβk(x,yk)

)⌉

= O

 ρ̂kyk
(

1 + yk
βk

)
ε2

 .

Also, by Corollary 1, at most TAPCU
k function value queries

are needed to terminate Algorithm 2, where

E[TAPCU
k ] = Õ

d
√
L̂k
ρ̂k

 ,∀k ≥ 0.

Therefore, for all k ≤ K,

E[TPPM
k TAPG

k ] = Õ

d
√
L̂kρ̂k

ε2
yk

(
1 +

yk
βk

)
= Õ

(
dyk
ε2

(βk + yk)

)
= Õ

(
dkq+1

ε2
(σk + kq+1)

)
= Õ

(
dKq+1

ε2
(σK +Kq+1)

)
= O

(
d(log ε−1)q+2

ε3

)
= Õ

(
d

ε3

)
,

where the second equation is from L̂k = O(βk) and ρ̂k =
O(βk), and the fifth one is obtained by K = O(log ε−1).

Consequently, for a general nonlinear c(·), at most T func-
tion value queries in total are needed to find the ε-KKT point
xK , where

E[T ] =

K−1∑
k=0

E[TPPM
k TAPG

k ]

= Õ
(
dKε−3(log ε−1)q+2

)
= Õ

(
dε−3

)
.

In the special case when c(x) = Ax − b, the term
‖c(x)‖2 = ‖Ax − b‖2 is convex, so we have ρc = 0.
Hence, by (13), ρ̂k = Õ(1),∀k ≥ 0. Then following the
same arguments as above, we obtain that for any k ≤ K,

E[TPPM
k TAPG

k ] = O


√
L̂kρ̂k

ε2
(log ε−1)q+2


= Õ

(
ε−

5
2

)
.

Therefore, at most T total function value queries are needed
to find the ε-KKT point xK , where

E[T ] =
K−1∑
k=0

E[TPPM
k TAPG

k ] = Õ
(
ε−

5
2

)
,

which completes the proof.

B Efficient Implementation of Algorithm 2
In this section, we provide Algorithm 3, which is a prac-
tical efficient implementation of the equivalent Algorithm
2. Algorithm 3 is efficient in the sense that it avoids the
full-dimensional vector operations which exist in Algorithm
2. Algorithm 3 is equivalent to Algorithm 2 because their
iterates satisfy the relations

xk = ρkuk + vk,

yk = ρk+1uk + vk,

zk = −ρkuk + vk,

which are proven in Proposition 1 of (Lin, Lu, and Xiao
2014).



Algorithm 3: Efficient implementation of ZO-APCG
for (15)

1 Input: x−1 ∈ dom(ψ), tolerance ε, smoothness L,
strong convexity µ, and epoch length l.

2 Initialization:
u0 = 0,v0 = x0, α = 1

d

√
µ
L , ρ = 1−α

1+α

3 for k = 0, 1, . . . ,K − 1 do
4 Sample ik ∈ [d] uniformly and compute

∇̃ikG(yk), s.t. ‖∇̃ikG(yk)−∇ikG(yk)‖ ≤
Eik .

5 Compute hkik =

arg min
h∈Rdik {

dαL
2 ‖h‖

2 + 〈∇̃ikG(ρk+1uk +

vk),h〉+Hik(−ρk+1ukik + vkik + h)}.
6 uk+1 = uk,vk+1 = vk,

uk+1
ik

= ukik−
1−dα
2ρk+1h

k
ik
,vk+1
ik

= vkik+ 1+dα
2 hkik .

7 xk+1 = ρk+1uk+1 + vk+1.
8 if k + 1 ≡ 0 (mod l) then
9 Compute ∇̃G(xk+1), s.t. ‖∇̃G(xk+1)−

∇G(xk+1)‖ ≤ E
10 x̂k+1 = arg minx∈Rd{〈∇̃G(xk+1),x−

xk+1〉+ L
2 ‖x− xk+1‖2 +H(x)}.

11 Return x̂k+1 and stop if
dist(0, ∂̃F (x̂k+1)) ≤ 3ε

4 .

C Additional Numerical Experiments
In this section, we provide additional numerical experiments
to demonstrate the empirical performance of the proposed
ZO-iALM. All the tests were performed in MATLAB 2019b
on a Macbook Pro with 4 cores and 16GB memory.

C.1 Nonconvex Linearly Constrained Quadratic
Programs (LCQP)

In this subsection, we test the proposed method on solving
nonconvex LCQP:

minx∈Rn
1
2x
>Qx + c>x,

s.t. Ax = b, xi ∈ [li, ui], ∀ i ∈ [n],
(47)

where A ∈ Rm×n, and Q ∈ Rn×n is symmetric and in-
definite (thus the objective is nonconvex). In the test, we
generated all data randomly. The smallest eigenvalue of Q
is −ρ < 0, and thus the problem is ρ-weakly convex. For all
tested instances, we set li = −5 and ui = 5 for each i ∈ [n].

We generated an LCQP instance with m = 10, n = 100,
and ρ = 1. Since no other existing ZOMs are able to han-
dle nonconvex constrained problems, we compare our pro-
posed ZO-iALM to two other methods that replace our ZO-
iPPM subroutine with ZO-AdaMM (Liu et al. 2018) and ZO-
ProxSGD (Ghadimi, Lan, and Zhang 2016) respectively. We
set βk = σkβ0 with σ = 3 and β0 = 0.01 for all iALM outer
loops. In each method, we set a = 10−4 to be the sampling
radius. In ZO-AdaMM, we set α = 1, β1 = 0.75, β2 = 1. In

Table 1: Results by the proposed ZO-iALM with ZO-iPPM,
the ZO-AdaMM in (Chen et al. 2019), and the ZO-ProxSGD
in (Ghadimi, Lan, and Zhang 2016) on solving a black-box
1-weakly convex LCQP (47) of size m = 10 and n = 100.

method pres dres time #Obj
ZO-iALM 9.61e-4 6.83e-4 11.42 2344400

ZO-AdaMM 0.42 0.47 61.86 8060000
ZO-ProxSGD 0.24 0.49 86.98 16520000

ZO-ProxSGD, we fix the step size to be 1
nL , where L is the

smoothness constant of each subproblem.The tolerance was
set to ε = 10−3 for the proposed ZO-iALM and ε = 0.5 for
all compared methods since they could not converge with a
tolerance as low as 0.001. We also conducted experiments
replacing our ZO-APCU inner solver with ZO-ARS in (Nes-
terov and Spokoiny 2017), but ZO-ARS in (Nesterov and
Spokoiny 2017) failed to converge.

In Table 1, we report, for each method, the primal residual,
dual residual, running time (in seconds), and the number of
queries, shortened as pres, dres, time, and #Obj.

From the results, we conclude that, to reach an ε-KKT
point to the black-box LCQP problem, the proposed ZO-
iALM needs significantly fewer queries to reach a signifi-
cantly higher accuracy than all other compared methods.

C.2 Unconstrained Strongly-convex Quadratic
Programs (USCQP)

In this subsection, we test the proposed core subsolver ZO-
APCU on solving USCQP:

minx∈Rn
1
2x
>Qx + c>x, (48)

where Q ∈ Rn×n is symmetric with µ > 0 as its smallest
eigenvalue (thus the objective is µ strongly-convex). In the
test, we generated all data randomly.

We generated an USCQP instance with n = 100, and
µ = 1. We compare our proposed ZO-APCU to ZO-AdaMM
(Chen et al. 2019) and ZO-ARS (Nesterov and Spokoiny
2017) respectively. In each method, we set ε = 10−3 to be
the error tolerance and a = 10−5 to be the sampling radius.
In ZO-AdaMM, we set α = 1, β1 = 0.75, β2 = 1. In ZO-
ProxSGD, we fix the step size to be 1

nL , where L is the
smoothness constant of each subproblem. In ZO-ARS, we
set θ = 1

16L(n+4)2 , h = 1
4L(n+4) , α =

√
Lθ, where L is the

smoothness constant of the objective.
In Figure 3, we compare the objective error trajectories

of our method, ZO-AdaMM in (Chen et al. 2019), and ZO-
ARS in (Nesterov and Spokoiny 2017). For each method, we
also report the objective error, gradient norm, running time
(in seconds), and the query count, shortened as objErr,
normGrad, time, and #Obj in Table 2. From the results,
we conclude that the proposed ZO-APCU reaches an ε-
stationary point to the USCQP problem (48) with at least
3 times fewer number of queries compared to all other meth-
ods.



Unconstrained Strongly-convex Quadratic Programs (48)
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Figure 3: Comparison of our proposed ZO-APCU, ZO-
AdaMM in (Chen et al. 2019), and ZO-ARS in (Nesterov and
Spokoiny 2017). The plot shows the objective error.

Table 2: Results by the proposed ZO-APCU, the ZO-AdaMM
in (Chen et al. 2019), and the ZO-ProxSGD in (Ghadimi,
Lan, and Zhang 2016) on solving the unconstrained strongly-
convex quadratic programs (48).

method objErr normGrad time #Obj
ZO-APCU 4.29e-7 1.00e-3 0.50 31400

ZO-AdaMM 4.93e-7 9.99e-4 52.17 11576470
ZO-ARS 1.80e-7 4.96e-4 3.68 136200

C.3 Logistic Regression (LR)
In this subsection, we compare different multi-point coor-
dinate gradient estimators proposed in Section in the high
accuracy setting. We use the proposed subsolver ZO-APCU
on solving the logistic regression problem:

min
w,b

1

N

N∑
i=1

log
(
1+exp[−yi(w>xi+b)]

)
+
λ

2
‖w‖22+

λ

2
b2,

(49)
where we are given the training data {(xi, yi)}Ni=1 with yi ∈
{+1,−1} for each i = 1, . . . , N . Note that λ is the strong
convexity constant of the objective function. In the test, we
use the spamdata data set with N = 100 as the number of
randomly chosen data points and n = 57 as the variable
dimension. In this subsection, we run two independent tests.

In the first test, we compare the final accuracy using our
proposed ZO-APCU with 2-point and 4-point coordinate gra-
dient estimators respectively. In each method, we set λ = 1
as the strong convexity constant, ε = 10−11 as the error tol-
erance, a = 10−5 as the sampling radius, and K = 114000
to be the maximum number of queries.

In Figures 4 and 5, we compare the gradient norm trajec-
tories of the proposed ZO-APCU under 2-point and 4-point
settings. For each setting, we also report the gradient norm,
running time (in seconds), and the query count, shortened
as normGrad, time, and #Obj in Table 3. From the re-
sults, we conclude that using the 4-point gradient estimator
enables ZO-APCU to reach a more accurate solution to the
LR problem (49) than using the 2-point gradient estimator.
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Figure 4: Comparison of ZO-APCU with 2-point and 4-point
gradient estimators. The plot shows the gradient norm versus
the query count. The sampling radius is a = 10−5.

Logistic Regression (49)
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Figure 5: Comparison of ZO-APCU with 2-point and 4-point
gradient estimators. The plot shows the gradient norm versus
the iteration count. The sampling radius is a = 10−5.

In the second test, we compare the final accuracy using
our proposed ZO-APCU with 2-point, 4-point, and 6-point
gradient estimators respectively, by a larger sampling radius
a = 10−2. In each method, we set λ = 1 as the strong
convexity constant, ε = 10−7 as the error tolerance, and
K = 114000 to be the maximum number of queries.

In Figures 6 and 7, we compare the gradient norm trajec-
tories of the proposed ZO-APCU under three settings. For
each setting, we also report the gradient norm, running time
(in seconds), and the query count, shortened as normGrad,
time, and #Obj in Table 4. From the results, we conclude
that when the sampling radius is large, to reach a decent ac-
curacy to the LR problem (49), it is beneficial to use more

Table 3: Results by the proposed ZO-APCU with 2-point
and 4-point gradient estimators respectively on solving the
logistic regression problem (49).

#Points normGrad time #Obj
2-pt 1.26e-9 3.12 114000
4-pt 9.68e-12 1.38 108072
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Figure 6: Comparison of ZO-APCU with (2, 4, 6)-point gra-
dient estimators. The plot shows the gradient norm versus the
query count. The sampling radius is a = 10−2.
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Figure 7: Comparison of ZO-APCU with (2, 4, 6)-point gra-
dient estimators. The plot shows the gradient norm versus the
iteration count. The sampling radius is a = 10−2.

points in the gradient estimators.

D Additional Table
In Table 5, for the resource allocation problem in sensor
networks (21), we report the primal residual, dual residual,
running time (in seconds), and the query count, shortened as
pres, dres, time, and #Obj.

Table 4: Results by the proposed ZO-APCU with (2, 4, 6)-
point gradient estimators respectively on solving the logistic
regression problem (49).

#Points normGrad time #Obj
2-pt 1.3e-3 2.71 114000
4-pt 3.08e-5 1.38 114000
6-pt 1.60e-6 1.12 114000

Table 5: Results by the proposed ZO-iALM with ZO-iPPM,
the ZO-AdaMM in (Chen et al. 2019), and the ZO-ProxSGD
in (Ghadimi, Lan, and Zhang 2016) on solving the resource
allocation problem in sensor networks (21).

method pres dres time #Obj
ZO-iALM 4.86e-2 7.01e-2 53.21 303790

ZO-AdaMM 2.11e-2 5.24e-2 80.09 659340
ZO-ProxSGD 4.97e-2 5.14e-2 427.38 3590277


