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Abstract

Mutual information (MI) is a fundamental measure of statistical dependence, with
a myriad of applications to information theory, statistics, and machine learning.
While it possesses many desirable structural properties, the estimation of high-
dimensional MI from samples suffers from the curse of dimensionality. Motivated
by statistical scalability to high dimensions, this paper proposes sliced MI (SMI)
as a surrogate measure of dependence. SMI is defined as an average of MI terms
between one-dimensional random projections. We show that it preserves many
of the structural properties of classic MI, while gaining scalable computation and
efficient estimation from samples. Furthermore, and in contrast to classic MI, SMI
can grow as a result of deterministic transformations. This enables leveraging
SMI for feature extraction by optimizing it over processing functions of raw data
to identify useful representations thereof. Our theory is supported by numerical
studies of independence testing and feature extraction, which demonstrate the
potential gains SMI offers over classic MI for high-dimensional inference.

1 Introduction

Mutual information (MI) is a universal measure of dependence between random variables, defined as

I(X;Y ) :=

Z

X⇥Y

log

✓
dPX,Y

dPX ⌦ PY

◆
dPX,Y , (1)

where (X,Y ) ⇠ PX,Y and dP/dQ is the Radon-Nikodym derivative of P with respect to (w.r.t.)
Q. It possesses many desirable properties, such as meaningful units (bits or nats), nullification if
and only if (iff) X and Y are independent, convenient variational forms, and invariance to bijections.
In fact, MI can be obtained axiomatically as a unique (up to a multiplicative constant) functional
satisfying several natural ‘informativeness’ conditions [1]. As such, it found a variety of applications
in communications, information theory, and statistics [1, 2]. More recently, it was adopted as a figure
of merit for studying [3, 4, 5, 6, 7, 8] and designing [9, 10, 11, 12, 13] machine learning models.

MI is a functional of the joint distribution PX,Y of the considered random variables. In practice,
this distribution is often not known and only samples from it are available, thereby necessitating
estimation of I(X;Y ). While this topic has received considerable attention [14, 15, 16, 17, 18], MI
is fundamentally hard to estimate in high-dimensional settings due to an exponentially large (in
dimension) sample complexity [19]. Motivated by statistical efficiency in high dimensions and
inspired by recent slicing techniques of statistical divergences [20, 21, 22, 23], this paper introduces
sliced MI (SMI) as a surrogate notion of informativeness. We show that SMI inherits many of the
properties of classic MI, while allowing for efficient estimation. Furthermore, in certain aspects, SMI
is more compatible with modern machine learning practice than classic MI. In particular, deterministic
transformations of the random variables can increase SMI, e.g., if the resulting codomains have more
informative slices (in classic MI sense ). This enables using SMI as a figure of merit for feature
extraction by identifying transformation (e.g., NN parameters) that maximize it.
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1.1 Contributions

SMI is defined as the average of MI terms between one-dimensional random projections. Namely, if
Sd�1 denotes the d-dimensional sphere (whose surface area is designated by Sd�1), we define

SI(X;Y ) :=
1

Sdx�1Sdy�1

I

Sdx�1

I

Sdy�1
I(✓|X;�|Y )d✓d�. (2)

We may similarly define a max-sliced version by maximizing over projection directions, as opposed to
averaging over them. Despite the projection of X and Y to a single dimension, SMI preserves many
of the properties of MI. For instance, we show that SMI nullifies iff random variables are independent,
it satisfies a chain rule, can be represented as a reduction in sliced entropy, admits a variational form,
etc. Further, SMI between (jointly) Gaussian variables is tightly related to their canonical correlation
coefficient [24]. This is in direct analogy to the relation between classic MI of Gaussian variables
(X,Y ) and their correlation coefficient, where I(X;Y ) = �

1
2 log

�
1� ⇢2(X,Y )

�
.

SMI is well-positioned for statistical estimation in high-dimensional setups, where one estimates
SI(X;Y ) from n i.i.d. samples of PX,Y . While the error of standard MI (or entropy) estimates, e.g.,
those in [16, 25, 26], scales as n�1/d when d is large, the same estimators admit statistical efficiency
when d = 1, 2, converging at (near) parametric rates. Combining such estimators with Monte-Carlo
(MC) sampling to approximate the integral over the unit sphere, we prove that the overall error scales
(up to log factors) asm�1/2 + n�1/2, where m is the number of MC samples and n is the size of the
high-dimensional dataset. We validate our theory on synthetic experiments, demonstrating that SMI
is a scalable alternative to classic MI when dealing with high-dimensional data.

A notable contrast between classic and sliced MI involves the data processing inequality (DPI). Classic
MI cannot grow as a result of processing the involved variables, namely, I(X;Y ) � I

�
f(X);Y

�

for any deterministic function f . This is since MI encodes arbitrarily fine details about (X,Y )
as variables in the ambient space, and transforming them cannot reveal anything that was not
already there. SMI, on the other hand, only considers one-dimensional projections of X and Y ,
some of which can be more correlated than others. Consequently, SMI can grow as a result of
deterministic transformations, i.e., SI(X;Y ) < SI

�
f(X);Y

�
is possible if projections of f(X)

are more informative about projections of Y than those of X itself. We show theoretically and
demonstrate empirically that SMI is increased by projecting the data on more informative directions,
highlighting its compatibility with feature extraction tasks.

2 Preliminaries and Background

We take P(Rd) as the class of all Borel probability measures on Rd. Elements of P(Rd) are denoted
by uppercase letters, with subscripts to indicate the associated random variables, e.g., PX or PX,Y .
The support of PX is supp(PX). Our focus throughout is on absolutely continuous random variables;
we use lowercase letters, such as pX or pX,Y , to denote probability density functions (PDFs). For a
function f : Rd

! Rd0
and a distribution PX 2 P(Rd), we write f]PX for the pushforward measure

of PX through f , i.e., f]PX(A) = PX

�
f�1(A)

�
. The Lp(Rd) norm of f is denoted by kfkp,d.

The d-dimensional unit sphere is Sd�1, and its surface area is Sd�1 = 2⇡d/2/�(d/2), with � as the
gamma function. We also define slicing along ✓ as ⇡✓(x) := ✓|x.

Mutual information and entropy. Information measures, such as MI and entropy, are ubiquitous
in information theory and machine learning. MI is defined in (1) and can be equivalently written
in terms of the Kullback-Leibler (KL) divergence as I(X;Y ) := DKL

�
PX,Y

��PX ⌦ PY

�
. I(X;Y )

thus quantifies how far, in the KL sense, (X,Y ) ⇠ PX,Y are from being independent. The differ-
ential entropy of a continuous random variable X with density pX is H(X) := �E

⇥
log
�
pX(X)

�⇤
,

quantifying a notion of uncertainty associated with X . For a pair (X,Y ) ⇠ PX,Y , the conditional
entropy of X given Y is H(X|Y ) :=

R
Y
H(X|Y = y)dPY (y), where H(X|Y = y) is computed

w.r.t. PX|Y=y. Conditional MI is similarly defined as I(X;Y |Z) :=
R
Z
I(X;Y |Z = z)dPZ(z).

With these definitions, one can represent MI as1 I(X;Y ) = H(X)� H(X|Y ) = H(Y )� H(Y |X),
thus interpreting MI as the reduction in the uncertainty regarding one variable as a result of observing
the other. Another useful decomposition is the MI chain rule I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X).

1Assuming that the appropriate PDFs exist.

2



Data processing inequality. The DPI states that I(X;Y ) � I(X;Z), if X  ! Y  ! Z forms a
Markov chain. This inequality is a cornerstone for many information theoretic derivations and is nat-
ural when there are no computational restrictions on the model. However, given a restricted computa-
tional budget, processing the input may aid inference. Deep neural network classifiers are an excellent
example: they generate a hierarchy of processed representations of the input that are increasingly
useful (although not more informative in the Shannon MI sense) for inferring the label. The incom-
patibility between the DPI and deep learning practice was previously observed in [27], motivating
their definition of a computationally restricted MI variant that can be grow from processing. As we
show in Section 3.2, SMI also shares this property.

3 Sliced Mutual Information

Our goal is to define a surrogate notion of MI that is more scalable for computation and estimation
from samples in high dimensions. We propose SMI as defined next.
Definition 1 (Sliced MI). Fix (X,Y ) ⇠ PX,Y 2 P(Rdx ⇥ Rdy ). Let ⇥ ⇠ Unif(Sdx�1) and
� ⇠ Unif(Sdy�1) be independent of each other and of (X,Y ). The SMI between X and Y is

SI(X;Y ) := I(⇥|X;�|Y |⇥,�) =
1

Sdx�1Sdy�1

I

Sdx�1

I

Sdy�1
I(✓|X;�|Y )d✓d�. (3)

Evidently, the SMI between two high-dimensional variables is defined as an average of MI terms
between their one-dimensional projections. By the DPI, SI(X;Y )  I(X;Y ) so we inherently
introduce information loss. Nevertheless, we will show that SMI inherits key properties of MI such
as discrimination between dependence and independence, chain rule, entropy decomposition, etc.
Remark 1 (One-dimensional variables). If dx = 1 then S0 = {±1} and we have SI(X;Y ) =
I(X;�|Y |�), which follows by invariance of MI to bijections and the independence of (X,Y,�)
and ⇥. Similarly, when dx = dy = 1 we have SI(X;Y ) = I(X;Y ).
Remark 2 (Single projection direction). When slicing statistical divergences, like the Wasserstein
distance [20], one typically considers a single slicing direction. Namely, given that X and Y are of
the same dimension d, they are both projected onto the same ✓ 2 Sd�1 and the distances between
✓|X and ✓|Y are then averaged over the unit sphere. While this approach is possible also in the
context of SMI, we chose to define it using two slicing directions, ✓ and �, for several reasons:

1. this definition is invariant to rotations of the spaces in which X and Y take values—with a single
direction, rotating either space would change the SMI, seemingly an undesirable property for an
information measure;

2. it gives rise to a crucial property of SMI, that SI(X;Y ) = 0 () X and Y are independent
(see Proposition 1), which does not hold with a single slicing direction;2

3. it fares naturally with variables of different dimensions (although one can use zero padding to
circumvent this issue in the single-direction version); and

4. it is inspired by the canonical correlation coefficient [24], that also uses two projection directions.

To later establish a chain rule and entropy-based decompositions, we define SMI between more than
two random variables, conditional SMI, and sliced entropy.
Definition 2 (Joint and conditional SMI). Let (X,Y, Z) ⇠ PX,Y,Z 2 P(Rdx ⇥ Rdy ⇥ Rdz ) and
take ⇥ ⇠ Unif(Sdx�1), � ⇠ Unif(Sdy�1), and  ⇠ Unif(Sdz�1) mutually independent. The SMI
between (X,Y ) and Z is defined as

SI(X,Y ;Z) := I(⇥|X,�|Y ; |Z|⇥,�, ). (4a)

The conditional SMI between X and Y given Z is

SI(X;Y |Z) := I(⇥|X;�|Y |⇥,�, , |Z). (4b)
2Indeed, let X1, X2 ⇠ N (0, 1) be independent, set X = (X1, X2)

| and Y = (X2,�X1)
|. As 2-

dimensional vectors, X and Y are dependent, but one readily verifies that cov(✓|X, ✓|Y ) = 0, for any ✓ 2 S1.
This implies independence of ✓|X and ✓|Y , hence the single slicing direction SMI would nullify in this case.
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The expression in (4a) extends Definition 1. Conditional SMI is the sliced information given access
to another projected random variable along with its projection direction. Accordingly, conditional
SMI is in the spirit of the original definition of SI(X;Y ), incorporating only projected data without
introducing additional uncertainty about the direction.
Remark 3 (Extensions). Joint and conditional SMI have natural multivariate extensions. For
example, SI(X1, . . . , Xn;Y1, . . . , Ym) := I(⇥|

1X1, . . . ,⇥|
nXn;�

|
1Y1, . . . ,�|

mYm|⇥,�), where
⇥ = (⇥1 . . .⇥n) and � = (�1 . . .�m). The extension of conditional SMI is similar.
Definition 3 (Sliced entropy). Let (X,Y ) ⇠ PX,Y 2 P(Rdx ⇥ Rdy ) and take ⇥ ⇠ Unif(Sdx�1)
and � ⇠ Unif(Sdy�1) to be independent. The sliced entropy of X is SH(X) := H(⇥|X|⇥), while
the conditional sliced entropy of X given Y is SH(X|Y ) := H(⇥|X|⇥,�,�|Y ).

Sliced entropy is interpreted as the average uncertainty in one-dimensional projections of the con-
sidered random variable. Conditional sliced entropy is the remaining uncertainty when a projected
version and the projection direction of another random variable is revealed.

The following proposition shows that SMI retains many of the properties of classic MI.
Proposition 1 (SMI properties). The following properties hold:

1. Non-negativity: SI(X;Y ) � 0 with equality iff X and Y are independent.

2. Bounds: inf✓2Sdx�1

�2Sdy�1

I(✓|X;�|Y )  SI(X;Y )  sup✓2Sdx�1

�2Sdy�1

I(✓|X;�|Y )  I(X;Y ).

3. KL divergence: We have SI(X;Y ) = E⇥,�

h
DKL

�
(⇡⇥,⇡�)]PX,Y

��⇡⇥
] PX ⌦ ⇡�

] PY

�i
.

4. Chain rule: For any random variables X1, . . . , Xn, Y, Z, we have the decomposi-
tion SI(X1, . . . , Xn;Y ) = SI(X1;Y ) +

Pn
i=2 SI(Xi;Y |X1, . . . , Xi�1). In particular,

SI(X,Y ;Z) = SI(X;Z) + SI(Y ;Z|X).

5. Tensorization: Suppose that (X1, Y1), . . . , (Xn, Yn) are mutually independent. Then
SI(X1, . . . , Xn;Y1, . . . , Yn) =

Pn
i=1 SI(Xi;Yi).

The proof of Proposition 1 is given in Supplement A.1.
Remark 4 (SMI versus MI). Proposition 1 shows that SMI inherits many of the favorable properties
of classic MI. Nevertheless, we stress that SMI is posed as a new measure of dependence that
(although closely related) is different from MI. In particular, the gap between MI and SMI may
not be bounded.3 SMI thus should not be treated as a proxy of MI, but rather as an alternative
figure of merit. The premise of the SMI framework is that its meaningful structure does not translate
into computational or statistical inefficiency. Indeed, Section 3.1 shows that SMI can be efficiently
estimated with parametric rate (up to logarithmic factors).

Similarly to MI, the sliced version simplifies when the variables are jointly Gaussian.
Example 1 (Gaussian SMI). If X ⇠ N (0,⌃X) and Y ⇠ N (0,⌃Y ) are jointly Gaussian with
cross-covariance ⌃XY , then

SI(X;Y ) =
1

2Sdx�1Sdy�1

I

Sdx�1

I

Sdy�1
log

✓
1

1� ⇢ 2(✓|X,�|Y )

◆
d✓d�,

where ⇢(✓|X,�|Y ) := ✓|⌃X,Y �
(✓|⌃X✓�|⌃Y �)1/2

is the correlation coefficient of ✓|X and �|Y . Denoting
by ⇢CCA(X,Y ) := sup(✓,�)2Sdx�1⇥Sdy�1 ⇢(✓|X,�|Y ) the canonical correlation coefficient, we get
SI(X;Y )  �0.5 log

�
1� ⇢ 2

CCA(X,Y )
�
.

The Gaussian distribution is also special for sliced entropy, where, as for classic entropy, it maximizes
SH(X) under a fixed (mean and) covariance constraint.
Proposition 2 (Gaussian maximizes sliced entropy). Let P1(µ,⌃) :=

�
P 2 P(Rd) : supp(P ) =

Rd , EP [X] = µ , E
⇥
(X � µ)(X � µ)|

⇤
= ⌃

 
. Then arg maxP2P1(µ,⌃) SH(P ) = N (µ,⌃), i.e.,

the normal distribution maximizes sliced entropy inside P1(µ,⌃).
3See the Example from the beginning of Section 3.2 and note that under that setup, for any 0 < a < 1, we

have I
�
ga(X);Y

�
= 1 while SI

�
ga(X);Y

�
is finite.
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The proposition is proven in Supplement A.2, where two additional max-entropy claims are estab-
lished. Specifically, we show that (i) the uniform distribution on the sphere maximizes sliced entropy
over measures supported inside a ball; and (ii) the symmetric multivariate Laplace distribution [28] is
the maximizer subject to mean constraints on the d-dimensional variable and its projections.

Lastly, SMI admits a variational form in the spirit of the Donsker-Varadhan representation of MI.
Proposition 3 (Variational form). Let ⇥ ⇠ Unif(Sdx�1), � ⇠ Unif(Sdy�1) be independent of each
other and of (X,Y ) ⇠ PX,Y 2 P(Rdx ⇥ Rdy ), and set (X̃, Ỹ ) ⇠ PX ⌦ PY . We have

SI(X;Y ) = sup
g: Sdx�1⇥Sdy�1

⇥R2!R
E
⇥
g(⇥,�,⇥|X,�|Y )

⇤
� log

⇣
E
h
eg(⇥,�,⇥|X̃,�|Ỹ )

i⌘
,

where the supremum is over all measurable functions for which both expectations are finite.

This representation is leveraged in Section 4.3 to implement a feature extractor based on SMI neural
estimation. The proof is found in Section A.3 of the supplement.

3.1 Estimation

A main virtue of SMI is that its estimation from samples is much easier than classic MI. One may
combine any MI estimator between scalar variables with an MC integrator to estimate SMI between
high-dimensional variables without suffering from the curse of dimensionality. This gain is expected
as SMI is defined as an average of low dimensional MI terms.

For PA,B 2 P(R ⇥ R), let (A1, B1), . . . , (An, Bn) be pairwise i.i.d. from PA,B . Consider an MI
estimator Î : An

⇥B
n
!R�0 that attains �(n) absolute error uniformly over a class F of distributions:

sup
PA,B2F

E
h�� Î(An, Bn)� I(A;B)

��
i
 �(n). (5)

We use Î to construct an estimator of SMI. Given high-dimensional pairwise i.i.d. samples
(X1, Y1), . . . , (Xn, Yn) from PX,Y 2 P(Rdx⇥Rdy ), first note that (✓|Xi,�|Yi), for ✓ 2 Sdx�1 and
� 2 Sdy�1, is distributed according to (⇡✓,⇡�)]PX,Y . Thus, we can convert {(Xi, Yi)}ni=1 into pair-
wise i.i.d. samples of the projected variables. Let ⇥1, . . . ,⇥m and �1, . . . ,�m be i.i.d. according to
Unif(Sdx�1) and Unif(Sdy�1), respectively, set (⇥|

jX)n := (⇥|
jX1, . . . ,⇥

|
jXn) for j = 1, . . . ,m,

and similarly define (�|
jY )n. We consider the following SMI estimator:

bSIn,m = bSIn,m(Xn, Y n,⇥m,�m) :=
1

m

mX

i=1

Î
�
(⇥|

i X)n, (�|
i Y )n

�
. (6)

Pseudocode and computational complexity for bSIn,m can be found in Section B of the supplement.

3.1.1 Non-asymptotic performance guarantees

We now present convergence guarantees for the estimator (6) over the following class of distributions:

Fdx,dy (M) :=

(
PX,Y 2 P(Rdx ⇥ Rdy ) :

sup(✓,�)2Sdx�1⇥Sdy�1 I(✓|X;�|Y )  M,

(⇡✓,⇡�)]PX,Y 2F , 8(✓,�) 2 Sdx�1
⇥ Sdy�1

)
,

i.e., the class of all PX,Y with bounded MI and projections that belong to the class F from (5).
Theorem 1 (Convergence rate). The following uniform error bound over Fdx,dy (M) holds:

sup
PX,Y 2Fdx,dy (M)

E
h��SI(X;Y )� bSIn,m

��
i


M

2
p
m

+ �(n). (7)

See Supplement A.4 for the proof.
Remark 5 (Instance-dependent bound). An inspection of the proof of Theorem 1 reveals that (7) can
be converted into the instance-dependent bound

E
⇥
|SI(X;Y )� bSIn,m|

⇤


1

2
sup

(✓,�)2Sdx�1⇥Sdy�1

I(✓|X;�|Y )m�1/2 + �(n),

so long that PX,Y 2 Fdx,dy (M) for someM .
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Theorem 1 applies to classes of distribution with uniformly bounded per-slice MI. Since this
boundedness may be hard to verify in practice, we present a primitive sufficient condition for
(7) to hold. Specifically, when PX,Y is log-concave and symmetric, it is enough to require that
the canonical correlation coefficient of (X,Y ) is bounded. Recall that a probability measure
P 2 P(Rd) is called log-concave if for any compact Borel sets A and B and 0 < � < 1, we
have P

�
�A+ (1� �)B

�
� P (A)�P (B)1��. Let

F
(LC)
dx,dy

(M) :=
�
PX,Y 2 P(Rdx⇥Rdy ) : PX,Y is symmetric and log-concave, ⇢2CCA(X,Y )  M

 
.

The following error bound is proved in Supplement A.5.
Corollary 1 (Convergence for log-concave class). The following uniform error bound over
F

(LC)
dx,dy

(M) holds:

sup
PX,Y 2F

(LC)
dx,dy

(M)

E
h��SI(X;Y )� bSIn,m

��
i


✓
1

2
log

✓
⇡2

8

1

1�M

◆
1

m

◆�1/2

+ �(n). (8)

3.1.2 End-to-end SMI estimation guarantees over Lipschitz balls

To provide a concrete SMI estimator with guarantees, we instantiate the low-dimensional MI estimate
via the entropy estimator from [26] for densities in the generalized Lipschitz class.
Definition 4 (Generalized Lipschitz class). For d 2 N, p 2 [2,1), s > 0, and L � 0, let Lips,p,d(L)
be the class of probability density functions f : [0, 1]d ! R with kfkLips,p,d  L, where

kfkLips,p,d := kfkp,d + sup
t>0

t�s sup
e2Rd,kek21

���dse
te f

��
p,d

(9)

and �r
hf(x) :=

Pr
k=0(�1)r�k

�r
k

�
f
�
x+

�
k �

r
2

�
h
�
.

We note that the norm of�dse
te f is taken over the whole Euclidean space to enforce a smooth decay

of f at the boundary. Consequently, the Lips,p,d(L) class includes, e.g., densities whose derivatives
up to order dse � 1 all vanish at the boundary, where s is the smoothness parameter.

Differential entropy estimation over Lips,p,d(L) was considered in [26], where an optimal estimator
based on best polynomial approximation and kernel density estimation techniques was proposed.
Adhering to their setup, for A ⇠ PA 2 P([0, 1]d) with density pA 2 Lips,p,d(L), we denote the
aforementioned entropy estimate based on n i.i.d. samples An by Ĥ(An).

The SMI estimator from (6) employs a MI estimate between scalar variables (A,B). Assume their
joint density is pA,B 2 Lips,p,2(L) and let (An, Bn) be i.i.d. samples. To estimate I(A;B), consider

ÎLip(A
n;Bn) := Ĥ(An) + Ĥ(Bn)� Ĥ(An, Bn). (10)

Plug (10) into (6) and let bSI
(Lip)

n,m be the resulting SMI estimate. We next state the effective estimation
rate over F (Lip)

s,p,dx,dy
(L,M) :=

�
pX,Y 2Lips,p,dx+dy

(L) : sup(✓,�)2Sdx�1⇥Sdy�1 I(✓|X;�|Y )M
 
.

Corollary 2 (Effective rate). Let dx, dy 2 N, s 2 (0, 2], p 2 [2,1), and L � 0. The following
uniform error bound over F (Lip)

s,p,dx,dy
(L,M) holds:

sup
pX,Y 2F

(Lip)
s,p,dx,dy

(L,M)

E
h���SI(X;Y )� bSI

(Lip)

n,m

���
i


M

2
m�

1
2 +C

⇣
(n logn)�

s
s+2 (log n)(1�

2
p(s+2) )+n�

1
2

⌘
.

for a constant C that depends only on dx, dy , p, s, and L.

The proof of Corollary 2 (Supplement A.6) shows that densities in the generalized Lipschitz class
have the property that all their projections are also in that class (with different parameters). We then
bound �(n) using [26, Theorem 4] to control the error of each differential entropy estimate in (10).
Remark 6 (SMI versus MI estimation rates). The SMI estimation rate from Corollary 2 is consider-
ably faster than the n�1/(dx+dy) rate attainable when estimating classic MI [26]. Our bound shows
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that n and (dx, dy) are decoupled in the SMI convergence rate, unlike their interleaved dependence
in MI estimation. The ambient dimension still enters the bound via the constant C, but its effect is
expected to be much milder than in the classic case. As Theorem 1 shows, (dx, dy) can only enter via
M and �(n), both of which correspond to scalar MI terms (namely, the uniform per-sliced MI bound
and scalar MI estimation error). This scalability to high dimensions is the expected gain from slicing.
Remark 7 (Optimal rate for smooth densities). Restricting attention to densities of maximal smooth-
ness in Corollary 2, i.e., s = 2, the resulting rate is 0.5Mm�1/2 + Cn�1/2

�
1 + (log n)0.5(1�1/p)

�
.

Equating the number of MC and data samples, m and n, the rate is parametric, up to polylog factors.

3.2 Extracting Sliced Information

We now discuss how SMI can increase via processing. In contrast to the DPI of classic MI, we show
that SMI can be grow by extracting linear features of X and Y that are informative of each other.

To illustrate the idea we begin with a simple example. Let X = (X1 X2) ⇠ N (0, I2), Y = X1, and
consider SI(X;Y ) (Y is a scalar and it is thus not sliced). For any ✓ = (✓1 ✓2) 2 S1 with ✓1 6= 0,
we have I(✓|X;Y ) = I

�
X1 + (✓2/✓1)X2;X1

�
= 1

2 log
�
1 + (✓1/✓2)2

�
, where the last step uses the

independence ofX1 andX2. Consider the function ga : R2
! R2 given by ga(x1, x2) = (x1 ax2)|,

for some 0 < a < 1. Following the same procedure, we have ✓|ga(X) = ✓1Y + a✓2X2 and
I
�
✓|ga(X);Y

�
= 1

2 log
⇣
1 +

�
✓1/(a✓2)

�2⌘
> I
�
✓|X;Y

�
, for almost all ✓ 2 S1, and consequently,

SI(X;Y ) < SI
�
ga(X);Y

�
. Generally, this shows that by varying a one can both create and diminish

sliced information by processing via ga.

When a = 0, we have SI(ga(X);Y ) = 1, yielding SI(ga(X);Y ) = sup✓ I(✓
|X;Y ). Thus,

maximizing SMI by varying a extracts the most informative featureX1 and deletes the uninformative
feature X2. We next generalize this observation (see Supplement A.7 for the proof).
Proposition 4. Let (X,Y ) ⇠ P(Rdx ⇥ Rdy ) and consider optimizing the SMI between linear
processing of X and Y in the following scenarios:

1. Arbitrary linear processing: For matricesAx,Ay and vectors bx, by of the appropriate dimension,
we have

sup
Ax,Ay,bx,by

SI(AxX + bx; AyY + by) = sup
Ax,Ay

SI(AxX; AyY ) = sup
✓,�

I(✓|X;�|Y ). (11)

Furthermore, if (✓?,�?) 2 arg max I(✓|X;�|Y ), then an optimal pair of matrices A?
x and A?

y
have ✓? or �?, respectively, in their first rows and zeros otherwise.

2. Rank constrained linear processing: For d1, d2, r 2 N and c > 0, let Md1,d2(r, c) :=
�
A 2

Rd1⇥d2 : 1
c  �r(A)  . . .  �1(A)  c

 
, where �i(A) is the ith largest singular value of A.

We have

sup
Ax2Mdx,dx (rx,cx),
Ay2Mdx,dx (ry,cy)

SI(AxX; AyY ) = sup
Bx2Mrx,dx (rx,cx),
By2Mry,dy (ry,cy)

SI(BxX; ByY ), 8cx, cy > 0.

Furthermore, if (B?
1,B

?
2) are maximizers of the RHS, then B1 (resp., B2) has the first rx (resp.,

ry) rows span the top rx (resp., ry) scalar MI slicing directions and the remaining rows are zero.

The proposition suggests that SMI can be used as an objective for extracting informative linear
features. The setup in Case 2 precludes reduction to Case 1. Indeed, if eigenvalues can shrink or grow
without bound, it is always better to consider a maximizing slice than to average several slices.
Remark 8 (Processing one variable). Similar results hold when only one of the arguments (X or Y ) is
processed. In this case, rather than the maximum being a projected MI term, it would be an SMI where
the slicing is only in the opposite argument. For example, (11) becomes supAx,bx SI(AxX+bx;Y ) =

supAx
SI(AxX;Y ) = sup✓ I(✓

|X;�|Y |�), for � ⇠ Unif(Sdy�1) independent of (X,Y ).

Proposition 4 accounts for linear processing but the argument readily extends to nonlinear processing.
For simplicity, the following corollary states the result for a shallow (single hidden layer) neural
network (see Supplement A.8 for the proof).
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Corollary 3 (Shallow neural network). Let (X,Y ) ⇠ PX,Y . For any scaling matricesAx,Ay , weight
matricesWx,Wy , and bias vectors bx, by of appropriate dimension, defineXnn := Ax�(W|

xX+bx),
Ynn := Ay�(W|

yY + by), where � is a scalar, continuous, and monotonically increasing nonlinearity
(e.g. sigmoid, tanh) and the hidden dimension is arbitrary. Then

sup
Ax,Ay,Wx,Wy,bx,by

SI(Xnn;Ynn) = sup
✓,�,Wx,Wy,bx,by

I
�
✓|�(W|

xX + bx);�
|�(W|

yY + by)
�
.

4 Empirical Results

4.1 Convergence of the SMI estimator

Figure 1: Convergence of the SMI estimator
versus the number of data samples n and/or
slice samples m: (a) d = 3, mfixed = nfixed

= 104; (b) d = 10, mfixed = nfixed = 104;
(c) d = 10, m,n varied independently.

We validate the empirical convergence rates for SMI
estimation derived in Section 3.1. Consider densi-
ties with smoothness parameter s = 2 in the setup
of Corollary 2; the expected convergence rate (up to
log factors) is n�1/2 +m�1/2. While the theoretical
results use the optimal estimator of [26] to obtain
the tightest bounds, in our experiments we imple-
mented the simpler Kozachenko–Leonenko estimator.
The justification for doing so comes from [25], who
showed that this estimator achieves the same rate (up
to log factors) as the optimal one from [26].

Figure 1 shows convergence of the estimated SMI
RMSE for the case where X and Y are overlap-
ping subsets of a standard normal random vector
Z ⇠ N (0, I15). For d = 3, we set X = Z[1:3] :=
(Z1 Z2 Z3)|, Y = Z[2:4] (i.e., 2 coordinates overlap).
For d = 10, we take X = Z1:10, Y = Z5:15 (5 coor-
dinates overlap). Convergence is shown when both n
andm grow together (i.e., n = m), and when one is
fixed to a large value and the other varies. The large
value is chosen so that the error term corresponding
to the fixed parameter is negligible compared to the
varying term. For d = 10, we also plot results for
m,n varying independently. Supplement C provides
corresponding MI estimation results.

4.2 Independence testing

Proposition 1 states that SI(X;Y ) = 0 if and only if
X and Y are independent. This implies that, like MI,
we may use SMI for independence testing. MI-based
independence tests of high-dimensional continuous
variables can be burdensome due to slow convergence
of MI estimation [26]. We show that, as our theory
implies, SMI is a scalable alternative.

Figure 2 shows independence testing results for a variety of relationships between X , Y pairs. The
figure shows the area under the curve (AUC) of the receiver operating characteristic (ROC) for
independence testing via SMI (or MI) thresholding as a function of the number of samples n from the
joint distribution.4 Both the SMI and MI were computed using the Kozachenko–Leonenko estimator
[15]; the MC step for SMI estimation (see (6)) uses 1000 random slices, and the AUC ROC curves
are computed from 100 random trials. The joint distribution of (X,Y ) in each case of Figure 2 is:

4For every n, we generate 50 datasets comprising n positive samples (i.e., drawn from the joint distribution)
and 50 more dataset of negative samples in each setting. SMI and MI are then estimated over each dataset, the
ROC curve is found, and the area under it computed. The ROC curve plots test performance (precision and
recall) as the threshold is varied over all possible values. The AUC ROC quantifies the test’s discriminative
ability: an omniscient classifier has AUC ROC 1, while random tests have AUC ROC 0.5.
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(a) Y encodes sin-
gleX feature (lin)

(b) Y encodes sin-
gleX feature (sin)

(c) Y encodes two
features ofX

(d) Low rank com-
mon signal

(e) Independent co-
ordinates

Figure 2: Statistical efficiency of independence testing with dimension. The plot show the area under
the ROC curve (AUC ROC) as a function of samples n for several dimensions d. The test is based on
thresholding SMI and MI. Details for each scenario are in the text.

(a) One feature (linear): X,Z ⇠ N (0, Id) i.i.d. and Y = 1
p
2

�
1
p
d
(1|X)1 + Z

�
, where 1 :=

(1 . . . 1)| 2 Rd.
(b) One feature (sinusoid): X,Z ⇠ N (0, Id) i.i.d. and Y = 1

p
2

�
1
p
d
sin(1|X)1+ Z

�
.

(c) Two features: X,Z ⇠ N (0, Id) i.i.d. and Yi =
1
p
2

⇢
1
d (1bd/2c0 . . . 0)

|X + Zi, i  d
2

1
d (0 . . . 01dd/2e)

|X + Zi, i > d
2 .

(d) Low rank common signal: Z1, Z2 ⇠ N (0, Id) and V ⇠ N (0, I2) are independent; X =
P1V + Z1 and Y = P2V + Z2, where P1,P2 2 Rd⇥2 are projection matrices (realized at the
beginning of each iteration by drawing i.i.d. standard normal entries).

(e) Independent coordinates: X,Z ⇠ N (0, Id) i.i.d. and Y = 1
p
2
(X + Z).

Note that in all the cases with underlying lower-dimensional structure, SMI scales well with dimension
while MI does not; in the independent case of subfigure (d), both perform similarly and rather well.
While the SMI is always on par or better than MI in these experiments, the results suggest that SMI
performs best in structured (specifically, low rank) settings. This is because in these settings the MI
term associated with random (⇥,�) slices has lower variance. This is not the case for the unstructured
setting of Figure 2(d). There, when dimension is high, random slices carry relatively little information
compared to the maximum MI over slices (which attained between the ith coordinates of X and Y
for any i). Since SMI is an average quantity, in this case it offers little gain over classic MI.

4.3 Feature extraction

In the above, we focused on a nonparametric estimator for which we derived tight bounds. In
practice, applying neural estimators (à la MINE [29]) is more compatible with modern optimizers.
The SMI neural estimator (S-MINE) relies on the variational representation from Proposition 3.
Given a sample set (X1, Y1), . . . , (Xn, Yn) i.i.d. from PX,Y , we further sample n i.i.d. copies of
(⇥,�) ⇠ Unif(Sdx�1)⇥ Unif(Sdy�1). The negative samples (X̃1, Ỹ1), . . . , (X̃n, Ỹn) are obtained
by permuting the order of, e.g., the Y samples. Parametrizing the potential g in (3) by a neural
network g⇠ with parameters ⇠ 2 ⌅, we obtain the following empirical objective

sup
⇠2⌅

1

n

nX

i=1

g⇠(⇥i,�i,⇥
|
i Xi,�

|
i Yi)� log

 
1

n

nX

i=1

eg⇠(⇥i,�i,⇥
|
i X̃i,�

|
i Ỹi)

!
.

This provides an estimate (from below) of SI(X;Y ). We leave a full theoretical and empirical explo-
ration of its performance for future work, and here only provide two proof-of-concept experiments.

The formulation of SMI as an optimization of a loss whose gradients are readily evaluated lends itself
to the SMI-extraction formulations of Proposition 4, i.e., we can simultaneously optimizeAx,Ay , and
⇠ end-to-end. Figure 3 shows results for X,Z ⇠ N (0, I10), Y = e|1X + Z, where e1 = (1 0 . . . 0)|,
with g⇠ in S-MINE realized as a two-layer fully connected neural network with 100 hidden units for.
An (A?

x,A
?
y) with rows converging to e1 are recovered. Note that while Proposition 4 identifies an

optimal solution where only the first row is nonzero, this will have the same SMI as when all rows
equal that first row. The latter solution is found since the gradients do not favor one row over another.
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Figure 3: (A?
x,A

?
y) optimizers for (11) over a Gaussian dataset

using S-MINE: (a) matrix A?
x; (b) matrix A?

y. Both have cor-
rectly recovered the unit vector e1 as their rows.

Figure 4: Solution for optimizing A-transformed SMI of the
0-1 MNIST setup using S-MINE. Rows 0 and 1 ofA are shown
in (a) and (b), respectively.

We next combine S-MINE with
independence testing, looking to
maximize the SMI using transfor-
mations AX,AY , where X,Y are
samples from a random MNIST
class (either 0 or 1) and A 2 R10⇥d.
Specifically, we choose a class C ⇠

Ber(0.5) and then sample X and
Y uniformly from that class’ train-
ing dataset. In this setup, X,Y
share up to 1 bit of information,
i.e. I(X;Y )  H(C) = log 2.
This suggests that maximizing the
SMI between AX and AY will
find an A that extracts information
about C, revealing whether X and
Y are in the same class. Optimiz-
ing A yields an estimated SMI of
0.680 bits (compare this to, e.g.,
0.0752 SMI achieved by a matrix
A with i.i.d. standard normal en-
tries). To confirm A is not being
overfit, we also optimized the SMI
over A when X,Y are drawn inde-
pendently, i.e., no longer sharing
a class, yielding 0.0289 estimated
SMI (the ground truth is 0 here).
These results indicate that (a) an
SMI-based independence test would be successful at detecting dependence between X,Y and
(b) optimizing A not only succeeds at significantly (almost 10x) increasing the SMI, but also comes
relatively close to the true MI of 1 bit. Heatmaps of two rows of A rearranged into the MNIST image
dimensions are shown in Figure 4. Observe the Ai: visually correspond to the numeral 0, which, from
a matched filter perspective, yields an AX (resp., AY ) that is informative of whether X (resp., Y ) is
in class zero or not. This, in turn, conveys information of whether X,Y share a class (since 0 and 1
are the only options), as desired.

5 Summary and Concluding Remarks

Motivated to address the computational and statistical unscalability of MI to high dimensions, this
paper proposed an alternative notion of informativeness dubbed sliced mutual information (SMI).
SMI projects high-dimensional random variables to scalars and averages over random projections. We
showed that SMI shares many of the structural properties of classic MI, while enjoying efficient em-
pirical estimation. We also showed that, as opposed to classic MI, SMI can be increase by processing
the variables. This observation was quantified for linear and nonlinear SMI-based feature extractors.
Experiments validating the theoretical study were provided, demonstrating dimension free empirical
convergence rates, statistical efficiency for independence testing, and feature extraction examples.

Our results pose SMI as a favorable figure of merit for information quantification between high-
dimensional random variables. We expect it to turn useful for a variety of applications in inference
and machine learning, although a large-scale empirical exploration is beyond the scope of this paper.
In particular, SMI seems well adapted for representation learning via the (sliced) InfoMax principle
[30, 31], and we plan to test this hypothesis in future work. On the theoretical side, appealing
future directions are abundant, including convergence guarantees for the neural SMI estimator
used in Section 4.3, operational channel/source coding settings for which SMI characterizes the
information-theoretic fundamental limit, and a statistical analysis of SMI-based independence testing.
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