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Abstract. In this paper, we demonstrate the utility of dynamic network
sequences to provide insight into geometric data; moreover, we construct a nat-
ural syntactic and semantic understanding of these network sequences for useful
downstream applications. As a proof-of-concept, we study the trajectory data of
basketball players and construct “interaction networks” to express an essential
game mechanic: the ability for the offensive team to pass the ball to each other.
These networks give rise to a library of player configurations that can in turn be
modeled by a jump Markov model. This model provides a highly compressed
representation of a game, while capturing important latent structures. By lever-
aging this structure, we use a Transformer to predict trajectories with increased
accuracy.
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1 Introduction

Multi-agent systems are fascinating both for their geometric properties and for their
complex interactions. In a variety of contexts, we would like to understand their under-
lying dynamics, moving beyond the construction of black-box models that simply repli-
cate their behavior. Thus we strive to produce a model that leverages dynamic networks
(i.e. networks with a topology that changes over time) to encode a geometric system.
We can then extract “semantic” information about these network sequences to crystal-
lize our understanding of the underlying dynamics. One paragon example of a multi-
agent geometric system includes fast-paced “invasion” sports like basketball, soccer,
and hockey [8].

We study the trajectories of players as they move across the court. To develop a rich
understanding of the dynamics of basketball players, we develop a model with:

1. Formation discovery: a semantic understanding of the functional roles of players;
2. High compression: an efficient representation of a game, as player trajectory data is

large and difficult to interpret;
3. Predictive power: a mechanism for generating synthetic basketball data and predict-

ing trajectories of players.
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Fig. 1.Overview of the data analysis pipeline. First, the raw trajectory data is converted into inter-
action networks. Second, by comparing graphs up to isomorphism, we can construct a “library”
of possible configurations. We can then construct a jump Markov model by taking the empirical
maximum likelihood estimator with graphs as the state space. Finally, we can feed in the raw
trajectory data and the graph data from the jump Markov model into a Transformer model for
prediction. This article opens the door to future work on inferring game semantics and strategies
from actual games.

In summary, the synthesis of semantic and geometric data is the main contribution
of this paper, which is a theoretical innovation, as well as a practical one: on an impor-
tant downstream task (trajectory prediction), we greatly improve on past results. We
propose a novel pipeline to convert geometric data from a complex, interactive multi-
agent system into semantic sequences. This new perspective provides better insight into
the underlying dynamics, as well as stronger results in important applications like tra-
jectory prediction.

2 Related Work

The analysis of basketball player trajectory began shortly after cutting-edge technology
was developed that allowed for comprehensive player tracking [11]. Early models did
reasonably well in role discovery and compression. Over the past decade, however,
predictive power has greatly increased, especially for the most common prediction task,
which is trajectory prediction.

2.1 Trajectory Prediction

Trajectory prediction focuses on forecasting the movement of players given their his-
tory. Generically, trajectory prediction is a much broader, and relatively old, discipline,
but, for concreteness, we restrict ourselves to those that involve sports [13,15].
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Generally, state-of-the-art techniques involve black-box machine learning models
that predict K frames of data from L initial frames [7,10,18]. Some models explicitly
construct roles for players, while others avoid this complication. Whether or not explicit
formation or role discovery is important to trajectory prediction is not well-established,
however.

2.2 Role Discovery

Discovering a player’s function on the court is an interesting challenge. The naive app-
roach of tracking players by their personal identity across plays, games, seasons, and
teams may yield a more confused analysis. Therefore, one common approach to ana-
lyzing sports data, especially with trajectories, is to develop some kind of “role” cate-
gorization, e.g. a point guard.

Work first done in [11], extended in [19], patented in [3], and updated in [9] pro-
poses an extensive set of efficient methods for classifying roles, especially within field
hockey. Role discovery is an important strand of research, as it emphasizes the seman-
tics of the game. While trajectory prediction is a compelling problem in its own right,
role discovery highlights the underlying structure of a particular game. Through role
discovery, we can provide interpretable labels or classifications to particular player for-
mations and movements.

Role discovery has also garnered popular attention [1,2,4,12,20], with a variety of
approaches in constructing and classifying roles.

2.3 Network Analysis

Network analysis for sports data is comparatively old, with some early efforts in soccer
beginning in 1979 [6]. The most relevant type of network analysis, however, has been on
passing networks and investigates the frequency with which players pass the ball [5,14].
This research direction emphasizes the study of aggregate network properties, e.g. the
centrality of a player on a particular team [8]. Network analysis thus far has considered
the network of passing frequency over an entire game rather than the specific dynamics
during the game itself.

3 Semantic Geometric Pipeline

3.1 Geometric Data

Our principal dataset contains the position of the offense, the defense, and the ball—
expressed as (x, y)-coordinates—across an entire game capture at 25 frames per second
(i.e. 40ms between frames). Notably, basketball is divided into possessions, where the
teams alternate between defensive and offensive roles. Consider five indexed points as
offensive players O = {o1, o2, o3, o4, o5} ⊂ R

2 : |O| = 5 and five indexed points as
defensive players D = {d1, d2, d3, d4, d5} ⊂ R

2 : |D| = 5. One frame F of data is the
ordered pair (O,D). Each possession P is a sequence of frames of data and a game is
a sequence of possessions.
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3.2 Dynamic Passing Networks

From this dataset, we construct dynamic passing networks. These networks are defined
over the offense (i.e. for basketball, there are five nodes); two players on the same team
have an edge joining them if there is no defender in-between. Figure 2 provides some
intuition for this construction.

More precisely, given two sets of five offensive players O ⊂ R
2 and five defensive

players D ⊂ R
2, we can define a graph G over vertices O. For oi, oj ∈ O, edge (oi, oj)

is in the graph if there is no d ∈ D such that the line of sight l(oi, oj) intersects with
occlusion field Fr(d). The line of sight between two points x, y is the line segment
joining them. An occlusion field of radius r at point p is the corresponding l2-ball
centered at p (n.b. r = 3, to represent the average 3-foot radius of basketball players).

Fig. 2. A deeper look at a snapshot of a basketball game. Green nodes with Roman characters are
offensive players. Red nodes with Greek letters are defensive players. On the left, we see player
positions with occlusion fields. In the center, we see all offensive lines of sight. On the right, we
see the occlusion network with only the offensive edges.

For each frame, we construct these networks by starting with a complete graph with
the offensive players as the nodes; we then remove edges from this graph if a defensive
player occludes the straight line of sight between a pair of offensive ones. Figure 3
depicts a passing network for one frame.

We convert each frame of the basketball game from two sets of (x, y)-coordinates
to a graph. We further compress this representation by only considering graphs up to
isomorphism, which allows us to store a label to a representative graph per frame. This
procedure thus converts a sequence of frames of position data into a sequence of labels.

Notably, this representation sheds the direct geometry of the basketball game. This
sequence of labels provides a purely semantic and highly compressible representation
of the game and is justified by three physical assumptions, which are validated by our
results:

1. From one frame to the next, there can be at most one edge that changes and this edge
change can only occur as a result of well-behaved player trajectories;

2. It is possible for two different geometries to produce the same graph, a sequence
of graphs must come from a real play, and thus provide enough information on the
possession;

3. Basketball is “fast-paced” enough that it can be assumed to follow a Markovian
property. Mainly, players do not have time to consider the history of the game to
factor into a future strategy, and instead either follow a set strategy or respond nearly
instantaneously to their current environment.
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Fig. 3. A frame of the basketball game with the constructed passing network. Green circles with
latin letters are offensive players, while red circles with greek letters are defensive players.

3.3 Jump Markov Model

We construct the maximum likelihood estimator of a jump Markov model that char-
acterizes this sequence of labels. A Markov model assumes that a sequence of labels
exhibits the Markovian property, namely that the label of one entry in the sequence is
only influenced by the previous entry and no others. Such a sequence can be character-
ized by “transition” probabilities: for every possible pair of labels (x, y), the frequency
with which y appears right after x in our sequences; we call this a (time-homogeneous,
discrete, finite) Markov chain, which is a stochastic process Ek.

A twist on such a model is a “jump” Markov model that additionally assigns a hold
time to each state: namely, since a basketball game is a continuous-time process, we can
also capture the average length of time that our sequence of frames does not change.
More precisely, consider a Poisson process, which is a continuous-time stochastic pro-
cess with rate λ and associated counting process {N(t)}. Overlapping the discrete-
time Markov chain on the continuous-time Poisson process (where the “events” that
occur are transitions of the Markov chain) yields a jump Markov model, defined as the
continuous-time stochastic process X(t) such that

X(t) = EN(t)

which is our stochastic process of interest [16].

3.4 A Transformer

Finally, to validate the empirically constructed jump Markov model, we use a Trans-
former, which is a state-of-the-art deep neural network that excels at two tasks: sequence
completion and sequence translation. Transformer is generally a staple of natural lan-
guage processing, but can work in a variety of different sequence-related tasks [17].
For our experiments, we retained all of the standard architectural elements of the out-
of-the-box Transformer, only making a mild alterations as necessary (described in the
following sections).
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For our experiments, we divided the frames into short sequences of length 50; with a
standard 80-10-10 allocation, these sequences were then split into a training, validation,
and test set respectively.

Baseline: Sequence Completion. To establish a baseline, we first used Transformer
Decoder for sequence completion: given 40 frames of positional data, we used Trans-
former to predict 10 frames of positional data. For this task, we removed the standard
lookup embedding layer for transformer, and instead directly concatenated all player
positions to construct a vector in R

10×2 = R
20 (10 players, each with an x and y

coordinate).

Comparison: Sequence Translation. For our second task, we leveraged Transformer
to “translate” between the sequences produced in the state space of the jump Markov
model to positional data. In particular, we first converted positional data into pass-
ing networks. Then, we compared all of these networks up to isomorphism to cre-
ate a “library” of possible networks; each possible network was assigned a unique
token. We could thus convert sequences of passing networks into sequences of tokens.
Finally, feeding this sequence of tokens into Transformer yielded predicted positional
data, which we compared against the original raw trajectories. This setup corresponds
directly to Fig. 1.

4 Results

4.1 Markovian Property

First, we consider the sequence of graphs that we construct from the geometric data.
Understanding the dynamics of these graphs provides insight into the overall dynamics
of the game. It is key to find a suitable model that captures this behavior. Fortunately,
our data seems to express a Markovian property and we can therefore use a Markov
model to capture the essential elements of our graph sequences. In this section, we
provide empirical validation for this claim.

To begin with, we recall our assumption that dynamic passing networks can only
change by one edge at a time. From a theoretical perspective, we could imagine that,
with a high enough sampling frequency, a tie would be unlikely; and, we could also
enact some tie-breaking scheme. Empirically, 99.3% of changes in number of edges are
within one edge, which we could bring to 100% if we could sample more frequently. In
fact, given that 99.3% is quite close to saturation, we can conclude that our sampling
frequency is nearly correct: neither too often nor too sparse.

This assumption, that only one edge changes at one time, is convenient, as it allows
us to study the change in number of edges of the graphs, which is much simpler to
analyze. In other words, we can convert a sequence of graphs into a sequence of number
of edges and learn much about our system without having to rely on a full classification
of the graphs. We state a fundamental assumption: if the number of edges does not
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Fig. 4. Sample library of graphs for a possession, descending in order of frequency from left to
right and top to bottom.

change in a graph sequence, then the graph (modulo isomorphism) does not change
either; this fact follows directly from our assumption that only edge can change at a
time. Figure 5 indicates the number of edges in the passing network sequence over time
(i.e. per frame).

If we model the number of edges as a Markov chain, we can verify the Markovian
property of our edge count data by checking how a change in edges predicts the next
change. The edge change probabilities over an entire game are given in Table 1. This
data for the game accurately reflects the distribution for each possession, as well, which
obviates some concerns about variability within possessions.

Table 1. Probability table for changes in number of edges. The first row indicates that if the
previous change was a decrease in number of edges, then there was a 7%, 87%, and 6% chance
respectively that the next change in number of edges was a decrease, no change, or increase. The
second row follows the same pattern given the previous change was no change in the number of
edges. The third row is the same for an increase in number of edges.

– 0 +

– 0.07 0.87 0.06

0 0.05 0.89 0.05

+ 0.07 0.85 0.08



Semantics of Geometric Data 481

Fig. 5. The number of edges for a particular possession in the game. Mathematically, the number
of edges are a random walk over the frames of data within a possession.

The data in Table 1 shows us that the previous change in edges does not influence a
future change in edges, in that edge change increments are in fact independent. This data
verifies that the number of edges over the course of a possession is in fact Markovian,
which is a useful yet surprising property.

Moreover, this suggests that the graph sequence itself is Markovian because of our
underlying assumption that one edge change at a time can occur. Therefore, we can use
a Markov model to approximate the sequence of graphs over the course of a possession.
Finding the maximum likelihood estimator of a Markov chain is also quite simple, as it
is given by the empirical transition probabilities.

4.2 Jump Markov Model

While interpreting the sequences of graphs as a Markov chain is a big step towards
understanding the underlying dynamics, minor adjustments help us refine the model. In
particular, we observe from Table 1 that the overwhelming behavior is for the number
of edges in the graph sequences, and hence the sequences themselves, not to change.

Labeling the graph sequences up to isomorphism and constructing the transition
probability matrix reveals that the majority of the density is placed on the diagonal,
which indicates a self-transition. This behavior warrants some additional investigation.
To wit, a basketball game is obviously continuous, but our Markov chain with a transi-
tion matrix is discrete. For this reason, we lift the Markov model into a jump Markov
model, which allows for different “hold times” per state, i.e. the distribution of time
spent in a particular state before a transition occurs. In the naive Markov chain, these
hold times are modeled as self-transitions, whereas in a jump Markov model, these are
modeled as occurring along some exponential distribution.
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Fig. 6. Sample hold time distribution as a cumulative density function of a representative graph
in a representative possession. The blue dots are the true data, which have an average of 5, giving
an exponential distribution with parameter 1

5
. The orange dots represent an ideal exponential

distribution with the same parameter.

Figure 6 provides a sample hold time distribution for a representative graph in
a typical possession. In this case, we see the various hold times for the particular
labeled graph, and for reference, an ideal exponential distribution. It appears that a jump
Markov model with explicit hold times per graph provides a more robust perspective on
state changes.

A jump Markov model displays the stable configurations of players throughout the
game. The probability transition matrix for the model suggests the “semantics” of the
dynamics, insofar as we can track likely changes in configurations for the players. The
hold times demonstrate the overall “stability” of a configuration, i.e. how much time is
spent in a particular conformation.

We also can generate a “library” of graphs that provide insight into which config-
urations appear most often and what typical sequences of graphs look like. Figure 4
is such a representative library that is presented in descending order by frequency of
occurrence in a possession.

4.3 Translating with Transformer

Our final set of experiments comes from using a Transformer model. We attempt a
standard task in invasion sports, namely predicting the trajectory of player positions
across the court. We use a 40–10 split, predicting 10 frames of data from 40 given
frames.

The first model is a naive setup where we attempt to predict trajectory data from the
geometric data present in a frame alone. Using the Transformer encoder, the position
data is fed as a sequence to just the encoder system (6 encoder layers) and a final linear
layer to convert the Transformer memory into a concatenated vector of position data.
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The second model is the full Transformer setup as described in Sect. 3.4 where
the encoder accepts a full sequence of geometric data and the decoder operates on the
geometric data as described.

Holding all factors constant, such as learning rate (0.0001), optimization algorithm
(Adam), batch size (64), embedding dimension (200), number of layers (6), number of
attention heads (8), and all other hyperparameters, we can see the effects of translating
from the sequence of graphs through ablation.

The validation loss is set as the sum mean-square error of the 10 frames to be pre-
dicted. Namely, when predicting frames x41, . . . , x50 with model output x̂41, . . . , x̂50,
the validation error is

1
10

50∑

i=41

(xi − x̂i)
2

Importantly, this experimental setup provides us with direct insight into how useful
and fruitful the jump Markov model is. By using a naive baseline with Transformer, we
essentially are performing an ablation analysis, where we see the effect of our entire
graph extraction setup. In this context, the MSE score (i.e. the validation error defined
above) provides us with a useful quantitative result on the utility of our entire pipeline.

Over the course of several training runs that were run to convergence, the naive
model achieves an MSE score of approximately 280, while the translation model
achieves a best MSE score of 94 (lower MSE is better). This dramatic decrease in
MSE through translation represents the effect of including the graph data, instead of
attempting to learn position data directly.

5 Conclusions

This paper presents a semantic analysis of dynamic networks that are derived from
geometric data. This idea is both novel in principle, but we demonstrate a quantitative
benefit, as well, of using this approach. By converting geometric position data to graph
data, we can leverage the gleaned structure to improve the overall accuracy of down-
stream applications, like trajectory prediction. Additionally, the construction of a jump
Markov model provides clarity into the overall structure of a game through two impor-
tant properties: first, a transition matrix that indicates which configuration of players
lead to others and second, hold times, which suggest the stability of particular config-
urations in context. By constructing this jump Markov model, we can develop insights
into our data that goes beyond the geometry.

From our experiments, we can conclude that, by incorporation the graph data,
our pipeline does provide substantial practical insight. Through the completion-vs-
translation setup, we can quantify exactly how much information is extracted out of
this setup; the compelling drop in MSE garnered by the use of graph data underscores
the importance of extracting and using the graph data.

Future work could use our semantic extraction toolkit on a variety of dynamic net-
works; dynamic networks appear in a plethora of natural contexts, and studying these
sequences can be arduous. By analyzing them semantically, we can provide further
insights into the dynamics. Additionally, though semantic extraction is a discipline that
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is at least one hundred years old, we would like to build a more solid theoretical foun-
dation for the particular case of semantic extraction from graphs.

In summary, this paper presents a novel model that leverages dynamic graphs and
their semantics to provide a deeper understanding of geometric data. Basketball is but
one source of geometric (or even network) data. The basic conceit of extracting seman-
tics from data opens novel avenues of research that we intend to explore further in the
future.
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