AN H? SCALE FOR COMPLETE PICK SPACES
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ABSTRACT. We define by interpolation a scale analogous to the Hardy
HP scale for complete Pick spaces, and establish some of the basic prop-
erties of the resulting spaces, which we call H?. In particular, we obtain
an HP —H9 duality and establish sharp pointwise estimates for functions

in HP.

1. INTRODUCTION

Let M be a reproducing kernel Hilbert space on a set X, with kernel
function k. Let Mult(M) denote the multiplier algebra of M. We shall make

the following assumption throughout our paper:
(A) Mult(M) is densely contained in M.
We shall let M ® M denote the weak product of M with itself, which is

1) MM = {3 fugn = D ulallgulie < oo}

This is a Banach space, where the norm of a function h is the infimum of
Yo lfallamllgnllamg over all representations of h as Y fugn.

If we use the complex method of interpolation to interpolate between
MOM and its anti-dual (the space of bounded conjugate linear functionals)
we get a scale of Banach function spaces, whose mid-point is the Hilbert
space M. By analogy with the case where M is the Hardy space H? on the
unit disk, where the end-points become H' and BMOA and the intermediate
spaces are H? for 1 < p < oo, we shall define

(1.2) H = Mo M, (Mo M),

where 0 < 6 <1, we set p = ﬁ, and AT denotes the anti-dual of A. See [8]

for background on interpolation.
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We consider H? to play the role of the H? scale for the space M. We
should note that even when k is the Szegé kernel, the spaces HP are iso-
morphic but not isometric to H? [12], so ‘HP can at best be considered a
renormed version of HP. In Section 2 we collect properties of the H? spaces
for general M. In Section 3 we specialize to the case that M is a complete
Pick space, and prove that several inequalities that hold in general become
equivalences in complete Pick spaces.

Our main result is the following. We let 4, denote the functional of
evaluation at = € X and k,(y) = k(y,x) be the reproducing kernel of M.
We will explain what a normalized complete Pick kernel is in Section 3, and
we will explain Han and Hang, the dual and predual of H!, in Section 2.

Theorem 3.6. Let k be a normalized complete Pick kernel on X. Then
foralll<p< oo with%%—%:l,

(@) 8l = sl = ke, ),

(b) [0zl erys = [[Falltan = k(z, x),
(©) [10z]ltang = [0z || Han = |kal[22 S 1+ log(k(z, z)),
(d) for the Drury-Arveson kernel S, ||0||many ~ 1+ log(S(z,x)),

where the implied constants do not depend on k or x.

Here and in the sequel, if f,g : X — [0,00) are functions, we write
f(z) < g(z) to mean that there exists a constant C' so that f(z) < Cg(z)
forallz € X, and f~gif f <gandg< f.

We show in Examples 3.16 and 3.17 that the estimate in part (c) of the
theorem may not be an equivalence. In Theorem 3.14 we show that when
k is a normalized complete Pick kernel, the interpolating sequences for H!
and H? coincide.

In Section 4 we close with some questions about HP scales.

2. GENERAL SPACES

Let M be a reproducing kernel Hilbert space satisfying assumption (A).
The space (M ® M)T was described in [6]; let us recall that description. We
let M ®, M denote the projective tensor product of M with itself. Its dual
is B(M, M), where M is the complex conjugate of M. Let p: M ®, M —
M ® M be defined by

p- Z Jn @ gn Z fa(@)gn ().
Then (M ® M)* can be identified with (kerp)t. We can identify (M © M)1
with
Han := {T1:T € (kerp)*}.
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If b € Han, which is a subset of M, the corresponding conjugate linear

functional on M ©® M is given by
Ap:fr=(bfy VfeM.
We write Hj, for the unique operator H € B(M, M) N (kerp)* that satisfies
H,1 = b. This operator is characterized by the identity
(Hyf, 05z = (0f.b)m (& € Mult(M), f € M).

We put a norm on Han by declaring ||b]| equal to the operator norm of
Hb' Let

XM) = {beM: 3C>0 st [(b,of) < Cldllamllfllm
(2.1) YV ¢ € Mult(M), f € M}.
Then under assumption (A) it is proved in [6, Thm 2.5] that
Han C X(M).
In particular, Han € M®M contractively, so (M®.M, Han) is a compatible
couple of Banach spaces. For 1 < p < 0o, we shall let H? be defined by
HP = [M © M, Han]py

with 0 = ’%1. Since Han is dense in M ® M, we have H! = M & M
and [H', Han|y; = Han with equality of norms; see [8, Thm 4.2.2]. Since
we shall use it several times, let us state Calderén’s reiteration theorem
8, Thm. 4.6.1].

Theorem 2.1. Let Xy, X1 be a compatible couple of complex Banach spaces
with X1 C Xg. For every 0 < 0 < 1, and 0 < 0y < 6; < 1, let n =
(1 —0)0y + 06,. Then we have

[ [ X0, X1]j60)> [Xo, Xiljoy) Jlo = [Xo, Xa]p-
First, we remark that the spaces H” are indeed function spaces.

Proposition 2.2. The space HP is a Banach function space on X for 1 <
p < oo. Moreover, if 1 < p < q < 0o, then

MoOMDHP DOH!D Han
with contractive inclusions.

Proof. Since Han is contractively contained in M ® M, complex interpola-
tion shows that

MOM D HP O Han
with contractive inclusions for all 1 < p < oco. In particular, H? consists of

functions on X. Since point evaluations are continuous on M ® M and on
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Han, they are continuous on HP? for all p. Thus, H? is a Banach function
space on X. Finally, the reiteration theorem 2.1 shows that interpolating
between HP and Han, we obtain H? for p < ¢ < 0o, hence HP O H? O Han
with contractive inclusions. U

As one would expect, we recover the original Hilbert function space for

p=2.
Theorem 2.3. We have H?> = M with equality of norms.

PROOF: Assumption (A) implies that M is dense in M ® M. G. Pisier
proved in [17] that if a Hilbert space M is densely and continuously con-
tained in a Banach space A, and so AT embeds in M, then [A, AT][%] =M,
with equality of norms. His proof is in the context of operator spaces; a

direct proof of the fact is given in [20]. See also [11] for another proof. O

Next, we establish the expected duality between HP spaces.

Theorem 2.4. For 1 < p < oo, we have (HP)! is isometrically isomorphic
to HY, where q is the conjugate index to p. The action of H? on HP is given

by the inner product of H on the common subspace Han.

PROOF: By the reiteration theorem 2.1, if we interpolate between H!
and H? we get HP for 1 < p < 2, and if we interpolate between H? and
Han we get HP for 2 < p < oco. Since H? is reflexive, we have by the duality
theorem [8, Cor. 4.5.2] and Theorem 2.3 that

(M, M), = [Han, H*)).

(The duality theorem also applies to anti-duals because [Ag, A]jg = [Ao, A1)
isometrically). It is part of the duality theorem that the action of an ele-
ment of [Han, H?]jgy C H? on an element of the subspace H* C [H', H?|jg is
given by the inner product of H?; see the discussion preceding [18, Theorem
2.7.4]. This proves the theorem for 1 < p < 2.

In [9, 12.2], Calderon proved that if one end point space is reflexive, all

the intermediate ones are too. So this proves the theorem for 2 < p < co. O
We define Hang by
Hany := {b € Han: H, is compact}.

By [6, Thm. 2.5], the dual space of Hang is M ® M. We think of Han, as
the analogue of VMOA.

By [6, Thm. 2.1], point evaluations are in Hany. Moreover, since M is
dense in M ® M, the point evaluations come from pairing with the kernel

functions, so each kernel function is in Hang, and by the Hahn-Banach
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theorem, the set of finite linear combinations of kernel functions is dense in

Han,.

Proposition 2.5. For 0 < 6 < 1, we have the isometric equality
[M © M7 HanO] 0 = [M ®© M, Han] [6]-

PROOF: Since Hang and Han are contained in M ® M, so are the inter-

polation spaces in the statement. By [11, Cor. 4.5], we have isometrically

[M@M,Hano][} = M

1

2
Therefore the reiteration theorem and Theorem 2.3 prove the result for
0<d< % It remains to prove that

[M7Han0][s] = [M’Han][s]

for 0 < s < 1. But applying the duality theorem twice we get an isometric
isomorphism

[M7 Hano]rsﬂi = [M7 Han] [s]»

and by Calderén’s reflexivity theorem again, we have [M, Hang|(y is reflexive
for 0 < s < 1, so we are done. Using the fact that the inclusion Hany C
Han = (Hang)** agrees with the canonical embedding into the bidual as
well as the particular form of the duality in the duality theorem, one checks
that the resulting isometric isomorphism [M, Hanlyy = [M, Hang|j) is in
fact the identity. O

Corollary 2.6. The linear span of kernel functions is dense in HP for
1 <p<oo.

Proof. 1t is a general result about complex interpolation that for a compati-
ble couple of Banach spaces (Ag, A1), the intersetion AgN A; is dense in the
intermediate interpolation spaces; see [8, Theorem 4.2.2]. Thus, Proposition
2.5 implies that Hang is dense in HP for 1 < p < oo, In turn, finite linear
combinations of kernels are dense in Hany and the inclusion Hany C HP is

continuous. O

We can now show pointwise estimates that are valid in all reproducing
kernel Hilbert spaces satisfying assumption (A).

Proposition 2.7. Let 1 < p <2 and let % + % = 1. Then for all x € X,
(@) [10z[2e) = 1kallban = F(z, ).
(0) 118allpery = Ikallpes < K, )P,
() 10all¢peay = Nkallpn = h(w, 2)"9,
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Proof. For each item, the first equality follows from duality; see Theorem
2.4 and the discussion at the beginning of the section.

(a) This follows from the fact that the Hankel operator with symbol k,
is the rank one operator given by Hy, (f) = (f, ko) ks.

(b) Let 6 = %. By reiteration, H? = [H', Han]y = [H?, Hanl,, where
s =20—1=1-2 Since [|k,|3z = k(z,2)"/* and ||ky |[5an = k(z, z) by part
(a), interpolation therefore yields

kallze < kol 1o lfran = K, 2)' 1
for 2 < ¢ < 0.
(c) By part (b),
k(x,x)
1|74

In Section 3 we shall prove that the estimates are sharp (up to a constant)

||5$||(Hq)* > > k:(l’,x)l/q. O

in complete Pick spaces.

3. COMPLETE PICK SPACES

Pick’s theorem [16] gives necessary and sufficient conditions to solve
an interpolation problem in the multiplier algebra of H? (which is H>). It
generalizes to matrix-valued functions. A Hilbert space in which this matrix-
valued Pick theorem is true is called a complete Pick space (see the next
paragraph for a formal definition). Examples include the Dirichlet space
[15], the Sobolev space [1], and various Besov spaces on the ball [4]; see also
3].

If A C X, we define M, to be the closed linear span of the kernel
functions {k, : A € A}, and let P be the orthogonal projection from M
onto M. Define 7 : Mult(M) — B(M,) by n(¢) = PM,P, where M, is
multiplication by ¢. Then 7 is always a contractive homomorphism. If it is
an exact quotient map (i.e. it maps the closed unit ball onto the closed unit
ball), then M is said to have the Pick property. If it is a complete exact
quotient map (the induced map on matrices is always an exact quotient
map), then M is said to have the complete Pick property.

The Drury-Arveson space H7 is the Hilbert function space on the open
unit ball B, in C¢ or £%(d) with kernel

1
1—(zw)

We say a reproducing kernel Hilbert space M on X is normalized if for some

S(z,w) =

choice of base-point ¢, we have k(zq,y) = 1 for all y.
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The Drury-Arveson space is a normalized space with the complete Pick
property, and every normalized space with the complete Pick property can
be embedded in it [2], in the sense that there is a function b : X — B, for
some cardinal d so that

k(z,y) = S(b(x),b(y)).

Normalized complete Pick spaces always satisfy assumption (A), as the ker-
nel functions are multipliers. We shall prove that for complete Pick spaces,
the inequalities in Proposition 2.7 are equivalences. For a kernel k, let us
write HP(k) to denote the space in (1.2) corresponding to the reproducing
kernel Hilbert space with kernel & (which will be called H?(k) in this no-
tation). We also write Han(k) in place of Han when we need to specify the

kernel.

Remark 3.1 In general, for any complete Pick space M, we have
(3.1) Han(M) = X(M),

where X' (M) is defined in Equation (2.1). Indeed, equality (3.1) was proved
in [6, Thm 2.6] under the hypothesis that M has the column-row property,
and recently in [13] it was shown that this property holds in all complete

Pick spaces.

Lemma 3.2. Let k,{ be reproducing kernels on X,Y respectively, and let
0:Y — X be a function. If the composition operator

Co: H(k) = H*(0), [+ foo,

is well defined and bounded, then C, also maps H? (k) to HP(€) for1 < p <2
and

2
1Collee g0 < N1Coll5 2 ez

Proof. 1t suffices to show the statement for p = 1. The desired result then
follows from complex interpolation (and the observation that a bounded
operator between two Banach function spaces that acts by composition on
a dense subset acts by composition everywhere).

To show the statement for p = 1, let f € H'(k) with || f|jz;1) < 1. Then
there exist gy, h, € H?*(k) so that f =>" gnh, and

> Naallbew [1hallea < 1.
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Hence

1foelbae < Y llgn o ellew [l o elhee

IA

’ |C<P| |3-12(k)—>7-12(€) )

which completes the proof. Il

The following lemma shows that the classical H? spaces on the disc can
be embedded into the HP spaces corresponding to the Drury—Arveson space.
In particular, this gives concrete examples of functions in these spaces on
the ball. In the sequel, let s denote the Szegé kernel on the disc and let S
be the Drury—Arveson kernel on B,.

Lemma 3.3. Let d be a cardinal number, let v € (*(d) be a unit vector and
let

Q:0*(d) = C, 2z (z,0).
Then for every 1 < p < oo, the map
H(s) = H(S), [ [oQ,
is an isometry onto a complemented subspace of HP(S). Similarly, the map
Han(s) — Han(S), f~— foQ,

is an isometry onto a complemented subspace of Han(.5).

Proof. Since V : f — foQ@ is an isometry from H? into H3, it follows from
Lemma 3.2 that it is also a contraction from H!(s) into H!(S). Consider
the embedding

1:D— By, A= Ao

Then R : f + f o1, being the adjoint of V, is a co-isometry from H2 onto
H?. Applying Lemma 3.2 again, we find that R is a contraction from H!(S)
into H'(s).

Next, we use duality to prove the statement about Han. Let A € Han(s)
and let f € HY C H? ® H3. Then

[(fiho@mzl = [(foi h)m]
< “foi”HQQHQ HhHHan(s)
< A llmenz 1P [rancs) -

Thus, h o Q induces a bounded functional on H2 ® H3 of norm at most
||h||an(s), so that ho@Q) € Han(S) and the map V' : h — ho( is a contraction
from Han(s) to Han(S). Similarly, one checks that R : f +— foiis a

contraction from Han(S) to Han(s).
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Interpolation therefore shows that V' : h — h o @) is a contraction from
HP(s) into HP(S) for 1 < p < oo and that R : h — hoi is a contraction
from HP(S) into HP(s) for 1 < p < oo. Clearly, R o V is the identity on
HP(s) and on Han(s), hence V' is an isometry from HP(s) into H?(S) and
from Han(s) to Han(S). Moreover, V o R is a projection onto the range of
V', hence that space is complemented. Il

Let H 5 denote the half-plane {z € C : Re(z) > i}. It is the image of

the unit disk under the map ¢ 1%{

Lemma 3.4. Let 1 < p < oo, let w € By and let r = ||w||. If h is an
analytic function on Hy o such that hos, € HP(s), then hoS,, € HP(S) and

[[h o Sullars) = ||l o s||aps)-

Proof. Let v be a unit vector in ¢%(d) such that rv = w (i.e. v = w/r if
r # 0 and v is an arbitrary unit vector if r = 0) and let Q(z) = (z,v). We
apply the isometry of Lemma 3.3 to f = h o s,.. Since

(5, 0Q)(2) !

T 1- r(z,v) = Su(2),

we have ho s, 0@ = holS,, and the result follows from Lemma 3.3. U

Using universality of the Drury—Arveson space, we can also construct
explicit examples of functions in HP(k) for complete Pick kernels k, at least
for1 <p<2.

Proposition 3.5. Let k be a normalized complete Pick kernel on X and let
1<p<2 Letxe X and set

1
k(x,x)

r o= 1—

If b is an analytic function on H, o such that ho s, € HP(s), then hok, €
HP (k) and

1B 0 kol lr ey < |[h 0 si|lan(s)-

In particular, k3" € HP(k) and |2 ||y S k(z,2)Y? for all z € X,

where the implied constant depends only on p, not on k or x.

Proof. There exists a function b : X — B, for a suitable cardinal d such
that k(x,y) = S(b(z),b(y)) and so that f +— fob is a co-isometry from H?2
onto H?(k). Let w = b(z) and note that r = ||w||. In this setting, Lemma
3.4 implies that h o S,, € HP(S) with ||h o Sy||lurs) = ||h 0 sr||ur(s). By
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Lemma 3.2, the map f — f ob is a contraction from H?(S) into H?(k),
hence ho S, 0b € HP(k) with ||k o Sy, 0 b|lark) < ||h © 54| r(s)- Since
1
(Swob)(y) = W = k. (y)

for each y € X, we have S,, o b = k,, which completes the proof of the first
statement.

To prove the additional statement, we let 2(A) = A*P. Then it follows
from the fact that H?(s) = H? isomorphically that

(32) 1527 sy = Mlsell58 = s, )V,
so by the first paragraph, k2P e yp (k) and
1K oy S s(r,m) P = ke(, )P O

We can now give asymptotic bounds on |0, for every 1 < p < oc.
For p = 1, we already proved (b) in Proposition 2.7; we include it for
completeness. For p = oo we have ||0;||mus = 1. (Indeed, 1 is an upper
bound because M ;kx = Mkr, and it is attained since the constants are
multipliers).

In [7], Arcozzi, Rochberg, Sawyer and Wick studied the weak product
of the Dirichlet space with itself, and for that space proved (b) and (c) in
Theorem 3.6, and moreover showed that ||k |32 ~ 1 + log(k(x,x)).

Theorem 3.6. Let k be a normalized complete Pick kernel on X. Then for
all1 < p < oo and%jt%:l,
() [18all ey = Eallpea = K, 2)'/7,
(b) [0zl 2er) = llFalltan = (2, 2),
(©) 10alltan; = lI0zllmans = [[koller S 1+ log(k(z, ),
(d) for the Drury-Arveson kernel S, ||0||mans ~ 1+ log(S(z,x)),

where the implied constants do not depend on k or x.

Proof. The equalities in (a) and (c) follow from the HP—H? duality (Theorem
2.4) and the Hanp—H' and the H'-Han dualities.

Suppose first that 1 < ¢ < 2. Then by Proposition 3.5 and the equality
HP?(s) = H? with equivalent norms,

1 1
q < ¢ _ - [ _ -
(3-3) ”kaHQ(k) ~ ”STHH‘I ot /I[‘ ‘1 _ reit‘q dt’

where r = (1 — k(z,2)~!)"/2. The integral above behaves like (1 — r2)'~4 if
g > 1 and like 1 + log(1/(1 — r?)) if ¢ = 1; see [21, Theorem 1.12]. Hence

(3.4) kellze S E(x, x)(q_l)/q = k(z, :L‘)l/p
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if 1 <qg<2and
|kall2 S 14 log(k(z, x)).
This proves (c) and also the inequality || k,|[2e < k(z,2)? in (a) if 2 < p <

oo. The reverse inequality was established in part (c) of Proposition 2.7, so
(a) holds for 2 < p < 0.
Next, let 1 < p < 2. Part (b) of Proposition 2.7 shows that ||0,]| ) <

k(x,2)'/?. On the other hand, by (3.4), we have
59: p)* > ’ > . — k 1/p
H H(H) el ”kaHp ~ k(:ll',l')lfl/p (377-1') s
so (a) also holds for 1 < p < 2.
Finally, when k£ = S, Lemma 3.4 shows that the estimate in (3.3) is

actually an equivalence, which gives (d). U

Corollary 3.7. If k is a normalized complete Pick kernel on X andsup, k(z,x) =
00, then for 1 < p < q < oo the containment H(k) C HP(k) is strict.

Remark 3.8 If f is in H? for 1 < p < oo, then one has the point-
wise estimate | f(x)| < || f||||0z||(z»)-- But since linear combinations of kernel
functions are dense in H? by Corollary 2.6 and each individual kernel func-
tion is bounded, one can improve this, for each fixed f, to

|f(x)] = o(||6z|lmry<), k(zx,x) — o0.

Similarly, if f € Hang one gets
[f(@)] = o(llkzllzer),  [[Fellzr = o0

Below, we will provide an example to show that in general complete Pick
spaces, the estimate in part (c) of Theorem 3.6 need not be an equivalence.

Recall that if M is a reproducing kernel Hilbert space on X, then a
sequence (z,) in X is said to be an interpolating sequence if the evaluation
map

B¢ (o)

maps Mult(M) onto ¢>°.

If o, is a sequence of positive numbers, and p > 1, we let ?(«,) denote
the Banach sequence space with norm

00 1/p
el = (Zlcnlpan> :

Definition 3.9. The sequence (x,) is an interpolating sequence for H? if

the evaluation map £ maps H? into and onto ¢7(1/||dz, [[(3))-
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The closed graph theorem shows that if (x,,) is an interpolating sequence
for H?, then E is a bounded map from H? onto 7(1/||d,,|[5,-), so by the
open mapping theorem, the induced map H?/ ker(E) — #(1/||9s,

% »+) has
a bounded inverse. The norm of the inverse is usually called the constant of
interpolation.

Shapiro and Shields [19] showed that in the case of the Hardy space of
the disc, the interpolating sequences for H? are the same for 1 < p < oo. It
was observed by Marshall and Sundberg that if M is a complete Pick space,
the interpolating sequences for M = H?* and Mult(M) are the same [15].
In [7], it was shown that for the Dirichlet space, the interpolating sequences
for H' and H? are also the same. Their proof carries over to any complete
Pick space. We first prove the easy implication, which is valid without the
complete Pick assumption. If £ is a kernel on X and V' C X, we let k|,
denote the restriction of k to V' x V. Thus, H?(k|y) is a space of functions
on V.

Lemma 3.10. Let M be a reproducing kernel Hilbert space on X with
kernel k satisfying assumption (A) and let (x,,) be an interpolating sequence
for H2.

(a) The sequence (x,) is an interpolating sequence for H'.

(b) The evaluation map E : H' — (*(1/|0x, ||l11+) has a bounded linear

right-inverse.

(c¢) If V ={x, : n € N}, then

|h(z,)]
|| ~
Pl ~ 3 el
for all h € H'(kly).

Proof. By Proposition 2.7 (a), we have |6, 1) = k(z,2). Lemma 3.2
shows that the restriction map R : H' — H'(k|v) is contractive. Thus, the
lemma will be proved once we show that
(1) the map Ey : h — (h(z,)) maps H'(k|y) boundedly into ¢*(1/k(z,, z,)),
and
(2) there is a bounded linear operator T : ¢*(1/k(x,,x,)) — H' so that
E o T is the identity.

Indeed, this follows from the commutative diagram

H — W (k]y)

S b
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and injectivity of Fy .
To show (1), let h € H'(k|y) with [|h|l%1k,) < 1. Then there exist

fiyg; € Miso that h = >, filvg;lv and > .|| fillmllgillm < 1. By the
Cauchy—Schwarz inequality,

|h n |f]( n) j( n)|
kazxn = ZZ k‘?xj :

Tn)
) 5 71/2
j n k(xmxn) m k‘(l’m,l’m>
< “E‘|3{2—>e2(1/k(zn,zn))'

So E maps H!' boundedly into ¢!(1/k(x,,z,)).

As for (2), observe that since (z,,) is an interpolating sequence for H?
the open mapping theorem implies that there exists a sequence (f,) in
HE satistying fu(er) = Ou and [|fulle S 1/k(ze,z,), hence [|f2]ha <
1/k(zy, z,). Define

T 0 (1 k(xn,2)) = H' (wa) = Y wafl

The series converges absolutely in H!, the operator T is bounded, and

T(w,)(zr) = wg, so F o T is the identity. O
Lemma 3.11. Let u and v be unit vectors in a Hilbert space M. Let T and
w be complex numbers satisfying |T| = |w| and
(3.12) T(v,u) = wlu,v).
Then

1w = w00l pesm = (16 wu =76 0] v

PROOF: Let C : M — M be the anti-linear isometric operator f — f.
The norm squared of C'({-, u)u — w(-,v)v) is

(3.13) S [{u, fru —@{v, f)o].
The norm squared of (-, u)u — 7(-, v)v is
(3.14) S 1 wyu = 7(f, v)ol”.

Expanding (3.13) and (3.14) and using (3.12), we see that they are equal.
O

If £ is a normalized kernel on X, the formula

\k(x,y)|?
dk<x7y>:%—m
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defines a pseudo-metric on X; see [3, Lemma 9.9].

Lemma 3.13. Let k be a normalized kernel on X satisfying assumption (A).

Forx € X defineb, = k(';zx). Letx,y € X and let w be a unimodular complex

number satisfying (ky, kz) = w{ky, ky). Then di(z,y) = ||bz — Wby || Han-

Proof. If u, = —2%2—_ then H, is the rank one operator f — (f,u,)Ty.
f \/M by p f <f >

Thus, if P, denotes the orthogonal projection from H onto Cu,, i.e. P, f =
(f,uz)u,, then by Lemma 3.12, we have

be - wby”Han - “be - WHbyHH?HW = HPugc - Puy”HQ—ﬂ-lQ‘

As u, and u, are unit vectors, we have
[Py = Pu, | = /1 = [(ue, uy)[? = di(z,y)

(this can be seen by observing that P,, — P,, is a trace 0, rank 2 self-
adjoint operator, with determinant |(u,,u,)|* — 1 on the two-dimensional
space spanned by u, and u,). O

We now establish the announced equality of interpolating sequences for
H' and H? in the setting of complete Pick spaces.

Theorem 3.14. Let k be a normalized complete Pick kernel on X. Then

the interpolating sequences for H* and H?* coincide.

PROOF: In light of Lemma 3.10, it remains to show that every interpo-
lating sequence (z,) for H! is interpolating for H* = M. To this end, by
[5], we need to show that

(1) the sequence is weakly separated, which means there exists 6 > 0 so
that for m # n we have

dk(l'm, xn) 2 67

and
(2) it satisfies the Carleson measure condition, namely there exists some

constant C so that
00 2
%
S m g vrem
— k(zn, Ty)

As f2 e H' with || %[l < ||f]l34, we get (2) immediately.
To see weak separation, we use the open mapping theorem to find a

constant ¢ > 0 so that for any distinct points x,,, x,,, there is a function h of



AN H? SCALE FOR COMPLETE PICK SPACES 15

norm at most 1 in H!' with h(x,,) = ck(z,,, x,) and h(z,) = —cok(T,, 2,),
where w(k,, , ks, ) = (ks , ks, ). This means

1 w

J

(3.15) Hk‘(xm,xm) Tm k(xn,xn)(s“”(ﬂl)*

> 2c.

Write b, = k,/k(z,z). Using the anti-linear H'-Han duality, and Lemma
3.13, the left-hand side of (3.15) is equal to

wam - wbxn”Han = dk(xrmxn),

hence (xz,) is weakly separated. O

We now give an example of a normalized complete Pick space with un-

bounded kernel in which every function in Han is bounded.

Example 3.16. Let (e,) denote the standard basis of (2. Let (r,) be a
sequence in [0, 1) tending to 1 with the properties that ro = 0, the sequence
T, = rpey, i an interpolating sequence for Mult(HZ2) and Y (1 —r2) < o0
(this can be done for instance by [5, Proposition 5.1]; the last property in
fact follows from being an interpolating sequence). Let V' = {r,e, : n € N}
and let M = H2 |v7 which is a normalized complete Pick space on V' whose
kernel k satisfies lim,, k(x,, x,) = 0co. We claim that sup,, ||0,||gan < 00.

By Theorem 3.6, ||0,||tran = ||kz |22, so by Lemma 3.10 (c), it suffices to
show that

But k(z,, ;) = -————— = 1 if n # j, hence

1—rnrj(en,e;)
k(@ ;)] 1 2
E — =1 E —— <1 E 1-— <
- k({En,{En) + £ k‘([L‘n’{L‘n) <l+ . ( Tn) oo,

which is independent of j.

The preceding example takes place on the ball in infinite dimensions. In
fact, the log estimate in part (c¢) of Theorem 3.6 may not be an equivalence
even on the disc, as the following example shows.

Example 3.17. Let (y,) be a strictly increasing sequence in [1,00), with
Yo = 1, and tending to infinity so fast that

(1) z, :=1-— yi is an interpolating sequence for H°,
(2) Il < 00, and

nyn
(3) 1o 1555 lo g(yn) =0.
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For instance, ,, = 22" or y, = (n!)? will do. Let V = {x,, : n € N} C D and
let M = H?|,,. We will show that

lim H(ng ”Han

— = 0.
i log(k (93],:)3])

, it suffices to show that

)
Again by Theorem 3.6 and Lemma 3.10 (c)

|k (n, ;)]
k(

1

lim =0.
i log(k(z;, 963)) Ty Tp)
To this end, note that
|k(@n, )] L1 — a2 = 1-u,
- < _ .
Zk(a:n,xn) Zl—:c:c Zl—xn:c Z 1 — 2,2,
n J n=j+1 J

Each summand in the first sum in bounded by 1. In the second sum, note
that z; < x,_1, hence

oo

k‘xn,l' . 1—1'” n
Zl ] SGHD+ Y — <+ Y I

'TWJ ’Vl

and the last sum converges by Property (2). Thus,
1 |k(l‘nax1)| < J+1 joeo
log(k(xj, %)) o k(xn,zn) ™ log(y;)
by Property (3).

> 0

Remark 3.18 Suppose that M is a normalized complete Pick space
with kernel k(z,y) = W where b : X — By. Then the map f +— fob
takes H3 to H. By Lemma 3.2, it also takes HP(S) to HF(k) for 1 < p < 2,
and it is easy to see that it maps Mult(H?) to Mult(M). The preceding two
examples show that in general, it does not map Han(S) to Han(k), because
by part (d) of Theorem 3.6, we have ||0;||#an(s) = 141og(S(x, x)). Similarly,
Proposition 3.5 does not hold with Han in place of HP.

4. QUESTIONS

Question 4.1. There are many interesting Hilbert function spaces for which
assumption (A) fails, such as ¢, the Hardy space of the upper half-plane,
and the Fock space. One can still define an HP scale for these spaces for
p € [1,2] by interpolating between M®M and M. Is there a general method
to identify the anti-duals of these spaces with Banach function spaces on

X7

Question 4.2. How does one define the H? scale for 0 < p < 17
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Question 4.3. When can we recover the H? spaces isomorphically by inter-
polating between M ® M and Mult(M)? This is true for the Hardy space
[14].

Question 4.4. What are the multipliers of H?? When are they the same
as Mult(M)? For complete Pick spaces, Clouatre and the second named
author [10,13] show that Mult(M) = Mult(M © M). Is this enough to get
Mult(H?) = Mult(M) for 1 < p < 27

Question 4.5. If k(z,y) = —

m, does the map f — fob take HP(S)
to HP(k) for p > 27

A positive answer to Question 4.3 would imply a positive answer to
Question 4.5, as the map f — f o b takes multipliers to multipliers.

Question 4.6. Are the interpolating sequences for H? the same as for H?
for 1 < p < 2?7 What about 2 < p < 00?

Question 4.7. What is a function theoretic description of H? for the Dirich-
let space or for weighted Besov—Sobolev spaces?
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