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Abstract

State-of-the-art neural models of source code tend to be evaluated on the generation
of individual expressions and lines of code, and commonly fail on long-horizon
tasks such as the generation of entire method bodies. We propose to address this
deficiency using weak supervision from a static program analyzer. Our neurosym-
bolic method allows a deep generative model to symbolically compute, using calls
to a static-analysis tool, long-distance semantic relationships in the code that it
has already generated. During training, the model observes these relationships
and learns to generate programs conditioned on them. We apply our approach to
the problem of generating entire Java methods given the remainder of the class
that contains the method. Our experiments show that the approach substantially
outperforms state-of-the-art transformers and a model that explicitly tries to learn
program semantics on this task, both in terms of producing programs free of basic
semantic errors and in terms of syntactically matching the ground truth.

1 Introduction

Neural models of source code have received much attention in the recent past [38, 9, 26, 23, 30, 36,
16, 24]. However, these models have a basic weakness: while they frequently excel at generating
individual expressions or lines of code, they do not do so well when tasked with synthesizing larger
code blocks. For example, as we show later in this paper, state-of-the-art transformer models [8, 6, 24]
can generate code with elementary semantic errors, such as uninitialized variables and type-incorrect
expressions, when asked to generate method bodies, as opposed to single lines. Even in terms of
syntactic accuracy measures, the quality of the code that transformers produce on such “long-horizon”
tasks can be far removed from the ground truth.

The root cause of these issues, we believe, is that current neural models of code treat programs as
text rather than artifacts that are constructed following a semantics. In principle, a model could
learn semantics from syntax given enough data. In practice, such learning is difficult for complex,
general-purpose languages.

In this paper, we propose to address this challenge through an alternative neurosymbolic approach.
Our main observation is that symbolic methods—specifically, static program analysis—can extract
deep semantic relationships between far-removed parts of a program. However, these relationships
are not apparent at the level of syntax, and it is difficult for even large neural networks to learn them
automatically. Driven by this observation, we use a static-analysis tool as a weak supervisor for a
deep model of code. During generation, our model invokes this static analyzer to compute a set of
semantic facts about the code generated so far. The distribution over the model’s next generation
actions is conditioned on these facts.

We concretely develop our approach by extending the classic formalism of attribute grammars [20].
Attribute grammars are like context-free grammars but allow rules to carry symbolic attributes of the
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context in which a rule is fired. In our model, called Neurosymbolic Attribute Grammars (NSGs),
the context is an incomplete program, and rules are fired to replace a nonterminal (a stand-in for
unknown code) in this program. The attributes are semantic relationships (for example, symbol tables)
computed using static analysis. The neural part of the model represents a probability distribution
over the rules of the grammar conditioned on the attributes. During generation, the model repeatedly
samples from this distribution while simultaneously computing the attributes of the generated code.

We evaluate our approach in the task of generating the entire body of a Java method given the rest
of the class in which the method occurs. We consider a large corpus of curated Java programs, over
a large vocabulary of API methods and types.Using this corpus, we train an NSG whose attributes,
among other things, track the state of the symbol table and the types of arguments and return values of
invoked methods at various points of a program, and whose neural component is a basic tree LSTM.
We compare this model against several recent models: fine-tuned versions of two GPT-NEO [6]
transformers and the CODEGPT [24] transformer, OpenAl’s CODEX system [8] (used in a zero-shot
manner), and a GNN-based method for program encoding [7]. Some of these models are multiple
orders of magnitude larger than our NSG model. Our experiments show that the NSG model reliably
outperforms all of the baselines on our task, both in terms of producing programs free of semantic
errors and in terms of matching the ground truth syntactically.

In summary, this paper makes three contributions:
* We present a new approach to the generative modeling of source code that uses a static-analysis
tool as a weak supervisor.
* We embody this approach in the specific form of neurosymbolic attribute grammars (NSGs).

* We evaluate the NSG approach on the long-horizon task of generating entire Java method bodies,
and show that it significantly outperforms several larger, state-of-the-art transformer models.

2 Conditional Program Generation

We start by stating our problem, known as conditional

. . . N a
program generation (CPG) [26]. We imagine a joint dis- @
tribution D(X,Y’), where X ranges over specifications public class FileUtil{
. String err;
of program-generation problems and Y ranges over pro- public int read(File £) (...}
grams. The probability D(X = X,Y =) is high when , , ,

. . . . . /+ write lines to file */
Y is a solution to X. Also, we consider a family of dis- public void write (
tributions Py(Y|X = X), parameterized by 6, that we File f, String str)({??}}
might want to learn. Learning to conditionally generate (b)
programs amounts to finding parameters ¢ that minimize void write (File £, String str)d
the prediction error E(x v)~p[0(Ps(X]Y),Y)], where § is try { '

a suitable distance function between programs. FileWiriter var_0;

var_0 = new FileWriter (f);
Specifications and distances between programs can be de- ten o o)
fined in many ways. In our experiments, the goal is to var_0.printStackTrace () ;
generate Java method bodies. A specification is an evi- reiziifmiout'println( ARG )i )
dence set that contains information—e.g., method names,

types of variables and methods—about the class in which
the method lies. We define 6(Y1, YQ) tobea large num- Figure 1: (a) An instance of conditional
ber if Y; or Y5 violates one of several language-level program generation. (b) A top comple-
invariants (e.g., type-safety, initialization of variables be- tion of the write method, generated
fore use) that we require programs to satisfy. When both  ysing an NSG. ARG stands for a string
programs satisfy the invariants, (Y1, Ys) measures the literal.

textual dissimilarity between the two programs.

Note that CPG is a much more challenging task than the well-studied next-token-prediction task
[24, 7]. The goal is to predict long sequences of tokens (e.g., an entire method body). Also, X is a
(possibly imprecise) specification of the code to generate, not just a sequence of tokens we are trying
to complete by, say, choosing the correct method to call for a variable.

Example. Fig. 1-(a) illustrates the kind of task that we target. Here, we are given a class with
a missing write method. The specification X includes: (i) the class name FileUtil; (ii) the



(a) (b)

Stmt . Stmt; Stmt

i lE)ipc?fy]]/t)/[ee%;rd:ﬁz%lIi}le)wType (ArgList) Stmt { SymTab symTab |; SymTab symTabOut 1; };
(©) (d)
Stmt . Stmt; Stmt;
[ Smi$1.symTab | := Srms$0.symTab | symtab

Stmt$2.symTab | := Somt$1.symTabOut 1
Stmt30.symTabOut T := Stmt$2.symTabOut 1]

Stmt : Expr . Method (ArgList)
[ Stmt.symTabOut 1+ := Stmr.symTab | ... |

DeclType Var = new NewType (ArgList)

[ DeclType.symTab | := Stmt.symTab |
Var.symTab | := Stmt.symTab |
Stmt.symTabOut T := Stmt.symTab | +

(Var.name 1t +— DeclType.type 1)
ArgLiSt-tYPELiSt \l/ = NEWType-typeLiSt T Expr.Method(ArglList) De:/Type}v Var o = new NewType (ArgList)
ArgList.symTab | := Stmt.symTab |
NewType.declType | := DeclType.type 1]

DeclType € Var €= new NewType (ArgList)

Figure 2: (a) A basic context-free grammar. (b) Attributes of the Stmt nonterminal. (c) Attribute
equations for the productions (the parts of the equations denoted by “...” are elided). (d) An
attributed tree, illustrating left-to-right threading of attributes.

type String of the class variable err; (iii) information about complete methods within the class
(including the methods’ return types and formal-parameter types and names, and sequences of API
calls made within such methods); (iv) information about the method with missing code (write),
including its name, formal parameters, and JavaDoc comments for the method with missing code
(e.g., “write lines to file””). Our objective on this input is to generate automatically a non-buggy,
natural completion of write, without any provided, partial implementation of the method.

To understand the challenges in this task, consider a completion that starts by: (i) declaring a local
variable var_ 0; and (ii) invoking the constructor for FileWriter and storing the result in var_0.
A proper implementation of these two steps must ensure that var_0 is of type FileWriter. Also,
the first argument to the constructor of FileWriter must be of type File (or a subtype of File).
As we show in Sec. 5, it is hard for state-of-the-art neural models to learn to satisfy these rules.

In contrast, in our approach, the generator has access to a set of semantic attributes computed via
static analysis. These attributes include a symbol table mapping in-scope variables to their types.

Suppose that during training we are given the following line of code: “var_0 =
new FileWriter (£, true)”. Our model’s symbol table includes the names var_0 and £
and their types. The grammar is also able to compute the type of the first argument in the invoked
constructor for FileWriter. Consequently, the model can observe that the type of f is listed as
File in the symbol table, and that f is the first argument to the FileWriter constructor. With
a few observations like these, the model can learn that the first argument of “new FileWriter”
tends to be of type File (or a subtype). During generation, the model uses this knowledge, locating
a variable of the correct type in the symbol table each time it constructs aFileWriter.

Fig. 1-(b) shows a top completion of write generated by our NSG implementation. Note that all
variables in this code are initialized before use, and that all operations are type-safe. Also, the name
var_0 is reused between the try and the catch blocks. Such reuse is possible because the symbol
table carries information about the scopes to which different names belong. Finally, as we will see in
Sec. 5, the extra information provided by the static analyzer can also help with accuracy in terms of
syntactic matches with the ground truth.

3 Static Analysis with Attribute Grammars

As mentioned in Sec. 1, we develop our approach as an extension of the classic attribute grammar
(AG) framework [20]. Now we give some background on static analysis using AGs. In the next
section, we show how to use AGs to weakly supervise a neural program generator.



An AG extends a traditional context-free grammar (CFG) [18] by attaching a set of attributes to each
terminal or nonterminal symbol of the grammar and by using a set of attribute equations to propagate
attribute values through syntax trees. The attributes of a symbol S can be divided into inherited
attributes and synthesized attributes, which we suffix by | and 1, respectively. Inherited attributes
transfer information from parent to child, or from a node to itself. Synthesized attributes transfer
information from child to parent, from a node to a sibling, or from a node to itself. We assume that
the terminal symbols of the grammar have no synthesized attributes and that the root symbol of the
grammar has a special set of inherited attributes, known as the initial attributes.

The output attributes of a production S — S1, . .., S, consist of the synthesized-attribute occurrences
of the nonterminal .S, plus the inherited-attribute occurrences of all of the S;’s. The input attributes
are the inherited-attribute occurrences of .S, plus the synthesized-attribute occurrences of the S;’s.
The grammar’s attribute equations relate the input and output attributes of a node in terms of the
attributes of its parent, children, and left sibling in the syntax tree that the grammar generates.

Example. Consider the simple CFG in Fig. 2-(a). The nonterminal Stmt stands for program
statements. The grammar says that a statement can either be a sequential composition of statements,
a method call, or a variable declaration. A natural AG extension of this CFG tracks symbol tables,
which allow easy lookup of all variables in scope.

Specifically, the grammar associates two symbol-table-valued attributes, symTab | and symTabOut T,
with Stmt (Fig. 2-(b)). The attributes are propagated following the equations in Fig. 2-(c). In these
equations, we distinguish between the three different occurrences of nonterminal “Stmt” via the
symbols “Stmz$0,” “Stmt$1,” and “Stmr$2.” where the numbers denote the leftmost occurrence, the
next-to-leftmost occurrence, etc. In this case, the leftmost occurrence is the left-hand-side occurrence.

For concreteness, let us consider the attribute equations for the production for sequential composition
in the grammar. Here, the inherited attribute of Srms$0 gets passed “down” the syntax tree as an
inherited attribute of Srmz$1. The synthesized attribute received at Srmz$1 is passed to Stmr$2 as an
inherited attribute. More generally, the attribute equations define a left-to-right information flow
through the syntax tree, as illustrated in Fig. 2-(d).

4 Neurosymbolic Attribute Grammars

Now we introduce the model of neurosymbolic attribute grammars (NSGs). Our goal is to learn a
distribution P (Y'|X), where Y is a random variable whose domain is all possible programs (concretely,
Java method bodies) and X is a specification of a program-generation problem (concretely, an evidence
set made up of useful information extracted symbolically from the method’s context and then encoded
using a neural network). Attributes containing the results of a symbolic, static analysis are available
to the neural network implementing this distribution. This weak supervision allows the network to
mimic more accurately the long-range dependencies present in real code-bases.

The Underlying Model. The idea of weak supervision using a static analyzer could be developed on
top of many different kinds of models. Here, we develop the idea on top of a model from Murali et al.
[26]. This model uses a latent variable Z to represent the true user intent behind the incomplete or
ambiguous evidence set Y. We then have P(Y|X) = [, P(Z|X)P(Y|Z)dZ. To define the distribution

P(Z|X), we assume that the evidence set has data of a fixed number of types—e.g., method names,
formal parameters, and Javadoc comments.

The j™ type of evidence has a neural encoder f;. An individual piece of evidence X is either encoded
as a single vector or as a set of vectors with no particular ordering. For example, our implementation
encodes Javadoc comments as vectors using LSTMs, and each member of a set of formal parameters
using a basic feedforward network. Let X, ;. refer to the k" instance of the j™ kind of evidence in X.

Assume a Normal prior on Z, and let P(X|Z) = HN (fi(Xjx) | Z,10%). Assume that the encoding

of each type of evidence is sampled from a Normal centered at Z. If f is 1-1 and onto, we have [26]:

jZJ;Uj 1 (X5 .

1+ Xjlo; 2" 1+ > X0
J J
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Next, we define the distribution P(Y'|Z). Con-
sider a stochastic CFG which assumes (1) that
a leftmost derivation is carried out, and (2) the
probability distribution governing the expan-

Algorithm 1: Gen(S, A(S)], SymSoFar, Z)

Input: current symbol S, inherited attributes
A(S){, sequence of symbols so far

sion of a symbol in the grammar takes into
account the sequence of all expansions so far,
as well as an input value Z upon which all
expansions are conditioned.

SymSoFar, latent encoding Z

Modifies: all symbols expanded are appended
to SymSoFar

i ) ) Returns: A(S)1, the synthesized attrs of S

This CFG consists of productions of the form
S ¢ seq | seqa | seqs... | seqy. Each sym-
bol such as S corresponds to a categorical
random variable with sample space Q2(S) =
{seqi1, seqa, ..., seq, }. A trial over the sym-
bol S randomly selects one of the RHS se-
quences for that symbol. If S is a terminal
symbol, then ©(S) = {e}, where € is a special
value that cannot be expanded. Subsequently,
when a trial over S is performed and an RHS
sequence from €2(.5) is randomly selected, we

if S is a terminal symbol then

Append (S, €) to SymSoFar

return ()

else

Choose a right-hand-side (RHS) sequence

S™s ~ P(S|SymSoFar, A(S)],Z)

Append (.S, S™) to SymSoFar

SynthSoFar «+ ()

for S’ € S™ in left-to-right order do
Compute A(S")] from A(S){ and

will use the sans-serif S™ to denote the iden- AS(@J;?S:FN
tity of the RHS sequence observed. Gen(S’, A(S"), SymSoFar, Z)

Now consider a depth-first, left-to-right al- Append A(S’)? to SynthSoFar

gorithm for non-deterministically expanding end

rules in the grammar to generate a program end

Y = ((S1,57), (S2,S%), ...); here, each S; Compute A(S)1 from A(S)| and SynthSoFar
is a symbol encountered during the expansion, return A(S)?t

and each SI™ is the identity of the RHS cho-
sen for that symbol. Let S; correspond to the
symbol Start. We perform a trial over S; and
select one of the RHS sequences from €2(S). Let the identity of the RHS sequence selected be ST,
Note that ST is itself a sequence of symbols. Choose the first symbol in the sequence ST*; call this
symbol Sy. Perform a trial over Sy, and let the identity of the RHS sequence chosen be S¥. Choose
the first symbol in ST (call it S3) and expand it the same way. This recursive descent continues until
a terminal symbol S; is encountered, and the recursion unwinds. If the recursion unwinds to symbol
S, for example, then we choose the second symbol in the sequence ST, which we call S;, 1. We
perform a trial over S, 1, and let the identity of the RHS sequence chosen be S?}ﬁl. This sequence is
recursively expanded. Once all of the symbols in the RHS associated with the Start symbol S; have
been fully expanded, we have a program.

This generative process defines a probability distribution P(Y'|Z), where for a particular program Y,
the probability of observing Y is computed as

P(Y|Z) = HP (S; =SSy = ST, ..., Simy =S, Z).

(D

We henceforth abbreviate the expression for the inner probability as P (ST|ST, ..., Sis, 7).

Weak Supervision with Attributes. Now assume that the grammar is an AG, so that each symbol
S has an attribute set A(S). We use A(S)1 to denote the synthesized attributes of S, and A(S)] to
denote the inherited attributes of S.

An NsG extends the model so that the conditional distribution P(Y|Z) is defined as:

Y|Z HP Srh5| Srhs rhs B rhs > ( )\La )

That is, when a symbol S; is non-deterministically expanded, its value depends not just on the latent
position Z and the sequence of expansions thus far, but also on the values of |S;’s inherited attributes,
A(S;){. In theory, a powerful enough learner with enough data could learn the importance of these
sets of attribute values, without ever seeing them explicitly. In that sense, they could be treated as
latent variables to be learned. However, the benefit of having a static analysis produce these values



deterministically is that the author of a static analysis knows the semantic rules that must be followed
by a program; by presenting the data used to check whether those rules are followed directly to a
learner, the process of learning to generate programs is made much easier.

Generation of a program under an NSG is described in Algorithm 1, where the distribution governing
the expansion of symbol S has access to attribute values A(S)].

Designing an appropriate static analysis. Intuitively, a program generated with the supervision
of a static analyzer is likely to generate a semantically correct program because the static analysis
provides key semantic clues during program generation. In a conventional AG-based analyzer, the AG
would be used to maintain data structures that can be used to validate that in a complete program, key
relationships hold among the values of the production’s attributes. Our goal is to generate programs,
rather than validate them; also, we want to guide the learner rather than impose hard constraints.
However, constraints are a good mental model for designing a good NSG. That is, we generally
expect the attribute equations used at important decision points during a neural generation process to
be also helpful for validating key semantic properties of complete programs.

Example. Now we show how to use the attribute grammar in Fig. 2 in generating the body of the
write method from Sec. 2. Let us assume that the grammar has a start nonterminal Start (not shown
in Fig. 2) that appears in a single rule expanding it to the statement nonterminal Stmt. We start by
extracting the context X around the method, then use this information to sample Z from P(Z|X).
Next, a Java compiler processes the surrounding code and the method’s formal parameters to form the
attributes A(Start){, which we assume to consist of a symbol table { £ — File,str — String }.

To generate a program, we sample from the distribution P(Start|(), A(Start)],Z). First, Start is
expanded to “Stmt 5 Stmt”. When expanding the first Stmt, the NSG needs to choose between a method
invocation and a variable declaration. Because the NSG is “aware” that this step is to expand the first
line of the method—the list of RHS values chosen so far is empty—we would expect it to declare
a variable. This choice gives us the RHS “DeclType Var = new NewType (ArgList)”. Expanding
DeclType, the NSG samples a Java type from the distribution

P(DeclType

(“Stmt; Stmt”, “DeclType Var = new NewType (ArgList)”), A(DeclType)l., Z).

From the rules for expanding the nonterminal DeclType in Fig. 2, we see that the NSG can choose
any Java type as the declared type of the variable. At this point, the NSG is aware that the goal is
to create a method called write (this is encoded in Z) and that it is choosing a type to be declared
on the first line of the method. It also has access to the symbol table that is maintained as part of
A(DeclType)]. Thus, the NSG may decide to expand the symbol DeclType to FileWriter. This
type is then passed upward via the synthesized attribute DeclType.typeT.

Next, the grammar must expand the Var rule and pick a variable name to declare. This choice is
returned via the synthesized attribute Var.namet. Now it is time to expand NewType. The attributes
make this easy: when sampling from P(NewType|...), the NSG has access to NewType.typel, which
takes the value FileWriter. A synthesizer may err by choosing a type that is not compatible
with FileWriter. However, we may expect that during training, every time that NewType was
expanded and the declared type was FileWriter, the type chosen was either FileWriter or
some subclass of FileWriter. Hence the NSG is unlikely to make an error.

Assume that the NSG chooses FileWriter. It must now expand ArgList. Again, the NSG has the
advantage of having access to ArgList.typeList| (an explicit representation of the types required by
the constructor being called) and, most importantly, ArgList.symTab] (an explicit list of the variables
in scope, as well as their types). At this point, it is easy for the NSG to match the required type of the
first argument to the constructor (File) with an appropriate variable in the symbol table (£).

Now that the declaration of var_0 has been fully expanded, the NSG updates the symbol table with
a binding for the newly-declared variable var_0, and the attribute Stmt.symTab? takes the value
{f = File,str — String,var_0 +— FileWriter}. When the second occurrence of Stm¢
is expanded, the symbol table is passed down via the inherited attribute Szmi$1.symTab . All of
the information available—the latent variable Z encoding the contextual information (including the
name of the method “write” being generated), and the symbol table containing a FileWriter
and a St ring)—helps the NSG to deduce correctly that this Stmt symbol should be expanded into
an invocation of a write method. Also, the presence of the symbol table makes it easy for the NSG
to correctly attach the write method call to the variable var_0 and to use st r as the argument.



5 Evaluation

Our experimental hypothesis is that neural networks find it difficult to learn the intricate rules that
govern the generation of code by only looking at the syntax of example programs. These issues
become especially visible when the units of code to be generated are large, for example, entire method
bodies. In contrast, an NSG can use its static analysis to compute long-distance dependencies between
program variables and statements “for free.” Because of this extra power, NSGs can outperform much
larger neural models at generating accurate and semantically correct code.

5.1 Experimental Setup

Data. To test our hypothesis, we used a curated, deduplicated set of Java source-code files [26].
For each class and each method, we used the remainder of the class as evidence or context, and the
method body was used to produce training or test data. We used 1.57 M method bodies for training.
The grammar used had ten terminals corresponding to formal parameters, ten for class variables, and
ten for methods local to the class. None of the Java classes in the corpus needed more than ten of
each of these terminals; when generating training data, each declared Java variable or method was
randomly mapped to one of the appropriate terminals. Approximately 8,000 types and 27,000 method
calls from the Java JDK also appeared as terminals in the grammar.

NSG Implementation. We implemented an NSG for our subset of Java. Here, attributes are used to
keep track of the state of the symbol table, the expected return type of each method, expected types of
actual parameters, variable initialization, whether the variable has been used, and whether the method
has a return statement. The symbol table contains entries for all formal parameters, class variables,
and internal methods within the class.

The neural part of our model has 63 M parameters. To expose the attributes to the neural part of the
model, we implement a depth-first search over a program’s abstract syntax tree (AST) to extract node
information. The attributes are then encoded in a standard way — for example, the symbol table is
represented as matrix (rows correspond to types, columns to variables, the value 1 is present if the
corresponding type/variable pair is in scope). The distribution P(Sths|(Sths Sths - Sths ) " A(S,) ], Z)
is implemented as a set of LSTMs that decode the sequence of symbols, as well as the encoded
A(S;){ and Z, into a distribution over S;hs. We trained our framework on top of Tensorflow [1].
Using one GPU, the NSG training time is around 72 hours. See Appendix C for more details.'

Baselines. We consider three categories of baselines. The first consists of large pretrained trans-
formers. Specifically, we consider two variants of the GPT-NEO [6] model with 125 M and 1.3
B parameters. Both models are pre-trained on the Pile dataset [15], which consists of an 800 GB
English-text corpus and open-source code repositories. On the APPS dataset [17], they perform well
compared to OpenAI’s 12-B-parameter, GPT-3-like CODEX model [8]. We also compare against
CoODEGPT [24] which is a GPT-2-like model with 125 million parameters. This model was pre-
trained on Python and Java corpora from the CodeSearchNet dataset, which consists of 1.1 M Python
functions and 1.6 M Java methods. We fine-tune all of these pretrained models on our Java dataset,
using the token-level code-completion task provided by CodeXGLUE [24]. Finally, we also offer a
comparison against the CODEX model [8]. Because we did not have access to the model’s pretrained
weights, this model is only used in a zero-shot fashion (no fine-tuning on our Java dataset). It should
be noted here that the transformer baselines work on the entire Java language, whereas our NSG
framework works on a sub-part of Java which is supported in our grammar definition.

The second category comprises an ablation, called a “conditional neural grammar” (CNG), that is
identical to our NSG model but is trained without any of the attribute information. In other words, the
CNG model is trained only on the program syntax. The third category includes GNN2NAG [7], a
graph-neural-network-based method that uses an attribute grammar but learns the attributes from
data rather than computing them symbolically. See Appendix C for more details on the baselines.

Test Scenario. Our test scenario is as follows. Given a Java class, we remove the entire body of a
randomly selected method. We then use the remaining potion of the class along with the method
header as context information that is then fed to the model as input. We run our NSG model and the
baselines to regenerate this method body conditioned on the resulting context. We report the accuracy
of the prediction based on static-semantic checks and fidelity measures.

!'Our implementation is available at ht tps: //github.com/rohanmukh/nsg.
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Table 1: Percent of Static Checks Passed

\ [ GPTNeoI25M | GPTNeol.3B | CODEX | CODEGPT | GNN2NAG | CNG | NsG |

No undeclared variable access 89.87% 90.36% 88.62% 90.94% 47.44% 19.78% | 99.82%
Valid formal parameter access NA NA NA NA 25.78% 11.03% | 99.55%
Valid class variable access NA NA NA NA 15.40% 12.75% | 99.53%
No uninitialized objects 93.90% 91.73% 90.82% 94.37% 21.20% 21.56% | 99.01%

[ No variable access error [ 90.36% [ 9051% [ 88.86% | 91.32% [ 2892% | 17.92% | 99.69% |
Object-method compatibility 98.36% 98.09% 98.35% 97.84% 21.43% 12.23% | 97.53%
Return type at call site 97.38% 98.01% 98.53% 97.83% 23.86% 16.40% | 98.01%
Actual parameter type 87.03% 86.36% 92.28% 88.71% 9.27% 16.09% | 97.96%
Return statement type 84.05% 85.09% 88.13% 85.23% 12.34% 9.51% | 90.97%

[ No type errors [ 87.25% [ 8813% [ 91.42% | 88.10% | 1631% [ 13.56% | 97.08% |

[ Return statement exists [ 99.61% [ 9980% [ 9844% | 9957% [ 94.02% [ 99.92% | 97.10% |

| No unused variables ‘ 96.42% | 9646% | 96.82% | 97.64% | 20.95% | 2429% | 93.84% |

[ Percentage of parsing [ 98.18% [ 98.13% [ 9641% | 97.08% [ 100.0% [ 100.0% | 100.0% |

| Pass all checks \ 65.26% | 6483% | 4749% | 61.73% | 1734% | 12.87% | 86.41% |

Table 2: Average Fidelity of Generated Method Bodies

\ [ GPTNeol25M | GPTNeol 3B | CODEX | CODEGPT | GNN2NAG | CNG | NsG |

Set of API Calls 32% 37% 36% 36% 3% 22% | 53%
Sequences of API Calls 17% 20% 16% 19% 0.3% 18% | 42%
Sequences of Program Paths 12% 15% 10% 14% 0% 17% | 39%
AST Exact Match 12% 15% 10% 14% 0% 6% | 26%

5.2 Results

Static Checks. For each generated method body, we check the following properties: (/) No unde-
clared variable access: Are all the variables used in a program declared (within an enclosing scope)
before they are used? (2) Valid formal parameter access: Are formal parameters that are used in the
method body present in the method declaration? (3) Valid class-variable access: Are the class vari-
ables that are used in the method body present in the class declaration? (4) No uninitialized objects:
Do variables have a non-null value when they are used? (5) No variable access errors: Are checks
(1)-(4) all satisfied? (6) Object-method compatibility: Are methods called on objects of a given class
actually available within that class? (7) Return type at the call site: Is the assignment of the return
value type-correct with respect to the return type of the called method? (8) Actual-parameter type:
Are the actual-parameter types in an API call consistent with the corresponding formal-parameter
types? (9) Return-statement type: Is the type of the expression in a return statement consistent
with the method’s declared return type? (10) No type errors: Are checks (6)-(10) all satisfied? (11)
Return statement exists: Does the method body have a return statement somewhere? (12) No unused
variables: Are all variables declared in the method body used in the method? (13) Percentage of
parsing: Can the generated method be parsed by a standard Java parser? (14) Pass all checks: Are
checks (1)-(13) all satisfied?

Note that (2) and (3) are not meaningful metrics for approaches, such as our transformer baselines,
that do not use a grammar to generate code. This is because in these models, when a variable token is
generated, there is no way to tell what category of variable (class variable, formal parameter, etc.) it
is meant to be. These metrics are meaningful for the NSG, CNG, and GNN2NAG models, which use
a Java parser capable of partitioning variable names into different categories.

The results of our comparisons appear in Table 1. These scores are interpreted as follows. Suppose
that a generated program uses five variables, of which four are declared correctly in the proper scope.
This situation is scored as 80% correct on the "No undeclared-variable access" criterion. We report
the average success rate over each of these properties over all the generated programs in our test suite.

Whole-Method Fidelity. We also check the fidelity of the generated code to the reference code. One
possibility here is to use a standard metric for text generation, such as the BLEU score. However, this
is problematic. As the BLEU score is not invariant to variable renamings, a nonsensical program
that uses commonplace variable names can get an artificially high BLEU score. Also, programs are
structured objects in which some tokens indicate control flow and some indicate data flow. The BLEU
score does not take this structure into account. See Appendix J for a concrete example of these issues.



Instead, we consider four fidelity metrics:

Query public class FileUtils({
FileReader field_ 7; (1) Set of API Calls: Extract the set of
ff fiel ;
Pufferedreader field_s; API calls from the generated and refer-
/++ read line from file +/ ence codes, and compute the Jaccard sim-
public String reader () (}} ilarity between the sets. (2) Sequences
NsG public String reader () { of API Calls: Generate the set of all pos-
java.lang.String var_9; sible API call sequences possible along
try {var_9=field_5.readLine(); .
} catch (IOException var_8) { code paths, and compute the Jaccard sim-
var_8.printStackTrace(); } ilarity between the sets for the generated
return var_9; }
and reference code. (3) Sequences of Pro-
CodeGPT | public String reader () { gram Paths: Generate the set of all possi-
StringBuffer buffer= bl .
; e paths from root to leaf in the AST, then
new StringBuffer(); N . ’
buffer.append ("\n"); compute the Jaccard similarity between
, Tefumn butfer.tostring ()i the sets (two paths are equal if all elements
except for object references match). (4)
CODEX p:ﬁlic s%éng riédef 0 AST Exact Match: Exact AST match (ex-
rOws Xception .
field 5- new BufferedReader ( cept for object references), scored as 0
new FileReader(field_7)); or 1. We compute the highest value for
return field_5.readLine(); } . .
each metric across the ten bodies gener-
GptNeol.3B | public String reader () ated, and average the highest across all
Chrows fomxeeption test programs. Results for these measures
field 7-new FileReader (this.file); are presented in Table 2.
field_5=new BufferedReader (field_7); .
Srtxring line; Summary of results. We find that in most
while (field_5.readLine()) { . . .
System.out.printin(line); } cases, the qu had a hlgher incidence of
return line; passing the various static checks compared
} catch (FileNotFoundException e) . DI
te.printStackTrace ()7 ) to.tt.le bas.ehnes. This is perhaps not sur-
return null; ) prising, given that the NSG has access to
the result of the static analysis via the at-

tribute grammar. More intriguing is the
much higher accuracy of the NSG for the
fidelity results. Pre-trained language mod-
els and GNN2NAG are designed for next-token-prediction tasks (we give some results on these tasks
in Appendix G). However, in our CPG task, no tokens are available from the method body to be
generated. In particular, language models must treat the surrounding code and method header as
input from which to generate the entire method body, and this proves difficult. The NSG, on the other
hand, uses static analysis to symbolically extract this context, which is explicitly given to the neural
network in the form of the class variables and methods that are available to be called (in A(S)]), and
in the class name, encoded comments, variable names, and so on (in Z).

Table 3: Reading from a file: Outputs for the NSG and
transformer baselines.

Transformers vs. NSGs: As a complement to our quantitative evaluation, we manually examined
the outputs of our model and the baselines on a set of hand-written tasks for qualitative evaluation.
The transformers produced impressively human-like code on several of these tasks. However, in quite
a few cases, they produced incorrect programs that a trained human programmer would be unlikely
to write. Also, the transformers were biased towards producing short programs, which often led them
to produce uninteresting outputs.

Table 3 illustrates some of the failure modes of the transformer baselines. Here, we consider the
task of reading a string from a file utility class. The top result for our NSG model declares a String
variable to read from the already existing field while also correctly catching an IOException. The
CODEGPT output in this case is unrelated to the context. CODEX initiates a FileReader object by
invoking an argument which is of type FileReader itself, thereby causing a type mismatch. The code
from GPT-NEO accesses a file instance variable that does not exist and also returns a blank line from
the method. A few other examples of NSG and transformer outputs appear in Appendix A.

6 Related Work

Non-Neural Models of Code. Many non-neural models of code have been proposed over the
years [25, 32, 28, 2, 27, 5]. A few of these models condition generation on symbolic information
from the context. Specifically, Bielik et al. [5] use programmatically represented functions to gather



information about the context in which productions for program generation are fired, then utilize this
information to impose a distribution on rules. Maddison & Tarlow [25] generate programs using a
model that encodes a production’s context using a set of “traversal variables.” However, the absence
of neural representations in these models puts a ceiling on their performance.

Deep Models of Code. There is, by now, a substantial literature on deep models trained on program
syntax. Early work on this topic represented programs as sequences [32] or trees [26, 38, 9], and
learned using classic neural models, such as RNNs, as well as specialized architectures [23, 30, 3].
The recent trend is to use transformers [36, 16, 14, 24]. Some of these models — for example,
CODEGPT [24] — are trained purely on code corpora (spanning a variety of languages, including
Java). Other models, such as CODEBERT [14], GPT-NEO [6], and CODEX [8], are trained on
both natural language and code. In all of these cases, programs are generated without any explicit
knowledge of program syntax or semantics.

The GNN2NAG model by Brockschmidt et al. [7] also uses an attribute grammar to direct the
generation of programs. However, unlike our method, this model use a graph neural net to learn
attributes of code. Our experiments show the benefits of our weak supervision approach over this.

Also related is work by Dai et al. [11], who extend grammar variational autoencoders [21] with
hard constraints represented as attribute grammars. In that work, attribute constraints are propagated
top-down, and every generated artifact is required to satisfy the top-level constraint. This strategy
comes with challenges; as is well-known in the program-synthesis literature [31], top-down constraint
propagation can lead to unsatisfiability, and require rejection of generated samples, for grammars
above a certain level of complexity. We sidestep this issue by using attribute grammars as a form of
weak supervision, rather than as a means to enforce hard constraints.

Neurally Directed Program Synthesis. Many recent papers study the problem of neurally directed
program synthesis [4, 12, 34, 10, 33, 29]. Here, neural networks, and sometimes program analysis,
are used to guide a combinatorial search over programs. Because such search is expensive, these
methods are typically limited to constrained domain-specific languages. In contrast, our approach
does not aim for a complete search over programs at generation time (our decoder does perform a
beam search, but the width of this beam is limited). Instead, we embody our program generator as a
neural network that sees program-analysis-derived facts as part of its data. This design choice makes
our method more scalable and allows it to handle generation in a general-purpose language.

7 Conclusion

We have presented a framework for deep generation of source code in which the training procedure
is weakly supervised by a static analyzer, in particular, an attribute grammar. We have shown that
our implementation of this approach outperforms several larger, state-of-the-art transformers both in
semantic properties and fidelity of generated method bodies.

A lesson of this work is that while modern transformers excel at writing superficially human-like
code, they still lack the ability to learn the intricate semantics of general-purpose languages. At the
same time, the semantics of code can be defined rigorously and partially extracted “for free” using
program analysis. This extracted semantics can be used to aid neural models with the concepts that
they struggle with during program generation. While we have used this idea to extend a tree LSTM,
we could have implemented it on top of a modern transformer as well. We hope that future work will
pursue such implementations.

Our work demonstrates an alternative use for formal language semantics, compared to how semantics
are typically used in program synthesis research. Historically, semantics have been used to direct
generation-time combinatorial searches over programs. However, scalability has been a challenge
with such approaches. Our work points to an alternative use of semantics: rather than using semantic
program analyses to direct a search over programs, one could use them to annotate programs at
training and test time and leave the search to a modern neural network. We believe that such a strategy
has the potential to vastly extend the capabilities of algorithms for program synthesis.
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(a) Removing from a list (b) Adding to a list
Query public class myClass{ public class myClass{
/*+ remove items from a list */ /+% add item to list */
public void public void addItem (
remove (List<String> fp_2) { List<String> a, String b) {
} }}
}
NsG void remove (java.util.List public void addItem (
<java.lang.Object> fp_2) { List<String> fp_9,
java.util.Iterator var_8; String fp_1) {
var_8 = fp_2.iterator(); if (fp_9.contains
while (var_8.hasNext ()) { ((String) ARG)) {
java.lang.Object var_3; fp_9.add(fp_1);
var_3 = new java.lang.Object ( }
(java.lang.String) ARG, return;
(javax.swing.Icon) ARG); }
var_3 = var_8.next ();
var_8.remove () ;
}
return;
}
CODEGPT public void remove (List<String> fp_2) { public void addItem (
items.remove (fp_2); } List<String> a, String b)
{
items.add (a);
}
CODEX public void remove (List<String> fp_2) { public void addItem (
fp_2.remove (0); } List<String> a, String b) {
a.add(b); 1}
GptNeol.3B | public void remove (List<String> fp_2) { public void addItem (
fp_2.remove(); } List<String> a, String b) {
List <String> temp =
new ArrayList<String>();
for (int 1=0; i<a.size(); i++){
temp.add(a.get (i));
}
a.add(b);
}

Table 4: Example synthesis outputs: (a) Removing from a list and (b) Adding to a list.

A Additional Synthesis Examples

Some additional program-generation examples are shown in Tables 4, 5, and 6.

B Static Checks Considered

Here we give an in-depth description of each of the static checks that has been tested in the paper as
described in Section 5.2.

* No Undeclared Variable Access. All the variables used in a program should be declared
before they are used and should be available in the scope. We measure the percentage
of variable usages across all the programs that are declared before use. For example
int bar() {x.write();} is a violation of this property because x is not declared
(assuming that there is no field named x). When the statement x .write () is synthesized,
the NSG-model has access to the symbol table at that point in the AST. The symbol table
does not contain the variable x because it is not declared in the preceding statements. The
NsG-model has learnt to use variables that are present in the symbol table (encoded as
attribute "symTab"), which increases the likelihood that the variables used in the program
are declared before being used.

 Valid Formal Parameter Access. All of the input variables accessed in a program body
should be available in the class definition. Across all programs, we measure the percentage
of input-variable accesses that are available. If a program grammar allows access for n
input variables, and the synthesizer tries to access one such variable n; even when it is not
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{ try { f.write(str); }
catch ( IOException e) {
e.printStackTrace(); }

(a) Writing to a file (b) Creating a Swing JButton
Query public class FileUtil{ public class myGUI{
String err; public javax.swing.JFrame
public int read(File f){...} createFrame (final String title)
{...}
/+ write lines to file */
public void write( public void addActionListener
File f, String str){}} (javax.swing.JButton title)
{... 1}
/A k
create a button
*/
public
javax.swing.JButton createButton(){ }
}
NsG void write(File f, String str) { javax.swing.JButton createButton () {
try { javax.swing.ImagelIcon var_9;
FileWriter var_O; var_9 = new javax.swing.ImageIcon.
var_0 = new FileWriter (f); ImageIcon (
var_0.write (str); (java.lang.String) ARG,
} catch (IOException var_0) { (java.lang.String) ARG
var_0.printStackTrace(); )
System.out.println( ARG ); } javax.swing.JButton var_7;
return; } var_7 = new Jjavax.swing.JButton.JButton (
java.lang.String: ARG,
javax.swing.Icon: var_9);
var_7.setVerticalTextPosition (
(int) ARG);
var_7.setHorizontalTextPosition (
(int) ARG);
return var_7;
}
CODEGPT void write (File a, String b){ public JButton createButton () {
System.out.println(a); return new JButton (this);
} }
CodeX public void write(File f, String str) { public JButton createButton() {
Writer writer = null; final javax.swing.JButton b =
try { new javax.swing.JButton();
writer = new BufferedWriter ( return b;
new FileWriter (f)); }
writer.write (str);
writer.close();
} catch (IOException e) {
err = e.printStackTrace();}
}
GptNeol.3B | public void write(File f, String str) public JButton createButton () {

javax.swing.JButton button =
new javax.swing.JButton();
button.addActionListener (this);
return button;

Table 5: Example synthesis outputs: (a) Writing to a file and (b) Creating a Swing JButton. For
brevity, we omit the method body in the query, denoted as .... The method body was fed into

transformers as a part of the prompt during generation.
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(c) Connect to a Socket

(d) Decrypting a Message

socketAddress)
throws IOException {
Socket s = new Socket (
new Proxy (
Proxy.Type.SOCKS, socketAddress)
)i
s.connect () ;

}

Query public class tcpSocketManager({ public class lockAndKey{
public Socket createSocket (final public String encryptMessage (
InetSocketAddress socketAddress) { String message, String secret_key) {
} }
public void connect ( public String decryptMessage (
InetSocketAddress socketAddress) { String encrypted_message,
} String secret_key) {
} }
}
NsG public void connect ( String decryptMessage (String fp_2,
InetSocketAddress fp_3) String fp_5) {
Socket var_8; if (fp_5.equals((Object) ARG)) {
var_8 = new Socket.Socket ( return fp_5;
(String) ARG, (int) ARG); }
try { int var_6;
InetSocketAddress var_3; var_6 = fp_5.indexOf ((String) fp_5);
var_3 = new InetSocketAddress. if (true) {
InetSocketAddress ((String) ARG, return fp_5;
(int) ARG); }
var_8.connect ( (SocketAddress) var_3, String var_4;
(int) ARG); var_4 = fp_5.substring((int) ARG,
} (int) var_6);
catch (ConnectException var_3) { return var_4;
var_3.printStackTrace(); }
}
try {
var_8.close();
}
catch (IOException var_3) {
var_3.printStackTrace();
}
return;
CODEGPT public void connect (InetSocketAddress public String decryptMessage (
socketAddress) String encrypted_message,
if (socketAddress ~= null) { String secret_key) {
socketAddress.connect (socketAddress) ; return decryptMessage (encrypted_message,
} secret_key);
}
CODEX public void connect (InetSocketAddress public String decryptMessage (
socketAddress) { String encrypted_message,
AbstractSocket activeProxySocket = String secret_key) {
createSocket (socketAddress); Key aesKey = new SecretKeySpec (
activeProxySocket.connect ( secret_key.getBytes (), 'AES’);
socketAddress) ; Cipher cipher =
} Cipher.getInstance ('AES’);
cipher.init (Cipher .DECRYPT_MODE, aesKey);
return cipher.doFinal (encrypted_message);
}
GptNeol.3B | public void connect (InetSocketAddress public String decryptMessage (

String encrypted_message,
String secret_key) {
Key aesKey=
new SecretKeySpec (
encrypted_message.getBytes (),
secret_key.getBytes ()
)i
return aesKey.doFinal (
encrypted_message) ;

Table 6: Example synthesis outputs: (a) Connect to a socket and (b) Decrypting a message. For
brevity, we omit the method body in the query, denoted as .... The method body was fed into
transformers as a part of the prompt during generation.
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available, this property will be violated. The formal-parameter-type information is present
in symTab corresponding to each of the input variable which helps NSG learn this property
correctly.

* Valid Class Variable Access. All the class fields accessed in a program body should be
available in the class definition. The presence of field information in symtab helps NSG
satisfy this semantic property. Across all programs, we measure the percentage of field
accesses that happened when they were available.

* No Uninitialized Objects. All variables with reference type should be initialized. Out
of all the variables with reference types declared across all the programs, we measure
the percentage of variables that are initialized using a "new" statement. For example,
BufferedWriter x; x.write (); is a violation because x is not initialized using
new BufferedWriter. Violation of this property could cause a NullPointerException
at runtime. The AG keeps track of variable initializations using an attribute of type array of
Booleans, named IsInitialized. Whenever a variable is declared, the corresponding value in
the IsInitialized array is set to False. As soon as the variable is initialized, the attribute is
set to True. This attribute helps the NSG model learn to avoid generating method bodies in
which a variable is used without being initialized.

* No Variable Access Errors. This property is the aggregate of the preceding four semantic
checks.

* Object-method compatibility. Methods should be invoked on objects of appropriate types.
For example, consider the program snippet int k = 0;
bool b = k.startsWith (pre); which contains an  invocation of
String::startsWith (String pre). This program fails the object-method-
compatibility check because the method is invoked on a variable of type inf instead of a
variable of type String. The method invocation startsWith is synthesized before the terms
k and pre.2 The symbol-table attribute of the AG, in combination with the synthesized
attribute expr_type, helps the NSG model avoid such cases by learning to synthesize an
expression with a compatible type, given the method signature to be invoked on it.

* Return Type at the Call Site. The return type of a method invoked at some call
site should be consistent with the type expected at the call site. In bool b =
aStr.startsWith (pre); this property asserts that the type of b should be com-
patible with the return type of String: : startsWith. The symbol table alongside the
synthesized attribute from the API call, namely ret_type, helps the NSG respect this rule.

* Actual Parameter Type. The actual-parameter types in an API call should be consistent
with the corresponding formal-parameter types. For example, consider the program fragr-
ment int pre = 0; bool b = aStr.startsWith (pre); which contains an
invocation of String: :startsWith (String pre). This program fails the formal-
parameter type check because the actual-parameter type (inf) does not match the formal-
parameter type (String). The AG has the symbol-table attribute, which contains the variables
in scope and their types, plus it has access to the intended type from the API call by the
attribute typeList, which helps the NSG model to learn to synthesize API arguments of
appropriate types.

* Return Statement Type. The type of the expression in a return statement of a method
should be consistent with the method’s declared return type. For example, public int
foo () {String x; return x} violates this property because the returned expression
x is of type String, whereas the declared return type is int. To make it easier for the NSG
model to learn this restriction, the AG has a dedicated attribute methodRetType to propagate
the declared return type throughout the method, which helps it generate an expression of
the appropriate type after consulting the symbol table. For this property, we measure the

Note that while this attribute grammar requires Method to be expanded before Expr (because inherited
attributes of the latter depend on synthesized attributes of the former), the grammar is still L-attributed if we
expand Method then Expr, and perform an unparsing trick to emit the subtree produced by Expr first.
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percentage of return statements for which the expression type matches the method’s declared
return type.

* No Type Errors. All variables should be accessed in a type-consistent manner. Across
all the programs, we measure the percentage of variable accesses that are type-consistent.
Locations of variable accesses include all types of variable accesses relevant to an API
call, method arguments, return statements, the variables on which the methods are invoked,
variable assignments, and internal class method calls.

* Return Statement Exists. This property asserts that a method body should have a re-
turn statement. public int foo () {String x; } violates this property because the
method body does not have a return statement. The AG propagates an attribute, retStmtGen-
erated. This attribute is initially set to false. When a return statement is encountered, the
attribute is set to frue. The NSG model learns to continue generating statements while this
attribute is false, and to stop generating statements in the current scope when the attribute is
true. For this property, we report the percentage of programs synthesized with a return
statement.

* No Unused Variables. There should not be any unused variables (variables declared but
not used) in the method body. For example, in public void reader () {String
x; String y; x=fieldl.read() }, the variable y is an unused variable. To keep
track of the unused variables, we use a boolean array attribute isUsed. Entries in array
corresponding to the used variables are true whereas all other entries are false. Out of all the
programs synthesized, we report the percentage of variables declared which have been used
inside the method body.

* Percentage of Parsing. A parser for the Java language should be able to parse the synthe-
sized programs. We use an open-source Java parser, called javalang [19], and check for the
number of programs that parse. This test does not include static-semantic checks; it only
checks if a generated program has legal Java syntax. Note that NSG, CNG, and GNN2NAG
models are rule-based generation and they are bound to parse by definition. The pre-trained
language models, however, are not guaranteed to produce programs that exactly follow the
grammar definition. Therefore we capture all such instances that throw parsing exceptions
and report the resulting numbers.

* Pass All Checks. This property is the aggregate of all of the preceding checks.

C Implementation Details

We now give a few details about how the distributions required to instantiate an NSG are implemented
in our Java prototype.

Evidence Encoder: The evidences that we support as input to user context include class-level
information (e.g., class name, Java-type information of the instance variables, and methods in the
same class that have already been implemented); along with the information from the method header.

Each of these evidence types is encoded in a way appropriate to its domain. The method header has a
separate encoding for each of its components: return type, formal parameters, and method name. The
natural-language description available as Javadoc is also included. In total, there are seven kinds of
evidence that we consider in our context.

The evidences are encoded together as follows: class and method names are split using camel case
and delimiters; the resulting elements are treated as natural-language keywords, and encoded as a
set, using a single-layer feed-forward network. The other evidences that are represented as sets and
encoded by similar neural network. The type information of the class variables, formal parameters,
and Javadoc are encoded as sequential data using a single-layered LSTM. The surrounding method is
encoded as a concatenation of the three components of the method header, namely, the method name,
formal parameters, and return type, followed by a dense layer to reduce the dimensionality to the size
of the latent space. Note that the model defined in Section 4 allows us to get meaningful synthesis
outputs even when only a small subset of the different kinds of evidence are available during training.

18



Sampling Symbol RHS Values: The distribution P(S|SymSoFar, A(S)],Z) is implemented using
an LSTM. There are six different kind of symbols for which we need to chooses an RHS: choosing
the program block to produce (e.g., producing a try-catch statement or a loop), Java types, object-
initialization calls, API calls, variable accesses, and accessing a method within the same class. Each
one of these has their own vocabulary of possibilities, and requires a separate neural LSTM decoding
unit. It is also possible to use additional, separate neural units in different production scenarios. In
our implementation, we use four separate LSTM units for decoding variable accesses: for a variable
that is being declared, when accessed in a return statement, when accessed as an input parameter,
or when an API call is invoked. In other words, the NSG synthesizer consists of multiple decoding
neural units, for decoding all of the production rules in the program’s grammar, each using a separate
LSTM unit. It should be noted here that even though each of these LSTM units in the network has its
own parameter set, they all maintain the same recurrent state, which tracks the state of the unfinished
program synthesized so far.

Attributes: Each of the neural units in an NSG decodes the current symbol using its corresponding
LSTM and additional attributes available from the attribute grammar. Generally when a recurrent
model like an LSTM is trained, the input to the LSTM cell is fixed as the correct output from the last
time step (or the output from the parent node in case of a tree decoder). The availability of attributes
in an NSG lets us augment this input information with the additional attributes from our grammar.
The attributes that we support are given below:

* Symbol table: An unrolled floating-point matrix that represents the types of all variables in
scope, including field variables, input variables, and user-defined variables. Represented in
our grammar as sym7Iab attrbute.

* Method return type: A floating-point vector containing the expected type of the method
body. Represented in our grammar as methodReturnType.

» Return type of an API call, expression type of an object invoking an API call, and types of
the input variables of an API call: Three separate floating-point vectors that represent the
expected return type (retType), the expression type of the object that initiates an API call
(exprType), and the expected formal parameters of the API call, if any (¢fypeList).

* Internal-method table: A floating-point vector representing the neural representation of the
completed methods available in the same class.

* Unused variable flag: A Boolean vector indicating which variables have been initialized but
not used so far in the program. The attribute that tracks this semantic property is isUsed.

* Uninitiated-object flag: A Boolean vector indicating which objects have been declared but
not initialized. The attribute that tracks this semantic property is islnitialized.

* Return-statement flag: A Boolean indicating if a return statement has yet been reached in
the program body. The attribute that tracks this semantic property is retStmtGenerated

Note that not all attributes are important to every production rule in the grammar at a given time step.
For example, while decoding a variable access, it is unimportant to know about internal methods.
This information follows from our attribute grammar, as described in Appendix K. If a particular
attribute is not associated with a non-terminal, or it is unused inside a production rule, it is not
required required for that rule, and the attribute can be omitted from being input to decoding that
particular token.

Training and Inference: During training, all information required for the LSTM, such as contextual
information for the missing class and the associated attributes in the AST, are available to the neural
decoder. The neural network is only tasked with learning the correct distributions related to decoding
the method-body AST. The objective function related to learning the probability distributions within
the learner is composed of a linear sum of cross-entropy loss for each category of symbol: non-
terminals of the AST, API calls, Java types, and so on. This loss can be minimized using standard
techniques like gradient descent to ‘train’ the model. If we compare this to a simple neural model,
the NSG decoder has additional inputs in the form of attributes coming from the grammar to aid its
decoding process.

During inference, only the program context is available to the decoder. The attributes that the
synthesizer requires are inferred on-the-fly, after the previous sub-part of the AST has been decoded.
Because we make use of an L-attributed grammar, at each step of AST construction, the necessary
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inputs are already available from the partial AST at hand. At no point in the decoding process do the
neural units need any input from the part of the AST that has not yet been synthesized. This approach
to synthesizing is close to the standard inference procedure in sequence-to-sequence models [35, 13]

Given the learned neural units, decoding for the “best” program is an intractable problem, hence
we use beam search [37]. Because beam search is only applicable for sequences, we modify it to
perform a depth-first traversal on the AST, with the non-terminal nodes that lead to branching in the
AST stored in a separate stack.

D Implementation of Baselines

GNN2NAG: We describe the implementation details of GNN2NAG [7], which is one of the baselines
in Sec. 5. We expand the AST nodes in the order of a depth-first search. We considered the same
six types of edges as Brockschmidt et al. [7], which consists of Parents, Child, NextSib, NextUse,
NextToken, and InhToSyn. After building the graph, we propagate the information through a Gated
Graph Neural Network (GGNN [22, 7]). We obtain a representation for each node after the GGNN
propagation. We then apply an LSTM to go over all the nodes until reaching the node where the goal is
to predict the next token. Training is via cross-entropy loss. Note that the biggest difference between
our implementation of GNN2NAG and Brockschmidt et al. [7] is the use of an LSTM. Brockschmidt
et al. [7] assumes that information about which type of edge is responsible for generating the token
is available to the model. However, this information is not available in our setup. Thus, we use an
LSTM to iterate over all edges in the GNN to obtain the features for prediction.

Pre-Trained Language Models: We consider 4 types of transformer models—GPTNeo 125M, GPT-
Neo 1.3B, CODEGPT, and CODEX [6, 24, 8]. We fine-tuned each of these pre-trained transformers
on our Java dataset, except for CODEX, for which we have no access to the pre-trained weights.
While our NSG model only takes the headers in the Java class as inputs, for the various transformer
models, the input is the entire Java class, including both headers and method bodies. (We found that
transformers perform quite poorly if only headers are provided.) During evaluation, transformers are
asked to predict the missing method body given the header and the rest of the class.

To fine-tune on our Java dataset, we used the token-level code-completion task provided by
CodeXGLUE?® [24]. During fine-tuning, the transformers are asked to predict the next token in
an autoregressive fashion, just like in any language-modeling task. The learning rate is 8e—5 and the
batch size is 1 on each GPU. In total, we used 16 GPUs to fine-tune these transformers, which takes
about 4 days to complete two epochs on our Java dataset, consisting of 600,000 training instances.

E Generation of Training Data

Now we sketch the process by which our training data is generated. Assume that the task is to
generate procedure bodies from start-nonterminal Prog, and that we are given a large corpus of Java
programs from which to learn the distribution P(Prog|X).

An AG-based compiler is used to produce the training data. For each user-defined method M in the
corpus, we create training examples of the form

((Prog,ST™), ..., (Si—1,S™1), (S:, S), A(S;)4, X) )

where (i) (Prog, ST), ..., (Si—1, S, ) is a pre-order listing—from goal nonterminal Prog to a partic-
ular instance of nonterminal S;—of the (nonterminal, RHS) choices in M’s Prog subtree, (ii) Sghs
is the RHS production that occurs at S;, and (iii) attribute values A(.S;){ are the values at the given
instance of S;. As input-output pairs for a learner, inputs (i) and (iii) produce output (ii).

We compile the program, create its parse tree, and label each node with the values of its attributes
(which are evaluated during a left-to-right pass over the tree). For each method M, its subtree is
traversed, and a training example is emitted for each node of the subtree.

*https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/
CodeCompletion—token
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Table 7: Percent of Static Checks Passed with 25% Evidence

\ [ GPTNeol25M | GPTNeol 3B | CodeX | CODEGPT | GNN2NAG | CNG | NsG |

No Undeclared Variable Access 90.77% 89.99% 84.55% 89.21% 46.88% 19.78% | 99.32%
Valid Formal Param Access NA NA NA NA 25.72% 11.03% | 98.61%
Valid Class Var Access NA NA NA NA 14.34% 12.75% | 99.31%
No Uninitialized Objects 92.35% 91.21% 88.52% 93.40% 20.31% 21.56% | 93.35%

[ No Variable Access Error [ 9092% | 90.11% | 8498% | 89.63% | 28.10% | 17.92% | 99.10% |
Object-Method Compatibility 96.93% 97.05% 96.74% 98.35% 21.29% 12.23% | 94.87%
Ret Type at Call Site 97.91% 97.66% 98.47 % 97.98% 22.97% 16.40% | 92.53%
Actual Param Type 88.51% 88.61% 90.02% 86.77% 9.22% 16.09% | 93.63%
Return Stmt Type 82.50% 81.56% 83.75% 83.43% 12.05% 9.51% | 88.94%

[ No Type Errors [ 86.46% [ 86.14% [ 88.62% [ 86.83% [ 1598% [ 13.56% [ 91.98% |

[ Return Stmt Exists [ 99.58% [ 9961% [ 9674% [ 99.56% | 93.83% [ 99.92% [ 96.94% |

‘ No Unused Variables ‘ 96.51% ‘ 96.33% ‘ 96.46% ‘ 97.60% ‘ 20.14% ‘ 24.29% ‘ 91.75% ‘

[ Percentage of Parsing [ 9861% [ 9853% [ 9495% | 97.14% | 100.0% [ 100.0% [ 100.0% |

[ Pass All Checks | 6526% | 62.65% | 38.77% | 63.2% | 1675% | 12.87% | 19-17% |

Table 8: Average Fidelity of Generated Method Bodies with 25% Evidence

[ | GPTNeol125M [ GPTNeol.3B | CodeX [ CODEGPT [ CNG | NsG

Set of API Calls 24% 27% 29% 27% 12% | 43%
Sequences of API Calls 12% 14% 13% 13% 7% | 31%
Sequences of Program Paths 7% 8% 8% 8% 7% | 28%
AST Exact Match 7% 8% 8% 8% 1% 18%

F Restricting Available Evidence

In our experiments, generation of a particular method is conditioned on available “evidences,” which
refer to the context surrounding the missing method, in the method’s complete class (other method
names and method headers, Java Doc comments, class variables, and so on). All of the experiments
described thus far simulate the situation where the entire class—except the method to be generated—
is visible when it is time to generate the missing method. This simulates the situation where a user is
using an automatic programming tool to help generate the very last method in a class, when all other
methods and class variables have been defined and are visible.

We can restrict the amount of evidence available to make the task more difficult. When we only
make a portion of the evidence available, this simulates the case where a user is using an automatic
programming tool to generate a method when the surrounding class is less complete. When we use
“x% evidence” for a task, each piece of evidence in the surrounding code is selected and available
to the automatic programming tool with 2% probability. In Table 7 and Table 8, we show results
obtained when we repeat the experiments from earlier in the paper, but this time using 25% evidence
while Table 9 and Table 10 show the result for 50% evidence.

G Next-Token Prediction

Our NSG implementation uses a relatively weak language model (based on LSTMs as opposed
to more modern transformers) but augments them with a static analysis. We have shown that the
resulting NSG is good at “long-horizon” tasks such as semantic consistency (compared to the baselines
tested) and at generating methods that have high fidelity to the original, “correct” method. But it is
reasonable to ask: how does the NSG compare to the baselines at “short-horizon” tasks? To measure
this, for each symbol S that is expanded to form the body of a test method, we compute (i) the actual
left-context sequence of the test method (up to but not including the RHS sequence chosen for S) as
the value of SymSoFar, (ii) A(.S) | (in the case of the NSG), and (iii) Z. We then use these values to
ask the NSG to predict the next RHS. If the predicted RHS matched the observed RHS, the model
was scored as “correct.” We recorded the percentage of correct predictions for terminal RHS symbols
(such as API calls or types) for each test program.

We also performed next-token prediction using the NSG and three of the baseline models. Note
that it is non-trivial to classify CODEGPT’s output into different terminal symbols, so we only
report the overall RHS symbols’ correctness. The results show that two of the baselines (CODEGPT
and GNN2NAGQG) are very accurate, and demonstrate better performance than the NSG on this task.
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Table 9: Percent of Static Checks Passed with 50% Evidence

\ [ GPTNeol25M | GPTNeol3B | CodeX | CODEGPT | GNN2NAG | CNG | NsG |

No Undeclared Variable Access 89.87% 90.36% 88.62% 90.34% 47.17% 17.79% | 99.86 %
Valid Formal Param Access NA NA NA NA 25.50% 8.58% | 99.83%
Valid Class Var Access NA NA NA NA 14.96% 11.57% | 99.78%
No Uninitialized Objects 93.90% 91.73% 90.82% 94.37% 20.01% 21.68% | 97.30%

[ No Variable Access Error [ 90.36% [ 9051% [ 8886% [ 91.32% | 2843% [ 17.34% | 99.84% |
Object-Method Compatibility 98.36 % 98.09% 98.35% 97.84% 21.39% 10.11% | 96.42%
Ret Type at Call Site 97.38% 98.01% 98.53% 97.83% 23.45% 14.82% | 97.22%
Actual Param Type 87.03% 86.36% 92.28% 88.71% 9.24% 14.35% | 96.74%
Return Stmt Type 84.05% 85.09% 88.13% 85.23% 12.07% 7.66% | 92.15%

[ No Type Errors [ 87.25% [ 88.13% [ 91.42% | 88.10% | 16.04% [ 11.45% [ 96.22% |

[ Return Stmt Exists [ 99.61% [ 99.80% [ 9844% | 9957% | 9387% [ 9871% | 97.47% |

| No Unused Variables \ 96.42% \ 96.46% | 96.82% | 97.64% | 2055% | 18.50% | 94.20% |

[ Percentage of Parsing [ 98.18% [ 98.13% [ 9469% | 97.08% | 100.0% [ 100.0% | 100.0% |

| Pass All Checks \ 65.26% \ 64.88% | 47.49% | 6173% | 16.92% | 24.28% | 86.00% |

Table 10: Average Fidelity of Generated Method Bodies with 50% Evidence

[ | GPTNeol125M [ GPTNeol.3B | CodeX [ CoDEGPT [ CNG | NsG

Set of API Calls 32% 37% 36% 36% 12% | 50%
Sequences of API Calls 17% 20% 16% 19% 7% | 39%
Sequences of Program Paths 13% 10% 10% 14% 7% | 36%
AST Exact Match 13% 10% 10% 14% 1% | 21%

These results are in-keeping with our assertion that the baselines are useful mostly for short-horizon
code-generation tasks. However, they struggle with long-horizon tasks, such as the CPG task of
generating an entire Java method body. The results—together our earlier CPG results—also show
that even though the NSG has reduced accuracy in a short-horizon task, it is still able to generate
semantically accurate programs on the CPG task.

H Application to Novel Semantic Checks

The NSG approach can generate semantically accurate programs given context. At its core, an NSG
relies on the various semantic properties (i.e., attributes) on which it is trained. We would like to
understand the influence of these semantic properties in the generated program, and explore the
possibility that training on such a set of attributes can automatically allow for high accuracy with
respect to additional semantic checks for which specific attributes were not explicitly provided during
training. To study this question, we performed an ablation study in which we trained an NSG with a
subset of the relevant attributes, but evaluated the generated programs on all properties.

We trained an NSG without the attrOut.retStmtGenerated and methodRetType attributes, as defined
in Section K.2. With 50% of the evidence available, we see that the resulting model suffers in terms
of accuracy. The “Return Stmt Type” accuracy falls from 92.15% to 77.45% whereas the “Return
Stmt Exists" accuracy falls from 97.47% to 95.68%. That said, note that the resulting “Return Stmt
Type” accuracy is still a big improvement over the vanilla CNG model (with no attributes), which is
correct only 9.51% of the time.

This suggests that the NSG has learned type-safe program generation from other semantic properties,
most notably the symTab attribute, which carries type information about the various objects that are
currently in scope. This further suggests that providing a small core of key attributes may be enough
to greatly increase the accuracy of code generation.

I Robustness Incomplete Analysis

In this section, we analyze a situation where the static analyzer fails to accurately resolve different
attributes during the synthesis process. We simulate three situations in which the static analyzer
might fail.

In the first scenario, we emulate a situation where the compiler is unable to resolve the correct
return-type information from the missing method that the user has asked the NSG to synthesize. This
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Table 11: Next-Token Prediction Accuracy

Percentage of Evidence Available
50% ‘ 100 %
NSsG ‘CODEGPT‘ GNN2NAG ‘ CNG ‘ NsG ‘ CODEGPT‘ GNN2NAG ‘ CNG

API Calls 62.42% NA 80.24% 49.05% | 75.94% NA 80.77 % 59.73%
Object Initialization Call 59.64% NA 97.65% 49.12% | 66.66% NA 97.94% 87.90%
Types 61.11% NA 85.78% 50.28% | 70.33% NA 86.21% 54.44%
Variable Access 92.26 % NA 92.11% 50.28% | 92.44% NA 92.94% 52.85%
All Terminal RHS Symbols | 73.41% 88% 80.83% 51.22% | 73.99% 89% 81.1% 54.32%
Real Code CodeGPT NsG
public String reader () public String reader() public String reader()
{ { {

StringBuffer stringBuffer StringBuffer buffer= java.lang.String var_9;

= new StringBuffer(); new StringBuffer(); try{
String line; buffer.append("\n"); var_9=field_5.readLine();
while ((line = return buffer.toString(); }

bReader.readLine () ~= null) { } catch (IOException var_8) {
stringBuffer.append(line); var_8.printStackTrace () ;
stringBuffer.append ("\n"); }; }
return stringBuffer.toString(); return var_9;

} }

}
(

Table 12: Reader example for analyzing the BLEU-score metric.

results in a default null value being passed around for the attribute methodRetType. We find that
this reduces the overall accuracy for the attribute “Return Stmt Type" from 90.97% to 77.28%. This
does not seem to impact other static checks, however.

In the second scenario, consider the case where the compiler is unable to resolve the API return-type
attribute retType. This reduces the accuracy of the “Return type at call site” check from 98.01% to
18.16%. 1t also results in a decrease in “No undeclared-variable access” and “Valid formal-param
access” to 72.48% and 67.23%, respectively. This is is a huge decrease from 99.82% and 99.55%
accuracy that these semantic checks had for the base model where the attribute retType can be resolved
correctly. The fidelity metrics are also impacted, where the “AST exact match” metric drops from
26% to 10%. This is because the retType attribute is used in many portions of our attribute grammar,
on which the trained program generator is being conditioned on. An incorrect resolution of such
attribute had led to deterioration of the overall model performance.

In the final scenario, we only break the static analyzer’s capability to resolve the unused-variable-
check attribute attrOut.isUsed. For this scenario, we see that only the one semantic check “No unused
variables" out of all the semantic checks considered is impacted. Here the accuracy for this check
drops from 93.84% to 91.10%. All other metrics have negligible changes.

Rather unsurprisingly, the results suggest that NSG relies heavily on the static analyzer, and that some
attributes influence the result much more than others. It is also critical to have a static analyzer that
performs accurately during inference time, to avoid any model performance degradation.

J BLEU-Score Analysis

As described in the main body of the paper, BiLingual Evaluation Understudy or BLEU score
is “problematic in the code-generation setting. First, the BLEU score is not invariant to variable
renamings, which means that a nonsensical program that uses commonplace variable names can
get an artificially high BLEU score. Second, programs are structured objects in which some tokens
indicate control flow, and some indicate data flow. The BLEU score does not take this structure into
account.” We use one of the examples in Table 4 of the paper ("reading from a file") to illustrate this
point and show the real code and outputs from CodeGPT and NSG in Table 12.

The NSG output is clearly better. However, the CodeGPT output gets a higher BLEU score because it
uses variable names that superficially match the ground truth. Specifically, the BLEU score of the
CodeGPT output is 25.11 and the BLEU score of the NSG output is 19.07. This situation arose often
in our experiments, which is why we have used alternative program-equivalence metrics to judge
performance of generated programs, as defined in Section 5.
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K Grammar

The Neural Attribute Grammar (NSG) model learns to synthesize real-life Java programs while
learning over production rules of an attribute grammar. In this section, we present the comprehensive
set of production rules considered, along with the attributes used. We first present the context-free
grammar in Appendix K.1, and then decorate it with attributes in Appendix K.2. The productions in
a-c deal with expansion of all the non-terminal symbols in the grammar: rules in a mainly expand to
one line of code in a Java method body; rules in b are their corresponding expansions; and rules in ¢
deal with control-flow operations inside the grammar. Rules in d generate terminal symbols inside
the grammar. We show the flow of attributes symTab and methodRetType in the AST in Appendix
K.2. The rest of the attributes are passed inside attrin and attrOut, namely islnitialized, isUsed,
retStmtGenerated and itrVec.

K.1 Context Free Grammar

al. Start: Stmt

a2. Stmr: Stmt; Stmt| €
a3. Stmt: Decl

a4. Stmt: Objlnit

a5. Stmt: Invoke

a6. Stmt: Return

bl. Decl: Type Var

b2. Objlnit : Type Var = new Type ArgList
b3. Invoke : Var = Var Call InvokeMore
b4. InvokeMore :  Call InvokeMore | €

bS. Call: Api ArgList

b6. ArgList : Var ArgList | €

b7. Return : return Var

cl. Stme: Branch | Loop | Except

c2. Branch : if Cond then Stmt else Stmt
c¢3. Loop: while Cond then Stmt

cd4. Except: try Stmt Catch

c5. Catch:  catch(Type) Stmt; Caich | e
c6. Cond: Call

dl. Api: JAVA_API_CALL

d2. Api: INTERNAL_METHOD_CALL
d3. Type: JAVA_TYPE

d4. Var: VAR_ID

K.2 Attribute Grammar

a0. Initialization of inherited attributes of Start:
[ Start.symTab | :=
{ in_param_1 — type_in_param_1,

in_param_n — type_in_param_mn,
field_1 — type_field_1,

field_m — type_field_m }

Start.attrIn.itrVec | := (false, false);
Start.attrIn.retStmtGenerated | := false;
Start.attrIn.isInitialized | := ¢;

Start.attrIn.isUsed | = ¢;
Start.methodRetType | := METHOD_RET_TY PE;]
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al.

a2a.

a2b.

a3.

ad.

as.

a6.

b1.

Start : Stmt ;

[ Stmt.attrln || = Start.attrln |;
Stmt.methodRetType | := Start.methodRetType |;
Stmt.symTab | := Start.symTab |;
Start.symTabOut T := Stmt.symTabOut 1;
Start.attrOut 1 := Stmt.attrOut T

Start.valid 1 := Stmt.valid 1; |

Stme$0 : Stme$1 ; Stme$2

[ Stmt$1.symTab | := Srmz$0.symTab |;
Stmt$2.symTab | := Stmr$1.symTabOut 1;
Stmr$0.symTabOut T := Stmr$2.symTabOut 1;
Stmt$1.attrln | := Stme$0.attrln J;

Stme$2.attrln | := Stmr$1.attrOut 1

Stmt$0.attrOut 1 := Stmr$2.attrOut 1;
Stmr$1.methodRetType | := Sm$0.methodRetType |;
Stmt$2.methodRetType | := Stmr$0.methodRetType |;
Stmt$0.valid + := Stmr$1.valid T A Stmr$2.valid 13 |

Stmt : €
[ Stmt.symTabOut + := {};
Stmt.attrOut.itrVec 7 := (false, false);
Stmt.valid T := true; |

Stmt : Decl

[ Decl.symTab | := Stmt.symTab |;

Stmt.symTabOut T := Stmt.symTab | + Decl.symTabOut T;
Decl.attrln | := Stmt.attrln |;

Stmt.attrOut T := Stmt.attrln | 4+ Decl.attrOut 1
Decl.methodRetType | := Stmt.methodRetType |;
Stmt.valid T := Decl.valid T;]

Stmt : Objlnit
[ Objlnit.symTab | := Stmt.symTab |;
Stmt.symTabOut T := Stmt.symTab |

+ Objlnit.symTabOut T3
Objlnit.attrln | := Stmt.attrln |;
ObjInit.methodRetType | := Stmt.methodRetType J;
Stmt.attrOut T := Stmt.attrln | 4+ Objlnit.attrOut T
Stmt.valid + := Objlnit.valid 1 |

Stmt : Invoke

[ Invoke.symTab | := Stmt.symTab |;

Stmt.symTabOut T := Stmt.symTab | +Invoke.symTabOut 1;
Invoke.attrln | := Stmt.attrln |;

Stmt.attrOut T := Stmt.attrOut | +Invoke.attrOut 7
Invoke.methodRetType | := Stmt.methodRetType |;
Stmt.valid T := Invoke.valid 1; ]

Stmt : Return
[ Return.symTab | := Stmt.symTab |;
Stmt.symTabOut T :=

Stmt.symTab | + Return.symTabOut 1;
Invoke.attrln || = Stmt.attrIn |;
Stmr.attrOut 1 := Stmt.attrln | 4 Invoke.attrOut 7; |
Return.methodRetType | := Stmt.methodRetType J;
Stmt.valid 1 := Return.valid T;}

Decl : Type Var

[Decl.symTabOut 1 := {Var.id : Type.name};
Decl.attrOut.isUsed[Var] T := false;
Decl.attrOut.isInitialized[Var] T := false;
Decl.valid T = true}
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b2.

b3.

bda.

b4b.

bS

bé6a.

bé6b.

b7.

Objlnit : Type$0 Var = new Type$1 ArgList

[ ArgList.symTab | := Objlnit.symTab ;
ObjInit.symtabOut 1 := {Var.id : Type.name};
ArgList.typeList | := Type.params T;
Objlnit.attrOut.isInitialized[Var] T := true;
Objlnit.attrOut.isUsed[Var] T := false;
Objlnit.valid T := ArgList.valid T;

A Type$0.name 1 := Type$1l.name 1; |

Invoke : Var$0 = Var$1 Call InvokeMore
[InvokeMore.syrnTab } = Invoke.symTab |;
InvokeMore.exprType | := Call.retType T;
Call.attrln | := Invoke$0.attrIn |;
InvokeMore.attrln || := Call.attrOut 1
Invoke.attrOut.isUsed[Var$0] 1 := true;
Invoke.attrOut.isUsed[Var$1] 1 := true;
Invoke.attrOut 1 := InvokeMore.attrOut T;
Invoke.valid T := InvokeMore.valid T
A (InvokeMore.retType T==
Invoke.symTab | [Var$0.id 1])
A Call.exprType T ==
Invoke.symTab | [Var$1.id 1]; ]

InvokeMore$0 : Call InvokeMore$1
[ InvokeMore$1.symTab | := InvokeMore$0.symTab |;
InvokeMore$1.exprType | := Call.returnType 1;
Call.symTab | := InvokeMore$0.symTab |;
InvokeMore$0.retType + := InvokeMore$1.retType 1;
Call.attrln | := InvokeMore$0.attrIn |;
InvokeMore$1.attrln | := Call.attrOut 1;
InvokeMoreOut30.attrIn 1 := InvokeMoreOut$1.attrIn 1;
InvokeMore$0.valid T := Call.valid 1

A InvokeMore$1.valid T;

A Call.exprType T := InvokeMore$1.exprType i;]

InvokeMore : €

[InvokeMore.retType 1T = InvokeMore.exprType |;
InvokeMore.attrIn.itrVec 1= (false, false);
InvokeMore.valid 1 = true;]

Call : Api ArgList

[ArgList.symTab } = Call.symTab |;
ArgList.typeList | := Api.params T;
Call.retType T := Api.retType 1]
Api.attrln | := Call.attrIn |;
Call.attrOut T := Api.attrOut T;
Call.exprType T := Api.exprType 1);
Call.valid T := ArgList.valid T]

ArgList$0 : Var ArgList$1
[ ArgList$1.symTab | := ArgList$0.symTab |;
ArgList$1.typeList | := ArgList$0.typeList[1 :] |;
ArgList$1.attrOut.isUsed[Var] T := true;
ArgList$0.valid 1 := ArgList$1.valid
A (ArgList$0.symTab | [Var.id 1]
== ArgList$0.typeList[0] |); |
ArglList : €
[ArgList.Valid T := ArgList.typeList.isEmpty() T;]
Return : return Var
[Return.attrOut.retStthenerated T i true

Return.valid 1 := Return.methodRetType |==
Return.symTab | [Var.id 1]];
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cl.a. Stmt : Branch
[Branch.symTab l = Stmt.symTab |;
Stmt.valid T := Branch.valid T;
Branch.attrln | := Stmt.attrln |;
Stmt.attrOut T := Branch.attrOut T;}

cl.b. Stmt: Loop
[ Loop.symTab | := Stmt.symTab |;
Stmt.valid T := Loop.valid T;
Loop.attrln | := Stmt.attrln |;
Stmt.attrOut 1 := Loop.attrOut T;]

cl.c. Stmt : Except
[ Except.symTab | := Stmt.symTab |;
Stmt.valid T := Except.valid 1;
Except.attrln | := Stmt.attrln |;
Stmt.attrOut 1 := Except.attrOut 7; |

¢2. Branch : if Cond then Stmt$1 else Stmt$2
[ Cond.symTab || := Stmt.symTab |;
Stmt$1.symTab | := Cond.symtabOut 7;
Stmt$2.symTab | := Cond.symtabOut 1;
Branch.valid T := Cond.valid T A Stmt$1.valid 1

A Stmi$2.valid 1

Cond.attrln | := Branch.attrln |;
Stmt$1.attrln | := Cond.attrIn |;
Stmt$2.attrln | := Cond.attrIn |;
Branch.attrOut + := Branch$1.attrIn |; |

c¢3. Loop : while Cond then Stmt
[ Cond.symTab | := Stmt.symTab |;
Stmt.symTab | := Cond.symTabOut T;
Loop.valid T := Cond.valid 1 A Stmt.valid T;
Cond.attrln | := Loop.attrln ;
Stmt.attrln | := Cond.attrOut 1;
Loop.attrOut T := Loop.attrln i;]

cd. Except : try Stmt Catch
[ Stmt.symTab | := Except.symTab J;
Catch.symTab | := Stmt.symTabOut 7;
Except.valid T := Stmt.valid 1 A Catch.valid T;
Stmt.attrln | = Except.attrln |;
Catch.attrln || := Stmt.attrIn ;
Except.attrOut 1 := Except.attrln |; ]

c5a. Carch$0 : catch(Type) Stmt; Catch$l
[ Catch$1.symTab | := Catch$0.symTab |;
Stmt.symTab | := Catch$0.symTab |;
Stmt.attrln | := Catch$0.attrIn |;
Carch$1.attrln | := Srmr.attrln |;
Catch$0.attrOut T := Catch$1.attrOut 1;
Catch$0.valid 1 := Stmt.valid + ACarch$1.valid 1; ]

cSb.  Catch : €
[ Catch.valid © := true; Catch.attrOut 1 := ¢]

¢6. Cond: Call
[ Call.symTab | := Cond.symTab ;
Cond.valid T := Call.valid T;
Call.attrln | := Cond.attrIn |;
Cond.attrOut 1 := Call.attrOut T;}
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dl1.

d2.

d3.

d4.

Api : JAVA_API_CALL
[Api.name 1 = NAME,
Api.params T := FORMAL_PARAM _LIST;
Api.exprType 1 = TY PE;
Api.retType 1 := RET_TY PFE;
if(Api.name == "hasNext")
Api.attrOut.itrVec T := (true, false);
else if(Api.name == "next"
Api.attrOut.itrVec[1] T := true; |

Api : INTERNAL_METHOD_CALL
[Api.name 1 = NAME,

Api.params T := FORMAL_PARAM_LIST;
Api.exprType T = ¢;

Api.retType 1 := RET_TYPE;
Api.attrOut.itrVec T := Api.attrn.itrVec |; |

Type : JAVA_TYPE
[ Type.name + := NAME
Type.params T := FORMAL_PARAM_LIST; ]

Var : VAR_ID
[ Varid 1 = ID_NUMBER]
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