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Abstract

Many organizations need large amounts of high quality data
for their applications, and one way to acquire such data
is to combine datasets from multiple parties. Since these
organizations often own sensitive data that cannot be shared
in the clear with others due to policy regulation and business
competition, there is increased interest in utilizing secure
multi-party computation (MPC). MPC allows multiple parties
to jointly compute a function without revealing their inputs
to each other. We present Cerebro, an end-to-end collaborative
learning platform that enables parties to compute learning
tasks without sharing plaintext data. By taking an end-to-end
approach to the system design, Cerebro allows multiple parties
with complex economic relationships to safely collaborate
on machine learning computation through the use of release
policies and auditing, while also enabling users to achieve
good performance without manually navigating the complex
performance tradeoffs between MPC protocols.

1 Introduction

Recently, there has been increased interest in collaborative
machine learning [1, 2], where multiple organizations run
a training or a prediction task over data collectively owned
by all of them. Collaboration is often advantageous for these
organizations because it enables them to train models on
larger datasets than what is available to any one organization,
leading to higher quality models [3]. However, potential
participants often own sensitive data that cannot be shared due
to privacy concerns, regulatory policies [4,5], and/or business
competition. For example, many banks wish to detect money
laundering by training models on customer transaction data,
but they are unwilling to share plaintext customer data with
each other because they are also business competitors.
Enabling these use cases requires more than a traditional
centralized machine learning system, since such a platform
will require a single trusted centralized party to see all of the
other parties’ plaintext data. Instead, the goal is to develop

techniques through which participants can collaboratively
compute on their sensitive data without revealing this data to
other participants. A promising approach is to use secure multi-
party computation (MPC) [16, 17], a cryptographic technique
that allows P parties to compute a function f on their private
inputs {xi,...,xp} in such a way that the participants only learn
f(x1,...,xp) and nothing else about each other’s inputs.

While there is a vast amount of prior work on MPC for col-
laborative learning, none take an end-to-end approach, which
is essential for addressing two major obstacles encountered
by these organizations. The first obstacle is the tussle between
generality and performance. Many recent papers on MPC
for collaborative learning [6—15] focus on hand-tuning MPC
for specific learning tasks. While these protocols are highly
optimized, this approach is not generalizable for a real world
deployment because every new application would require
extensive development by experts. On the other hand, there
exist generic MPC protocols [16—19] that can execute arbitrary
programs. However, there are many such protocols (most of
which are further divided into sub-protocols [32, 33]), and
choosing the right combination of tools as well as optimiza-
tions that result in an efficient secure execution is a difficult and
daunting task for users without a deep understanding of MPC.

The second obstacle lies in the tussle between privacy and
transparency. The platform needs to ensure that it addresses
the organizations’ incentives and constraints for participating
in the collaborative learning process. Take the anti-money
laundering use case as an example: while MPC guarantees
that nothing other than the final model is revealed, this privacy
property is also problematic because the banks effectively lose
some control over the computation. They cannot observe the
inputs or the computation’s intermediate outputs before seeing
the final result. In this case, some banks may worry that releas-
ing a jointly trained model will not increase accuracy over their
own models, but instead help their competitors. They may also
have privacy concerns, such as whether the model itself con-
tains too much information about their sensitive data [34—39]
or whether the model is poisoned with backdoors [40].

In this paper, we present Cerebro, a platform for multi-party
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System Multi-party | DSL & API | Policies | Automated optimization | Multiple backends | Auditing
Specialized ML protocols Vi X X X X Vi1 X X
Generic MPC v X X X X X
MPC compilers Vi X v X v Vi X X
This paper: Cerebro v v v v v v

Table 1: Comparison with prior work in categories on properties necessary for collaborative learning. There are a number of works
in specialized MPC protocols [6—15], generic MPC [16—-19], and MPC compilers [20-31]. Since the work space is so broad, we
use “v'/ X to indicate that only some systems in this category support that feature.

cryptographic collaborative learning using MPC. Cerebro’s
goal is to address the above two obstacles via a holistic design
of an end-to-end learning platform, as illustrated in Figure 1.

To address the first challenge, Cerebro develops a compiler
that can automatically compile any program written in
our Python-like domain specific language (DSL) into an
optimized MPC protocol. While there is prior work on MPC
compilers [20-24,26-29,29-31], none provides a holistic tool
chain for the machine learning setting, which is the focus of our
work. Beyond the compiler, the ML APIs provided by Cerebro
abstract away the complexities of MPC from users, while
keeping information needed for our compiler to do further
optimizations. Our compiler also uses novel physical planning
and considers the deployment environment to further choose
the best MPC algorithms for executing machine learning work-
loads. We note here that Cerebro’s goal is to provide a generic
platform where users can write arbitrary learning programs,
and not to compete with hand-optimized protocols (we com-
pare Cerebro’s performance against such protocols in §7.5).

We address the second challenge by introducing a set of
mechanisms for organizations to ensure that their incentives
and constraints are met before the result of a learning task is
released, and also for participants to identify the source of mali-
cious and ill-formed input data. Our insight is that we can lever-
age cryptographic primitives to enable this functionality with-
out leaking additional data in the process. Based on this obser-
vation we define two important mechanisms: compute policies
and cryptographic auditing. Compute policies allow parties to
provide code that controls when and how the result of alearning
task is released, while cryptographic auditing allows parties to
backtrack and audit the inputs used during private computation,
thus holding all parties accountable for their actions.

We implemented and evaluated Cerebro on common learn-
ing tasks—decision tree prediction, linear regression training,
and logistic regression training. Our evaluation (§7) shows
that our compiler generates optimized secure computation
plans that are 1-2 orders of magnitude faster than an incorrect
choice of a state-of-the-art generic MPC protocol (that is also
un-optimized for machine learning), which is what a user
might use without our system. Even with these performance
gains, we want to remark that secure computation is not
yet practical for all learning tasks. Nonetheless, we believe
that a careful choice of protocols is practical for a number
of useful learning tasks as our evaluation shows. Moreover,

cryptographers have been improving MPC techniques at an
impressive pace, and we believe that new MPC tools can be
incorporated into the Cerebro compiler.

2 Background

Machine learning. Machine learning pipelines consist of
two types of tasks: training and prediction. Training takes in
a dataset and uses a training algorithm to produce a model.
Prediction (or inference) takes in a model and a feature vector,
and runs a prediction algorithm to make a prediction.

Secure multi-party computation (MPC). In MPC, P parties
compute a function f over their private inputs X;e|;. p, Without
revealing x; to any other parties. In this paper, we consider that
the final result is released in plaintext to every party.

There are two main MPC paradigms for generic computa-
tions: arithmetic MPC [16,18] and boolean MPC (based on gar-
bled circuits). In arithmetic MPC, data is represented as finite
field elements, and the main operations are addition and multi-
plication (called “gates”). In boolean MPC, data is represented
as boolean values, and the main operations are XOR and AND.

One interesting commonality in these two frameworks is
that they can often be split into two phases: preprocessing
and online execution. At a high level, both frameworks use
preprocessing to improve the online execution time for certain
gates. In arithmetic circuits, addition gates can be computed
locally without communication, while multiplication gates
are more expensive to compute. Similarly, in boolean circuits,
XOR is fast to compute while AND is much slower. The
preprocessing phase for these frameworks pre-computes a
majority part of executing multiplication/AND gates. And the
preprocessing phase can execute without knowing the input; it
only needs to know the functionality. The online execution for
both arithmetic MPC and boolean MPC requires the parties
to input their private data. At the end of this phase, the MPC
protocol releases the output in plaintext to all the parties.

3 Overview of Cerebro

3.1 Threat model

We consider P parties who want to compute a learning function
on their sensitive data. The parties are unwilling or unable to
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Figure 1: The Cerebro workflow.

share the plaintext data with each other, but want to release the
result of the function (e.g., a model or a prediction) according
to some policies. We assume that the parties come together in
an agreement phase during which they decide on the learning
task to run, the results they want to disclose to each other,
and the policies they want to implement. We assume this
agreement is enforced by an external mechanism, e.g., through
a legal agreement.

Cerebro allows the parties to choose what threat model
applies to their use case by supporting both semi-honest
and malicious settings. In the semi-honest setting, Cerebro
can protect against an adversary who does not deviate from
protocol execution. This adversary can compromise up to
P —1 of the parties and analyze the data these parties receive in
the computation, in hopes of learning more information about
the honest party’s data beyond the final result. In the malicious
setting, the adversary can cause compromised participants to
deviate from the protocol. The misbehavior includes altering
the computation and using inconsistent inputs. Cerebro can
support both settings by using different generic cryptographic
backends. We believe that it is useful to support a flexible
threat model because different organizations’ use cases result
in different assumptions about the adversary. Moreover, as we
show in §7, the semi-honest protocol can be 61-3300x faster
than the malicious counterpart, so the participants may not
wish to sacrifice performance for malicious security.

Recent work has described many attacks for machine learn-
ing. One category is data poisoning [40] where the parties inject
malicious data into the training process. Another category is at-
tacks on the released result, where an attacker learns about the
training dataset from the model [39,41,42] or steals model pa-
rameters from prediction results [35-38]. By definition, MPC
does not protect against such attacks, and Cerebro similarly
cannot make formal guarantees about maliciously constructed
inputs or leakage from the result. However, we try to mitigate
these issues via an end-to-end design of the system, where
Cerebro provides a platform for users to program compute
policies and add cryptographic auditing (explained in §5).

3.2 System workflow

Cerebro’s pipeline consists of multiple components, as shown
in Figure 1. In the rest of this section, we provide an overview
of a user’s workflow using Cerebro.

Agreement phase. This phase is executed before running

Cerebro. During the agreement phase, potential participants
come together and agree to participate in the computation. We
assume that the number of participants is on the order of tens
of parties. Parties need to agree on the computation (including
the learning task and any compute policies) to run and agree
on the threat model. Parties should also establish a public key
infrastructure (PKI) to identify the participants.
Programming model. Users make use of Cerebro’s Python-
like domain-specific language (DSL) to write their programs.
Users can easily express custom learning tasks as well as
policies using our DSL and APIs. Cerebro also allows users
to specify the configuration, such as the number of parties and
how much data each party should contribute.

Compute policies. Cerebro supports user-defined compute
policies via our DSL to handle concerns arising from the
complex economic relationships among the parties. Compute
policies can be generic logic for how results are obtained, or
special release policies such that the result of a computation
is only revealed if the policy conditions are satisfied.
Cryptographic compiler. Cerebro’s cryptographic compiler
can generate an efficient secure execution plan from a given
program written in the Cerebro DSL. Our compiler first
applies logical optimization directly on the program written
in our DSL (see §4.2). Next, this optimized program is input to
the physical planning stage (see §4.3) to generate an efficient
physical execution plan.

Secure computation. In this phase, Cerebro executes the
secure computation using the compiler’s physical plan. When
it finishes, the parties can jointly release the result.
Cryptographic auditing. Even after the result is released, the
learning life cycle is not finished. Cerebro gives the parties the
ability to audit each other’s inputs with a third-party auditor
in a post-processing phase (see §5.2).

4 Programming Model and Compiler

In this section we describe Cerebro’s programming model.
Similar to prior work [20-24,26-29, 29-31], and based on
the DSL implementation by SCALE-MAMBA (see §6), users
specify programs that Cerebro can execute using a domain-
specific language (§4.1), which is then used as input to the Cere-
bro compiler (Figure 3). The Cerebro compiler implements two
logical optimization passes, which reduce the amount of com-
putation expressed in MPC while preserving security guaran-
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1 |# set_params () initializes parameters

2 |# for an MPC execution, such as fixed-point
3 | # parameters (p, f, k) and

4 | # the number of parties (num_parties)

5 |Params.set_params

(p=64, £=32, k=64, num_parties=2)
6 |# Decision tree prediction
7 | # Reads in the tree model from party 0
8 |tree = p_fix mat.read input (tree_size, 4, 0)
9 | # Party 1 provides the features

10 |x = p_fix_array.read_ input (dim, 1)

12 | for i in range (LEVELS-1):

13 # Store user information in variables
14 # like index and split

15

16 cond = (x[index] < split)

17 # This 1is a fused operation

18 root = secret_index if

(cond, tree, left_child, right_child)
19 | # Reveal prediction results
20 | reveal_to_all (root[1], )

Figure 2: A sample program written in Cerebro’s DSL

tees. Finally, the Cerebro physical planner (§4.3) takes the logi-
cal plan generated by the compiler, and uses information about
the physical deployment to instantiate and execute the plan.

4.1 CerebroDSL

In Cerebro, users express training and inference algorithms,
compute policies, and auditing functions using a Python-like
domain specific language (DSL). Our DSL supports a variety
of numerical data types that are commonly used in machine
learning, data analytics, and generic functions and are useful
for expressing training and inference algorithms. Figure 2
shows an example program.

Data types. Each variable in a Cerebro program is auto-
matically tagged with a type (integer, fixed-point, etc.) and
a security level. The security level indicates which parties
can access the raw value of the variable. Cerebro currently
supports three security levels:

e Public: the value is visible to all parties

e Private: the value is visible to a single party

e Secret: the value is hidden from all parties

Our current implementation restricts that private variables are
owned and visible to a single party, and we represent a private
value visible to the party i as private (i) . The security level
of variables is automatically upgraded based on type inference
rules, described in §4.2.1. Programs can explicitly downgrade
security levels by calling reveal.

Functions. Our DSL provides a set of mathematical and
logical operators to process tagged data. Each operator can
accept inputs with any security tag, and the output tag is
determined using a set of type inference rules (explained more
in §4.2.1). Security annotations also play an important role
in enabling several of the optimizations employed by Cerebro.

Input 1 ‘ Input 2 H Output H Compute

public public public local at all
public private(i) private(i) local ati
private(i) | private(i) private(i) local ati
private(i) | private(j) secret global
any secret secret global

Table 2: Rules for defining a function’s execution mode

Cerebro provides a variety of basic operators over data
types including arithmetic operations and comparisons. Users
can compose these basic operators to implement user-defined
learning algorithms. Cerebro also provides a set of higher-level
mathematical operators common to machine learning tasks
(e.g., linear algebra operators, sigmoid), a set of functions for
efficiently indexing into arrays or matrices, a set of branching
operators, and a set of more complex fused operators. Fused
operators (explained in §4.2.2) provide Cerebro with more
opportunities to optimize complex code patterns.

4.2 Logical optimization

Given a program written in the Cerebro DSL, the Cerebro com-
piler is responsible for generating a logical execution plan that
minimizes runtime. Our programming model also allows us to
easily apply logical optimizations. More specifically, Cerebro
includes two new optimizations that are particularly useful for
machine learning tasks: the first is program splitting, where a
program Q is splitinto two portions Q1 and Q» such that Q| can
be executed in plaintext, while Q- is executed using secure com-
putation. The second optimization is operator fusion, where the
compiler tries to detect pre-defined compound code patterns
in 0, and transforms them to more efficient fused operations.

4.2.1 Program splitting

Program splitting is a type of logical optimization that
delegates part of the secure computation to one party
which computes locally in plaintext. We can illustrate this
optimization by applying to sorting. If a program needs to
sort training samples from all parties (e.g., in decision tree
training), then parties can instead pre-sort their data. In this
way, MPC only needs to merge pre-sorted data, providing a
significant speedup over the naive solution in which it executes
the entire sorting algorithm in the secure computation.

In the semi-honest setting, Cerebro can automatically iden-
tify opportunities for local computation within the code. As
explained in §4, users write their programs using Cerebro’s
API, and the compiler automatically tags their data using Cere-
bro’s secure types. Cerebro uses a set of rules (see Table 2) to
infer a function’s security level. If a function only has public in-
put, then the output should also be public since it can be inferred
from inputs. This type of computation can be executed in plain-
text by any party. Similarly, if a function only takes input from a
single party i, party i can compute this function locally in plain-
text. However, if a function’s input includes private data from
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different parties or secret data, then the function needs to be ex-
ecuted using MPC, and the output will also be tagged as secret.

However, in a malicious setting the criteria for secure local
plaintext execution are more complex because a compromised
participant can arbitrarily deviate from the protocol and
substitute inconsistent/false data and/or compute a different
function. Thus, we cannot assume that a party will compute
correct values locally. As in the sorting example, we cannot
trust the parties to correctly pre-sort their inputs. Therefore,
secure computation must add an extra step to ensure that the
input from each party is sorted.

In general, automatically finding efficient opportunities
for local plaintext computation in the malicious setting
is challenging. In Cerebro, we approach this problem by
designing pre-defined APIs with this optimization in mind.
If a user uses our API, Cerebro will apply program splitting
appropriately while guaranteeing security in the malicious
threat model. For example, our sort API will automatically
group the inputs into private inputs from each party, followed
by a local plaintext sorting in plaintext at each party. However,
since a malicious party can still try to input unsorted data into
the secure computation, the global sorting function will first
check that the inputs from each party are sorted.

This optimization allows Cerebro to automatically generate
an efficient MPC protocol that has similar benefits to prior
specialized work. For example, in [13], one of the techniques
is to have the parties pre-compute the covariance matrix lo-
cally, then sum up these matrices using linearly homomorphic
encryption. While Cerebro’s underlying cryptography is quite
different—hence resulting in a very different overall protocol—
we are able to automatically discover the same local computa-
tion splitting as is used by a specialized system written for ridge
regression. We note that program splitting is compatible with
cryptographic auditing mentioned in §5.2.2 by committing to
the precomputed local data instead of the original input data.

4.2.2 Fused operations

Recognizing compound code patterns is crucial in MPC, since
many compound operations that are cheap in plaintext incur
significant performance penalties when executed securely.
For example, plaintext array indexing under the RAM model
has a constant cost. In MPC, while array indexing using a
public index has a constant cost, array indexing using a secret
variable takes time that is proportional to the length of the
array. This is because when executing secure computation,
the structure of the function cannot depend on any private or
secret value, otherwise a party may infer the value from the
structure of the computation. Therefore, it is impossible to
index an array using a secret value in constant time.

In Cerebro, as is common, we index arrays by linearly
scanning the entire array, which is an O(n) operation.' Next,

ICerebro can be augmented to use oblivious RAM (ORAM) for secret
indexing, which has O(polylogn) overhead for an array of size n. Prior work

Logical Physical
optimizati planning

Local compute |} MPC Framework Algorithm  Network layout

Program —> Preprocessing Linear @

Global compute

e B

> Arithmetic

costa,pre
Fused l Quadratic +
operations .
Online COstaoniine
- EHEN Boolean«l: Preprocessing —» COStb,pre =
+ = costp cost,
Online COStb online °

Figure 3: Cerebro architecture, showing choices we can make
under the semi-honest threat model.

consider a compound code pattern that occurs in programs like
decision tree prediction (see Figure 2): an if/else statement
that wraps around multiple secret accesses to the same array.
In a circuit-based MPC, all branches of an if/else statement
need to be executed. Therefore, conditionally accessing an
index can require several scans through the same array.

For this scenario, Cerebro will combine the operators into a
single fused operation secret_index_if that can be used to
represent such conditional access and minimizes the number
of array scans required during computation. Fused operators
in Cerebro play the same role as level 2 and level 3 [44]
operations in BLAS [45] and MKL [46], and fused operations
generated by systems such as Weld [47]; i.e., they provide
optimized implementations of frequently recurring complex
code patterns. Since operator fusion only happens on code
expressed in MPC and preserves the functionality, it works
for both the semi-honest and the malicious settings.

4.3 Physical planning

Once a logical plan has been generated, Cerebro determines
an efficient physical instantiation of the computation, which
can then be executed using one of Cerebro’s MPC backends.
We call this step physical planning (illustrated in Figure 3 on
the right side) and describe it in this section. When converting
logical plans into physical implementations, Cerebro must de-
cide whether to use operations provided by existing boolean
and arithmetic MPC protocols or to use our special vectorized
primitives (§4.3.2). To choose between these implementation
options, Cerebro uses a set of cost models (§4.3.3) to predict the
performance of different implementation choices and picks the
best among these choices. Finally, once a physical implemen-
tation has been selected, Cerebro decides where to place (Ap-
pendix A.3) computation among available nodes—this choice
can significantly impact performance in the wide area network.

has shown that for smaller arrays, linear scanning is faster [43] because
ORAM needs to keep a non-trivial amount of state.
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4.3.1 Notation

Let P denote the number of parties, and let P; denote the
i-th party. We use N to represent the total number of gates
in a circuit. Ny, is the number of multiplication gates in an
arithmetic circuit; N, is the number of AND gates in a boolean
circuit. B(.) represents network bandwidth parameters and /(.
represents latency parameters. For a given type of encryption
algorithm C(.y, we use |C(,| to represent the number of bytes
in a single ciphertext. We use c to capture any constant cost
in a cost model, like an initialization cost. The rest of the cost
can be categorized as compute (represented using f; functions)
and network costs (represented using g; functions).

4.3.2 Vectorization

Cerebro supports compilation to two main MPC backends:
arithmetic [ 18] and boolean [19]. Both backends consist of two
phases: preprocessing and online. During the preprocessing
phase, random elements are computed and can be used later
during the online phase. Preprocessing is especially useful
because it can be executed before the parties’ private inputs
are available.

In arithmetic MPC preprocessing, parties need to compute
multiplication triples, which are used to speed up multipli-
cation operations during the online phase. However, many
common machine learning tasks contain matrix multiplication,
which is especially costly because of the large number of mul-
tiplication operations. In this section, we describe an optimiza-
tion for arithmetic MPC preprocessing that allows us to vector-
ize multiplication triple generation. This idea was introduced
in prior work for the semi-honest two party setting [6], and here
we generalize the algorithm to the n-party semi-honest setting.

The two-party vectorized protocol happens in the

preprocessing phase where it computes random matrix
() gli) o)
' ' ‘ VA

where Z,»(A(]-’) : BS-')) =Y, Cﬁ»’). For the sake of a simpler
analysis, we assume that B; is a vector b, and that the relation
is c=Ab. To generalize this to the multi-party setting, we can
apply the two-party protocol in a pairwise fashion to generate
the triples. To compute the triple, it suffices for each party
to first sample random A®) and b, then use the two-party

protocol to compute the pairwise products AW . pU),

multiplication triples such that each P; holds A

4.3.3 Cost models

In this section, we provide two examples of the different cost
models in Cerebro (see Appendix A.l for more).

Preprocessing planning. As previously stated, Cerebro’s
MPC backends consist of preprocessing and online phases.
Semi-honest arithmetic MPC has two different prepro-
cessing protocols: linear preprocessing and quadratic
preprocessing [18,33]. We describe the high-level protocols
in Appendix A.2. These two methods can behave quite

differently under different setups, and we illustrate this by
presenting their cost models. We define C; to be the encryption
algorithm used in linear preprocessing, and C,, to be encryption
algorithm used in quadratic preprocessing. The per-party cost
model for linear preprocessing is given by:

c+Nu(fi1(IC])

1 (1)
+plR(aDE=D+ (1G] +5(B,|GI) (P-1)])
The per-party cost model for quadratic preprocessing is:
c+Nu(P=1)(f(ICyl) +8(B.|Cq)) 2)

In terms of the scaling in the number of parties, linear prepro-
cessing is much better than quadratic preprocessing. However,
since |C,| < |C;|, quadratic preprocessing’s encryption algo-
rithm uses less computation and consumes less bandwidth.
Cost of vectorization. The cost model to preprocess a
matrix-vector multiplication for (m,n) x (n,1) is:

c+f1(IC) (n+m(P—1))+ f2(|Cq[)m(P—1)

+8(B,|Cy|) (m+n)(P—1) 3)

Comparing this cost model to Equation (2) (where we replace
N,, with mn), the triple generation load is reduced from mn to
m or m~+n. We note that vectorization not only speeds up triple
generation, but also introduces another planning opportunity
if a program has a mix of matrix multiplication and regular
multiplication.

4.3.4 Layout optimization

In the wide area network setting, different physical layouts
can significantly impact the performance of a protocol. In this
section, we give an example of layout optimization, where
Cerebro plans an alternative communication pattern for parties
that span multiple regions.

In the semi-honest setting, linear preprocessing requires
a set of coordinators that aggregate data from all parties. The
coordinators can be trivially load-balanced among all parties
by evenly distributing the workload. However, this only works
when the pairwise communication costs are similar, and no
longer works when the parties are located in different regions.

We make the observation that the underlying algorithm
requires coordinators to perform an aggregation operation.
Therefore, we introduce two-level hierarchical layout, where
the coordination happens at both the intra-region and the inter-
region levels. Each triple is still assigned to a single global coor-
dinator, and is also additionally assigned a regional coordinator
that is in charge of partially aggregating every party’s data from
a single region and sending the result to the global coordinator.
Assumptions. We assume that the regions are defined by
network bandwidth. The regions can be manually determined
based on location, or automatically identified by measuring
pairwise bandwidth and running a clustering algorithm. For
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Figure 4: Communication pattern for a single multiplication
triple. Shaded nodes are coordinators.

a more detailed analysis (including a walkthrough for the case
of two parties), see Appendix A.3.

Given k regions, let B;; denote the bandwidth between
regions i and j and let B; denote the bandwidth within region
i. Let n; denote the number of triples assigned to each party in
region i and P; be the number of parties in region i. There, we
have fo: 11i-P; =Ny, The cost function can now be formulated
as C =L/ 4L} +L’ where the constants are analogous to those
in the previous example of two regions. We generalize the
constants as follows:

L} = max ):Hé(%)) i=12,..k,

L) =max %’;_1)) i=12,...k,
| =max ):#,-("g;:f)) =12,k

We solve this optimization problem in cvxpy [48] by trans-
forming it into a linear program, described in Appendix A.3.
As an example, a setting with five regions is solved in roughly
100 milliseconds on a standard laptop computer.

5 Policies and auditing

In the collaborative learning setting, an end-to-end platform
needs to take into account the incentives and constraints
of the participants. This is critical when competing parties
want to cooperate to train a model together. For example, the
participants may be concerned about each other’s behavior
during training, as well as the costs and benefits of releasing the
final model to other parties. A party may want to make sure that
the economic benefits accrued by its competitors do not greatly
outweigh its own benefits. Thus, a collaborative learning
platform needs to allow participants to specify their incentives
and constraints and also needs to ensure that both are met.
Cerebro addresses this problem by introducing the notion of
user-defined compute policies and a framework for enabling
cryptographic auditing. Compute policies are executed as
part of the secure computation and are useful for integrating
extra pre-computation and post-computation checks before
the result is released. Auditing is executed at a later time after
the result is released and can make parties accountable for
their inputs to the original secure computation. In the rest of
this section, we give an overview of how users can use our
system to encode policies and audit cryptographically.

1 |def release_policy

(prediction_fn, test_data, weights, tau):
2 score = prediction_fn (data, weights)
3 return (score > tau)
4 | # Make a call to release_policy
5 |if_release = release_policy (

lr_prediction, vdata, weights, min_score)
6 [# Set weights to 0 if if_release is false
7 | final_weights = release(if_release, weights)
8 | return final_weights

Figure 5: Example validation-based release policy.

5.1 Compute policies
5.1.1 Overview

We first make the observation that secure computation can
enable user-defined compute policies that can be used to
dictate how the result of a computation is released. In fact,
MPC’s security guarantees means that it can also be used
to conditionally release the computation result. This simple
property is very powerful because users can Cerebro provides
an easy way for users to write an arbitrary release policy
by first writing as a function that returns a boolean value
if_release and calls our release API on this boolean value
and the result of the learning task. If i1f_release is true, then
release will return the real result; otherwise it will return O
values, thus un-releasing the result. Figure 5 shows an example
policy written in Cerebro.

We assume that policy functions are public, and that all
participants must agree on them during the agreement phase.
This workflow allows participants to verify that each other’s
policy conforms to some constraints before choosing to input
private data and dedicate resources for the secure computation.
However, the constants/inputs for these policies can be kept
private using MPC (e.g., a training accuracy threshold).

Since our DSL is generic, the participants can program
any type of policy. We focus on two major categories of
policies—validation-based policies and privacy policies—and
how they can be encoded in our DSL.

5.1.2 Validation-based policy

In training, model accuracy can be a good metric of economic
gains/losses experienced by a participant since it is usually
the objective that a party seeks to improve via collaborative
learning. In a single-party environment, the metric is com-
monly computed by measuring the prediction accuracy on the
trained model using a held-back dataset. When constructing
validation-based policies in Cerebro, each party provides a
test dataset in addition to their training dataset and provides
a prediction function. We now describe some examples.

Threshold-based validation. In this policy, party i wants to
ensure that collaborative training gives better accuracy than
what it can obtain from its local model. The policy takes in
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the model w, a test dataset X, ;, as well as a minimum accuracy
threshold 7;. This policy runs prediction on X; ; and obtains an
accuracy score. If this score is greater than 7;, then the policy
returns true. See example code in Figure 5.

Accuracy comparison with other parties. In this policy,
party i’s decision to release depends on how much its
competitors’ test accuracy scores improve. Therefore, the
inputs to this policy are: the model w, every party’s test dataset
X; j, every party’s local accuracy scores a;, and a percentage
x. The policy runs prediction on every party’s test dataset and
obtains accuracy scores b;. Then it checks b; against a;, and
will only return true if b; —a; <x(b;—a;) forall j #i.

Cross validation. Since the parties cannot see each other’s
training data, it is difficult to know whether a party has
contributed enough to the training process. All parties may
agree to implement a policy such that if a party does not
contribute enough to training, then it also does not receive
the final model. Such a party can be found by running cross
validation, a common statistical technique for assessing model
quality. In this setting, Cerebro treats the different parties as
different partitions of the overall training dataset and takes
out a different party every round. The training is executed on
the leftover P — 1 parties’ data, and an accuracy is obtained
using everyone’s test data. At the end of P rounds, the policy
can find the round that results in the highest test accuracy. The
party that is not included in this round is identified as a party
that contributed the least to collaborative training.

5.1.3 Privacy policy

For training tasks, the secure computation needs to compute
and release the model in plaintext to the appropriate partic-
ipants. Since the model is trained on everyone’s private input,
it must also embed some information about this private input.
Recent attacks [39] have shown that it is possible to infer
information about the training data from the model itself.
Even when parties do not actively misbehave (applicable in
the semi-honest setting), it is still possible to have unintended
leakage embedded in the model. Therefore, parties may wish
to include privacy checks to ensure that the final model is not
embedding too much information about the training dataset.
We list some possible example policies that can be used to
prevent leakage from the model.

Differential privacy. Differential privacy [49] is a common
technique for providing some privacy guarantees in the
scenario where a result has to be released to a semi-trusted
party. There are differential privacy techniques [50-52] for
machine learning training, where some amount of noise is
added to the model before release. For example, one method
requires sampling from a public distribution and adding this
noise directly to the weights. This can be implemented in
Cerebro by implementing the appropriate sampling algorithm
and adding the noise to the model before releasing it.

Model memorization. Another possible method for dealing

with leakage is to measure the amount of training data
memorization that may have occurred in a model. One
particular method [34] proposes injecting some randomness
into the training dataset and measuring how much this
randomness is reflected in the final model. This technique
can be implemented by altering the training dataset X; and
programming the measurement function as a release policy. .

5.2 Cryptographic auditing

In the malicious setting, Cerebro can use a maliciously secure
MPC protocol to protect against deviations during the compute
phase. However, even such an MPC protocol cannot protect
against any attack that happens before the computation begins;
namely, an adversarial party can inject carefully crafted
malicious input into the secure computation in order to launch
an attack on the computed result.

For example, prior work has shown that a party can inject
malicious training data that causes the released model to
provide incorrect prediction results for any input with an em-
bedded backdoor [40]. If multiple self-driving car companies
wish to collaboratively train a model for better object detection,
a malicious participant can embed a specific backdoor pattern
into non-malicious training samples and also change the
corresponding prediction labels. If there are enough poisoned
training samples, then the trained model will associate the
backdoor pattern with a specific prediction label. If this
poisoned model is deployed in a real world application by the
victim in their self driving cars, the same adversary can attack
the poisoned model by embedding the backdoor pattern—
perhaps detecting a stop sign as a speed limit sign—thus
triggering a malicious behavior that could cause a crash.

5.2.1 Overview

The previously proposed compute policies may be insufficient
to detect such attacks since either the policy writer has to be
aware of the chosen backdoor—which is unlikely—or the poli-
cies have to exhaustively check the input domain—which is
infeasible. Therefore, we propose an auditing framework that
instead aims to hold all parties accountable for their original
inputs even after the result has been released. Auditing allows
parties to execute an auditing function on the same inputs that
were used during the compute phase—Cerebro guarantees that
no party can maliciously substitute an alternative sanitized
input during auditing without being detected as cheating.
Using the previous attack as an example: if a poisoned model is
triggered during inference, the victim can request an auditing
phase. During the auditing phase, all parties must first agree on
a public auditing function, then undergo an audit on their input
training data. If the auditing function is correctly constructed,
the auditing phase should be able to identify the parties that
input the malicious training samples.

We note that Cerebro’s aim is to provide a framework for
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auditing instead of specific auditing functions. Therefore,
we rely on the participants to formulate auditing functions
for specific attacks that they wish to protect against. In the
above example, the self-driving car companies will need
to design an auditing function that finds similarities in the
malicious samples that trigger a misprediction and the training
samples from each party. If an auditing function is not
correctly formulated, then the auditing process cannot detect
wrongdoing. The goal of auditing is to ensure that either the
auditing function is successfully executed to completion,
or the participant who causes an abort during auditing is
identified (addressed in more detail in §5.2.2).

Finally, the type of threat that Cerebro is attempting
to address is one where the result of the computation is
attacked by constructing malicious input to the computation.
Consequently, we assume that the attacker wants to get the
result of the computation, and therefore do not address aborts
during the compute time.

5.2.2 Auditing framework design

When auditing a computation in Cerebro, we need to ensure
that the audit procedure has access to the same inputs as were
used in the original computation. Otherwise, we run the risk
of allowing a malicious participant to provide sanitized inputs
during the audit, thus avoiding detection. Cerebro enforces that
the same input from the compute phase is used in the auditing
phase as well by using cryptographic commitments [53,54], a
cryptographic tool that ties a user to their input values without
revealing the actual input. A participant commits to its input
data by producing a randomized value that has two properties:
binding and hiding. Informally, binding means that a party
who produces a commitment from its malicious dataset will
not be able to produce an alternate sanitized version later and
claim that the commitment matches this new dataset. At the
same time, hiding ensures that the commitments do not reveal
information about the inputs.

Auditing APL. In order to abstract away the cryptographic
complexity and to provide users with an intuitive workflow,
we design the following API:

e c, m = commit (X): returns c, the actual commitment,
as well as m, the metadata used in generation of the
commitment. c is automatically published to every other
party, while m is a private output to the owner of X.

e audit (X, c, m): this function returns a boolean value
showing whether the commitment matches input data X.

Handling malicious aborts. A serious concern during audit-
ing is that a participant might cause the secure computation to
abort since maliciously secure MPC generally does not protect
against parties aborting computation. There are two types
of aborts: a malicious party can refuse to proceed with the
computation or can maliciously alter its input to MPC so that
the computation will fail. The first type of abort is easy to catch,
but the second is sometimes impossible to detect. For example,

an arithmetic MPC that uses information theoretic MACs to
check for protocol correctness cannot distinguish which party
incorrectly triggered a MAC check failure. Therefore, a party
can maliciously fail during the auditing phase and make it
impossible to run an auditing function to track accountability.
To resolve this challenge, we introduce a third-party auditor
into our auditing workflow. We do not believe this is an
onerous requirement, since audit processes often already
involve third-party arbitrators, e.g., courts, who help decide
when to audit and how to use audit results. We do not require
the third-party to be completely honest, but instead assume
that it is honest-but-curious, does not collude with any of the
participants, and does not try to abort the computation. Under
this assumption, we enable the auditor to audit a party without
forcing the party to release its data. This means that the auditor
will not see any party’s data in plaintext, since we still require
the auditor to run the auditing process using MPC. During
auditing, we require all parties to be online, and any party who
is not online or aborts is identified as malicious.
Auditing workflow. Let A denote a separate auditor entity,
and let P; denote the parties running the collaborative
computation. We construct the following auditing protocol.

1. Using the established PKI, P;’s have public keys corre-
sponding to every participant in the secure computation.
‘Pi’s agree on the same unique number qid.

2. P; computes a commitment of its data. Let the commitment
be c¢;. P; hashes the commitments #; = hash(c;) and
generates a signature 6; =sign(qid,/;) using its secret key.
P; publishes (¢;,0;) to Pj;.

3. All P;’s run the secure computation, which encodes the
original learning task and a preprocessing stage that
checks that P;’s input data indeed commits to the public
commitments received by every party from P;. If the check
fails, then the computation aborts. Note that we won’t know
who is cheating in this stage, but the parties also won’t get
any result since the computation will abort before any part
of the learning task is executed.

4. During auditing, P; will publish its signed commitments,
along with the (c¢;,0;) received from P}, to A. A checks
that all commitments received from P; about P; match. If
they do not, then P; is detected as malicious.

5. Aruns a two-party secure computation with each P; sep-
arately. P; inputs its data, and .A checks the data against the
corresponding commitment. If there is a match, continue
with the auditing function. If this computation aborts, P;
is also detected as malicious. Since the auditing is in secure
computation, 4 will not directly see P;’s input data.

Using the same training example from above, we can see
that any P; who cheats by substituting input can only avoid
detection via a badly formulated auditing function. A cheating
party will be detected and identified by the auditor if it attempts
to substitute an alternative copy of the input or if it attempts
to abort during auditing. We provide a security argument for
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the auditing process in the full version.

5.2.3 Commitment schemes

Our auditing protocol is generic enough to be implemented
with any commitment and MPC design. In practice, there
are ways of constructing efficient commitments that can also
be easily verified in MPC. In this section, we describe some
commitment schemes that integrate well with MPC, and how
to efficiently check these commitments.
SIS-based commitment. Based on the short integer solution
(SIS) problem in lattices, there is a class of collision-resistant
hash functions [55-60], from which we can instantiate
commitment schemes that are efficient in MPC. This has been
used in zero-knowledge proof systems [61, 62].
Pedersen commitment. In this section, we additionally
provide a way of batch checking commitments in MPC using a
homomorphic commitment such as Pedersen [54]. We utilize
the fact that our arithmetic framework is reactive to construct
such a scheme.

Denote com(x; r) as the Pedersen commitment. The
protocol is as follows:
1. Asbefore, each P; commits and publishes its commitments.
2. P;’s start a SPDZ computation and inputs both its input data

X;, as well as the randomness used r; for the commitments.
. Everyone releases a random number s from SPDZ.
. Each P; computes &; =Y s*@¢;[k] for every P;.
5. P/’s input s as well as ¢; into the same SPDZ computation
computed in step 2.
6. The secure computation calculates %; = ¥ s* - x;[k] and
7;=Y ;5" -r;[k]. Then it checks that com (%;;7;) =¢;.

For elliptic curve groups, the prime modulus will need to
be on the order of at least 256 bits.
Tradeoffs. While SIS-based commitments work with our
standard benchmarking prime field of 170 bits, Pedersen
commitments need a minimum prime field size of 256 bits.
Thus, while Pedersen commitments are more efficient because
they enable triple batching, the larger bit size means offline
generation can be more expensive. Of course, if the application
already needs a larger field size (e.g., more precision for fixed-
point representation), then Pedersen commitments would not
have extra overhead. Additionally, Pedersen commitments
require a reactive framework such as SPDZ in order for the
batching to work properly in the secure computation phase.
Cerebro’s planner takes these circumstances into account, and
chooses the best plan accordingly.

AW

6 Implementation

We implemented Cerebro’s compiler on top of SCALE-
MAMBA [26], an open-source framework for arithmetic
MPC. Our DSL is inspired by and quite similar to that of
SCALE-MAMBA, though we have the notion of private types.
In order to support both arithmetic and boolean MPC, we

added a boolean circuit generator based on EMP-toolkit [20].
Both of these circuit generators are plugged into our DSL so
that a user can write one program that can be compiled into
different secure computation representations.

Cerebro uses different cryptographic backends that support
both semi-honest and malicious security. We implemented
Cerebro’s malicious cryptographic backend by using the two
existing state-of-the-art malicious frameworks—SPDZ [26]
and AG-MPC [20]. Additionally, we implemented Cerebro’s
semi-honest cryptographic backend by modifying the two
backends to support semi-honest security.

7 Evaluation

We evaluate the effectiveness of Cerebro’s cryptographic com-
piler in terms of the performance gained using our techniques.
We use the two generic secure multiparty frameworks that Cere-
bro uses as a baseline for evaluation, in both semi-honest and
malicious settings. We compare to what users would be doing
today without our system, which is choosing a generic MPC
framework and implementing a learning task using it. Our goal
is to show that, without Cerebro’s compiler, users can experi-
ence orders of magnitude worse performance if they choose
the wrong framework and/or do not have our optimizations.
We also do not experimentally compare performance
against a traditional centralized machine learning system.
Such a system can greatly outperform an MPC-based system
because it can operate directly on the parties’ plaintext training
data, but is also insecure under our definition because it
requires a centralized party that sees all of the plaintext training
data. Due to the lack of security, the applications we are
tackling cannot be realized with a centralized learning system.

7.1 Evaluation setup

Our experiments were run on EC2 using r4.8xlarge instances.
Each instance has 32 virtual CPUs and 244GB of memory. In
order to benchmark in a controlled environment, we use tc
and 1£b to fix network conditions. Unless stated otherwise, we
limit each instance to 2Gbps of upload bandwidth and 2Gbps
of download bandwidth. We also adjust latency so the round
trip time (RTT) is 80ms between any two instances. According
to [63], this is roughly the RTT between the east-coast servers
and west-coast servers of EC2 in the U.S.

7.2 Compiler evaluation

We evaluate Cerebro’s compiler by answering these questions:
1. Are Cerebro’s cost models accurate?
2. How do logical optimizations impact performance?
3. For realistic setups, does Cerebro’s physical planning
improve performance?
To answer these questions, we run a series of microbench-
marks as well as end-to-end application-level benchmarks.
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We first curve-fit our cost models and extrapolate against
experimental results. We then evaluate different planning
points to show Cerebro’s gain in performance. We focus our
evaluation on planning in the semi-honest setting, but our
planning also supports the malicious setting, though a number
of optimizations would be unavailable.

7.2.1 Microbenchmarks

Cost models. Our first microbenchmark compares the two
methods for semi-honest arithmetic MPC preprocessing
(see §4.3.3): linear and quadratic preprocessing.

For both of the following experiments, we fit the constants
of our cost model to the first four points of the graph and then
extrapolate the results for the remaining two points. The dotted
lines of the graph indicate the cost model’s predictions and we

can see that it closely matches with the experimental results.

Figure 6a shows the preprocessing throughput of the linear and
the quadratic protocols on high-bandwidth network. When
the number of parties is small, the two protocols have similar
throughput. However, as the number of parties increases, the
quadratic protocol becomes slower than the linear protocol,
mainly due to the increased communication.

Figure 6d compares the same protocols when the network is
slow and becomes the bottleneck. When the number of parties
is small, the quadratic protocol is faster than the linear protocol
because it uses smaller ciphertexts, but it performs worse than
the linear protocol as the number of parties increases.

Vectorization. Figures 6b and 6e show the preprocessing
throughput of a single matrix-vector multiplication—where
the matrices are of sizes (mxn) and (nx 1)—under different
network conditions. We test with a fixed m = 128 and vary
n in our experiments. On a high-bandwidth network, when
there are two parties and n = 100, the quadratic protocol
achieves a 16 x speedup over the linear protocol. Even when
the number of parties is increased to 12, these two protocols
still have an 8.8 x gap. On a slower network, the matrix-vector
technique has a larger performance gain since it mainly saves
communication, with up to a 55 speed up.

Next, we evaluate the two protocols when there is a mix of
matrix multiplication and regular multiplication. The results
are shown in Figures 6¢ and 6f. The planning decision will
be different based on the percentage of multiplication gates
that can be substituted with matrix-vector multiplications,
the shape of such matrices, the number of parties, and the
network bandwidth. For example, in 2Gbps network with 12
parties and n = 10, if 40% of the multiplication gates can be
vectorized, then Cerebro will pick quadratic. If the network
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bandwidth drops to 100Mbps, then 20% of such computation
is enough for the compiler to pick quadratic.

Layout planning. We evaluate the hierarchical layout
preprocessing against a flat one for 12 parties across two
regions: 9 are located in one region, and 3 are located in
the other. Each party has 2Gbps bandwidth for intra-region
communication, and we vary the fofal cross-region bandwidth
shared by parties in the same region. Figure 7 shows the
throughput comparison as well as our fitted cost models.
Similar to before, we fit the constants of our cost model to the
first three points of the graph and then extrapolate the results.
The flat layout throughput scales linearly to the cross-region
total bandwidth. To evaluate the hierarchical layout, we need
to first determine the workload of each coordinator using
cvxpy. From the graph we can see that the hierarchical layout
achieves a speed up of 4 x to 4.5x over the flat layout.

7.2.2 Machine learning applications

In this section we evaluate Cerebro using decision tree predic-
tion, logistic regression training via SGD, and linear regression
training via ADMM [8, 15, 64]. We estimate the network cost
for the preprocessing phase of the arithmetic protocol using
the throughput gathered in the previous benchmarks.
Decision tree prediction. We implement decision tree
prediction using Cerebro’s DSL, which evaluates a complete
h layer binary decision tree, where the i layer has 2/~! nodes.
We evaluate a scenario where there are P parties, one of which
has the input feature vector and all P parties secret-share a
model. If P = 2, we assume that we are doing a two-party
secure prediction, where one party has the feature vector and
the other has the model.

We show the prediction performance in the 2-party
semi-honest setting in Figure 8a. In this experiment, we varied
the number of layers in the decision tree. We fit the data points
involving 3,6,9 layers and then extrapolate the cost model
to estimate the performance of our graphed points. Cerebro
always picks the protocol that has the lower estimated cost
from our model. In the 2-party scenario, Cerebro always
chooses to use a boolean protocol since evaluating the decision
tree requires many comparisons and data selection. In a
12-layer tree, the semi-honest boolean protocol takes 7.5 x less
time than the semi-honest arithmetic protocol. In Figure 8b, we
vary the number of parties, and plot the inference runtime for
a 10 layer tree. We observe that the total execution time for the
boolean protocol grows linearly with number of parties, and
sublinearly for the arithmetic protocol. Therefore, with 9 or
more parties, Cerebro chooses to use the arithmetic protocol.

As noted previously, Cerebro also supports the malicious
setting, and we exclude those results for brevity.

Logistic regression. We implemented and evaluated Cerebro
on logistic regression training using SGD. In this experiment,
we evaluated training in both the semi-honest and the
malicious settings to show a difference in the performance for

different variants of the protocols. For the semi-honest and
malicious boolean protocols, we ran logistic regression for
one iteration of SGD and extrapolated the remaining results.
First, we compare the performance between the semi-honest
boolean and semi-honest arithmetic protocol in Figure 8c.
We run one epoch over the dataset in these experiments with
a batch size of 128. As expected, the arithmetic protocol
significantly outperforms the boolean protocol in this case,
both because it is better suited for this task and because it
enables vectorization. Using these results we see that for a
27000 record training set the arithmetic protocol is 67 x faster
than the boolean protocol, taking an hour instead of three days.

However, in the malicious setting, the arithmetic protocol
does not always perform better. The amount of memory used
by the malicious boolean protocol is linear in the number of
parties and the number of gates. As a result, we run out of mem-
ory when trying to benchmark larger circuits. We estimate the
malicious boolean protocol on machines with enough memory
as well as on the original machines with swap space to use as
additional memory. As shown in Figure 8c, if the machines
have enough memory, then the malicious boolean protocol
is 3 x faster than the malicious arithmetic protocol, but if swap
space is used instead, then the malicious boolean protocol is
4x slower than the malicious arithmetic protocol. Overall, the
malicious boolean protocol is up to 61 x slower than its semi-
honest counterpart and the malicious arithmetic protocol is up
to 3300 slower than its semi-honest counterpart, indicating
a significant tradeoff between performance and security.
ADMM. We evaluate ADMM in the semi-honest setting to
show Cerebro’s automated planning of local computation.
Cerebro automatically detects that the parties can locally
compute much of the ADMM algorithm, thus minimizing the
number of MPC operations required as described previously
in §4. We evaluate these benefits in Figure 8d and find that the
use of local computation allows Cerebro to improve ADMM
performance by up to 700 x when training a 40-feature model
using 10000 records per party for 6 parties. We estimate the
preprocessing and run the online phase for the first four data
points, but estimate the fifth. Beyond this we also find that the
use of arithmetic circuits is beneficial here for the same reasons
as in the case of logistic regression, i.e., it allows vectorization
and is better suited to expressing matrix operations.

7.3 Policy evaluation

We evaluate the performance of Cerebro’s release policies
in the semi-honest setting. Specifically, we evaluate logistic
regression that uses both differential privacy and the threshold-
based validation policies. Our differential privacy policy is
output perturbation-based [50,51], which simply requires each
party to locally sample noise. The secure computation will
sum every party’s noise and add the noise to the weights. As
Table 6 shows, the time for adding this noise is independent of
the number of training samples, and is insigificant compared
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Figure 8: Experiments on machine-learning applications (2Gbps network).

to the training time.

The threshold-based validation policy requires the model to
achieve a sufficient level of accuracy in order to be released. To
see how much time is needed for validation, we split the dataset
with 30000 records into a training set of 27000 records and a
validation set composed of the remaining 3000 records. We
train the model using a subset of the training set and validate the
trained model using part of the validation set which is 10% the
size of the used training set. From Table 6, we can see that the
validation time grows linearly to the used validation set. Com-
pared with training in logistic regression, the time taken by vali-
dation is equivalent to training another 10% of the training sam-
ples, which matches the training behavior of logistic regression.

7.4 Auditing evaluation

Next, we present the overheads from enabling auditing support
for logistic regression. There are two main costs in this case.
The first cost is producing and signing a commitment, which
takes 24.4 seconds, of which 8 milliseconds are spent gener-
ating a signature for user input (which is a 27000 x 23 matrix
in our case). The second cost is spent on the commitment
protocol described in §5.2.3. Checking the commitment
within MPC using a non-batching commitment scheme such
as subset sum takes approximately 4.5 days while checking
the commitment using a batching commitment scheme such as
Pedersen commitments takes approximately 2.23 hours. The
speedup is roughly 53 x, which only grows as the number of
samples increases as the batched commitment scheme scales
better with respect to the number of samples. Overall we find
that enabling auditing has reasonable overhead.

7.5 Comparison with hand-tuned protocols

We compare with three hand-tuned protocols: SecureML’s
logistic regression [6], EZPC’s decision tree [24], and secure
ridge regression [13] (see Tables 3 to 5). Since [6] and [13]
are not open sourced, we compare to the reported numbers;
we ran EzPC since they provide an open source repository.
These works also only support two parties who are semi-honest
whereas Cerebro supports an arbitrary number of parties under
different threat models. Compared to SecureML, Cerebro has

# Training | # Training Cerebro time (s) Secure I.{ldg?
samples features Regression time (s)
1000000 10 51.23 80

1000000 15 247.88 180

1000000 20 767.89 330

Table 3: Comparison with Secure Ridge Regression [13].

10-92 x performance overhead. Cerebro performs better in the
WAN setting than the LAN setting due to better batching. Com-
pared to EzPC, Cerebro has an overhead of 3 x. Compared to
ridge regression, our compiler discovers similar insights as the
hand-tuned protocol, except we can automatically split a pro-
gram into plaintext precomputation and MPC. Cerebrois 2.5x

slower on a dataset with 20 features and 1 million samples, and
2.5 x faster for a dataset with 10 features and 1 million samples.
We also tested Cerebro’s performance with and without auto-
matic optimization on a dataset with 20000 samples and 10 fea-
tures, and Cerebro with precomputation is 25 x faster. We did
not test larger circuits for the baseline because it could not run.

7.6 Discussion on automatic optimization

Based on these evaluation results, we believe that automatic
compilation and optimization of MPC protocols has a
lot of potential. Compared to hand-tuned MPC protocols,
Cerebro’s performance comes close or even exceeds that of
protocols specifically tailored to a particular threat model
and application. Though Cerebro cannot always compile a
protocol that is as efficient as a hand-tuned version (which is
true for regular compilers as well), our compiler can generalize
to any learning task, hence obviating the need for users to
consult an expert for every new functionality. For experts who
wish to hand-optimize a learning task, Cerebro’s compiled
program can also act as a starting point upon which more
efficient MPC protocols can be built. We hope that Cerebro
can also act as a standard platform for researchers to continue
to improve automatic MPC optimization. One area for
research is how an MPC compiler handles memory’s impact
on performance. Cerebro could easily be extended to model
memory usage directly for MPC backends, or work with
runtime cost models with memory size as an input parameter.
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#Training | # Training | Network | Cerebro | SecureML
samples features type time (s) time (s)
10000 100 LAN 825.17 8.9

10000 500 LAN 2563.39 63.37
10000 100 WAN 3941.28 12.59
10000 500 WAN 10345 950.2

Table 4: Comparison with SecureML’s logistic regression [6].

#Nodes | #Dims | Cerebrotime (s) | EzPC time (s)
3095 13 7.15 3.67
2048 64 7.22 341

Table 5: Comparison with EzPC [24].

# Training

D.P. time (s) | Validation time (s)
samples
1000 1.192 14.19
5000 1.192 48.66
15000 1.192 140.34
25000 1.192 238.01
27000 1.192 257.05

Table 6: Time for applying policies to logistic regression.

8 Related work

Related plaintext systems. There is a large body of prior
work on distributed linear algebra systems [65-67] and
machine learning training/prediction [68—73]. While some of
these systems are general and can be adapted to the distributed
setting, they do not provide security guarantees and cannot
be used in the collaborative machine learning on sensitive
data. Some of these systems provide interesting linear algebra
optimizations that are similar to Cerebro’s optimizations at
a very high level, but Cerebro additionally must consider the
effects of optimizing a cryptographic protocol. This means
that Cerebro has different rules for transformation and a
very different cost model. The idea of “physical planning” is
similar to prior systems and database work [74—80]. The main
difference is that we instantiate this idea to the MPC setting
and work closely with the underlying cryptography.

MPC compilers. Cerebro draws inspiration from a body
of work on MPC compilers [20-29,29-31, 81]. Compared
to prior work, Cerebro’s compiler differs in two important
aspects. First, we provide n-party compilation supporting
two MPC frameworks under different threat models. There is
prior work providing n-party compilation supporting a single
framework [20-22,26-29] and two-party compilation support-
ing multiple frameworks [24, 30, 81]. Second, Cerebro adds
optimization in both the logical and the physical layers, which
allows us to consider a multitude of factors like computation
type, network setup, and others. Conclave [31] is a recent
system that is similar to Cerebro because it handles multiple
frameworks and does optimization. However, it is designed
for SQL, and does not consider physical planning or release
policies. Finally, Cerebro itself is an end-to-end platform for

collaborative learning and supports policies and auditing.
Secure learning systems. There is prior work that uses
hardware enclaves to execute generic computation, analytics,
or machine learning [82—86]. Compared with Cerebro, the
threat model is quite different. While hardware enclaves
support arbitrary functionality, the parties have to put trust in
the hardware manufacturer. We have also seen that enclaves
are prone to leakages [8§7-90].

There has been much work on secure learning using cryptog-

raphy, both in training and prediction [6—15,91-93]. However,
these prior works are insufficient in several aspects. First,
they mostly focus on optimizing specific training/prediction
algorithms and models and do not consider supporting an
interface for programming generic models. Second, they do
not automatically navigate the tradeoffs of different physical
setups. Finally, these frameworks also do not take into account
the incentive-driven nature of secure collaborative learning,
while Cerebro supports policies and auditing.
Other related work. A recent paper by Frankle et. al. [94]
leverages SNARKSs, commitments, and MPC for account-
ability. However, the objective is to make the government
more accountable to the public, so the setting and the design
are both quite different from ours. Other papers [95-97]
explore identifying cheating parties in maliciously secure
MPC. However, these papers are either highly theoretical
in nature, or require proof that each party behaved honestly
during the entire protocol execution, which can be quite
expensive. Cerebro is mainly concerned with holding the users
accountable for their input data, and our scheme both works
with multiple MPC frameworks and does not need to require
proof of honest behavior for the entire protocol execution. With
regards to the logical optimizations that Cerebro performs,
there has been work [23] that also performs partitioning of
computation into local and secure modes. However, Cerebro
does not require the user to specify the mode of computation
for every single operation and instead automatically partitions
the source code into local and secure components.

9 Conclusion

Cerebro is a secure collaborative learning platform that allows
users to program custom learning tasks without expertise in
cryptography. We have open sourced our software athttps: //
github.com/mc2-project/cerebro and we hope that Cere-
bro will help enable new and rich learning applications.
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A More details on physical planning

A.1 Cost models

Boolean MPC preprocessing cost. For boolean MPC, there
are two phases within the preprocessing phase. The first
phase is very similar to the preprocessing generation phase
for arithmetic MPC, except that this step now generates AND
triples instead of multiplication triples. For this phase, Cerebro
only provides one method, which is similar to the quadratic
preprocessing, and has the same cost model as Equation (2).
The second phase is a circuit generation phase, where each
party creates a copy of the final circuit and sends it to a single
party. This “evaluator” party will be in charge of executing
the circuit during the online phase.

Therefore, the cost model for the boolean MPC preprocess-
ing phase is:

c+Na(P=1)(f1(A)+81(BA)+82(BAN(P—1)  (4)

where A is the security parameter, g; refers to the cost of
preprocessing AND gates, and g, refers to the cost for a single
evaluator to receive P— 1 copies of the garbled circuit.

Online execution cost. The online phases for arithmetic and
boolean MPC have quite different behaviors, which in turn
result in different cost models. Arithmetic MPC requires
interaction (hence network round trips) among all parties
for multiplication gates throughout the entire computation.
The number of round trips is proportional to the depth of the
circuit. Boolean MPC, on the other hand, is able to evaluate
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the online phase in a constant number of rounds. Therefore,
arithmetic MPC’s online phase can be modeled as c+g(/)R,
where R indicates the number of communication rounds. We
do not consider the compute cost because it should be very
insignificant compared to the cost of the round trips.

Boolean MPC’s online phase is modeled as ¢ + f(A)N,
where A is the security parameter. This captures the compute
cost of evaluating the entire boolean circuit. There is
interaction at the beginning of the protocol because the
evaluator needs to receive encrypted inputs, and at the end of
the protocol because the evaluator needs to publish the output.

A.2 Linear vs. quadratic preprocessing

Without diving into the cryptography, we describe these two
methods at a very high level. Both methods are constant
round, which means that they only need 1-2 roundtrips. In
linear preprocessing, each party independently generates data
for each triple and sends this data to a set of coordinators.
The coordinators then aggregate this data, compute on it,
and send the results back to each party. A similar pattern
repeats for a second round. Since the triples can be generated
independently, we distribute the coordination across all parties.
In quadratic preprocessing, each party interacts with every
other party in constant round to compute the triples.

A.3 Extended description of layout optimiza-
tion

In this section, we give an extended analysis of the layout
optimization problem. For an easier analysis, we assume
that there are at most two regions (see Figure 4). In order
to explain our cost model, we first define some preliminary
notation as follows. The two regions are denoted as L and R.
Py, parties are located in region L, and Pg parties are located
in region R. We assume that each party has roughly the same
computation power, that each party has a fixed inbound and
outbound bandwidth limit for in-continent data transfer, and
that between the two regions there is another inbound and
outbound bandwidth limit shared by all the parties. Let nj,
be the number of triples that a single global coordinator in L
handles; ng is similarly defined for region R. Hence we have
the following relation ny, - P, +ng - Pr = N,,. The cost (i.e., the
wall-clock time) for preprocessing arithmetic circuits is:

T =gi(B1)(Li+L2)+g2(B2)Ls

5
T A(PDLa+ (o] (L +Ls) ©)

B is the intra-region bandwidth per party, while B, is
the fotal inter-region bandwidth between the two regions.
Therefore, the g; and g, terms capture the network cost.
The f and f, terms correspond to the compute cost, where
f1 captures ciphertext multiplication, and f, captures the
other ciphertext operations. Li—L4 are scaling factors that are

functions of ny , ng, P, and Pg:

Ly =max (g B0y AL,
Ly=max(ng-(PL—1),ng-(Pr—1)),
L3 :max(nL-PL, nr -PR), L4 :max(nL, nR).

The intra-region communication cost is captured by the
g1 term. Because of hierarchical planning, each node needs
to act as both an intra-region coordinator and an inter-region
coordinator. Without loss of generality, we analyze region
L. The intra-region coordination load is ny,- (P, — 1), because
each node receives from every other node in the region. The
inter-region coordination load can be derived by first summing
the total number of triples that need to be partially aggregated
within L, which is equal to the total number of triples handled
by region R: ng - Pg. Since there are Py parties, each party
handles ng - Pg /Py, triples. Finally, since each party only needs
to receive from the other parties in L, the cost per party is
nR - Pr(P, — 1)/Py. The g, term captures the inter-region
communication cost. Since we are doing partial aggregation,
we found that the best way to capture this cost is to sum up
the total number of triples per region (see L3) and scale that
according to the total inter-region bandwidth B,. The f; term
captures the ciphertext multiplication cost. Since that happens
only once per triple at the intra-region coordinator, we have the
scaling in L. Finally, the rest of the ciphertext cost is attributed
to ciphertext addition. This can be similarly derived using the
logic for deriving g1, so we omit this due to space constraints.

Finally, for the k region case, we can transform the
optimization problem described in into a linear program by
moving the max into the constraints as follows:

min(Lj +Ly+L5) s.t. X5 ni P> Ny,

L’lzzj#i(%gj’”) i=12,...k,
Ly >l =12,k
LSZZ,';&inéfj i=12,..k

We loosen the first constraint to be an inequality rather than an
exact equality to make it easier to find feasible solutions since
we require the 7;’s to be integral. Therefore, the equations
above formulate the linear program we solve to obtain the
optimal assignment of triple generation tasks.
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