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Abstract—Mobile augmented reality (AR) has the potential to
enable immersive, natural interactions between humans and cyber-
physical systems. In particular markerless AR, by not relying on
fiducial markers or predefined images, provides great convenience
and flexibility for users. However, unwanted virtual object
movement frequently occurs in markerless smartphone AR due
to inaccurate scene understanding, and resulting errors in device
pose tracking. We examine the factors which may affect virtual
object stability, design experiments to measure it, and conduct
systematic quantitative characterizations across six different user
actions and five different smartphone configurations. Our study
demonstrates noticeable instances of spatial instability in virtual
objects in all but the simplest settings (with position errors of
greater than 10cm even on the best-performing smartphones), and
underscores the need for further enhancements to pose tracking
algorithms for smartphone-based markerless AR.

Index Terms—Markerless augmented reality, VI-SLAM, spatial
stability, virtual object drift, relocalization, ARKit, ARCore.

I. INTRODUCTION

Augmented Reality (AR), the overlaying of virtual content
onto a view of the real world, is a key enabler for interactions
between humans and cyber-physical systems. It provides
immersive, natural interactions, which can help users to
efficiently exchange knowledge in a diverse range of application
domains, from manufacturing [I]] to surgery [2]. However, the
effectiveness of an AR system, and the degree to which it is
accepted by users, is inextricably tied to its ability to achieve
spatial stability. This means that when a virtual object is
placed, it should remain in exactly the same position relative
to the real world, even if in the meantime the user moves
around, walks away, pauses the AR app to send a text message,
or performs any other action. When the virtual object does
not, the illusion is immediately broken; users may become
disengaged or frustrated as virtual object instability impedes or
compromises task performance. If AR truly is “here to stay”,
then the virtual objects that we place within it must be as well.

In the last few years, markerless AR has become com-
monplace. Markerless AR enables the positioning of virtual
content without predefined markers (recogizable textures such
as fiducial markers, QR codes, or images); natural features
within the environment are mapped and tracked instead. The
convenience this markerless technique provides has led to its
widespread use in AR apps, such as Pokemon GO [3] and
IKEA Place [4]. The vast majority of modern AR platforms,
such as ARCore [3] and ARKit [6], support markerless
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(a) Time 0
Fig. 1: Virtual object drift in markerless VI-SLAM-based AR
(ARKit, iPhone 11, i0OS 14.4, IKEA Place app [4]). A virtual
lamp drifts from its original position (a), colliding with a real
glass on the table (b), and moving off the table entirely (c).

(b) Time 1 (c) Time 2

AR through Visual-Inertial Simultaneous Localization and
Mapping (VI-SLAM). VI-SLAM is used to concurrently map
the environment and track the pose (position and orientation)
of the AR device. If the correct pose is known in relation to
the surrounding environment, virtual objects can be rendered
in the correct position relative to the real world.

However, errors still frequently occur in the pose estimation
process because of challenging visual conditions or device
movement. This results in a virtual object being rendered
in a different position from where it was originally placed, a
problem often termed drift (i.e., the Euclidean distance between
the original and resulting virtual object positions), as shown in
Figure [T} At ‘Time 0* (Figure [Ta) the user places the virtual
black and white lamp on the table; they then walk away from
the area (perhaps to bring another person to come and look at
the lamp) before returning to view it at “Time 1°. The virtual
lamp has drifted out of position and collided with a real-world
glass (Figure [Tb). After walking away and returning again, the
drift is even more pronounced at ‘Time 2’, and the lamp has
now moved off the table (Figure [Ic). These positional errors
can have a severe negative impact on a user’s experience,
especially when the virtual object violates real-world physics.

Our goal is to measure the current level of virtual object
stability on different AR platforms and smartphones, for a
variety of device movements, and thereby assess their suitability
for practical cyber-physical-human system interfaces. We focus



here on the common scenario of ‘single-session’ markerless
AR with stationary virtual content (e.g., IKEA Place [4]), in
static indoor environments. We define two metrics for virtual
object instability. We use drift to refer to the measurable
displacement when device tracking is available, but pose
estimation is inaccurate, and a virtual object is rendered in
a different location. Sometimes an AR system may also lose
tracking temporarily, and while the device attempts to relocalize,
unwanted virtual object movement frequently occurs. We term
this period when tracking is unavailable relocalization time.
To the best of our knowledge, this work is the first to perform
a direct, quantitative comparison of virtual object stability on
both multiple smartphone models and an AR headset. We
cover related work (Section [[I)), highlight factors which can
affect stability (Section [[II), and establish six common actions
smartphone AR users may perform (Section [[V). We compare
performance across multiple platforms and devices (Section [V)),
discuss our findings (Section , then present our conclusions
(Section [VII). Our key contributions are summarized as follows:

e We benchmark virtual object stability on an AR headset,
the Microsoft HoloLens 2, demonstrating the high level of
performance these devices are able to achieve, with mean
drift of less than 2cm for all six user actions we tested.

e We conduct cross-platform experiments to compare virtual
object stability on five smartphones, revealing noticeable and
highly variable performance across all platforms, devices
and actions. For example, mean drift after walking away and
returning was 3.4cm on a Nokia 7.1 running ARCore 1.23
and 25.1cm on an iPhone 11 running ARKit 4.

II. RELATED WORK

AR platform tracking state: ARCore and ARKit both
provide indicators of current tracking quality [7], [8], though
granularity is limited and neither include the magnitude of
virtual object instability likely to occur. ARKit indicates
whether tracking is ‘not available’, ‘limited’ (results are
questionable), or ‘normal’, while ARCore describes the tracking
state as ‘stopped’, ‘paused’ (which may indicate device tracking
has been lost), or ‘tracking’. The methods by which these
tracking states are derived are proprietary. To the best of our
knowledge, no data on tracking accuracy achieved on these
platforms for markerless AR has been made public.

Virtual content positional errors: While virtual content
positional errors are a known problem in AR [9]], until recently
quantitative assessment of them has been hampered by a lack
of a suitable measurement method. One small scale study, using
an optically-tracked stylus, found drift on the HoloLens 1 of
0.5-0.6¢cm [10], but only in one environment: this method is
impractical for many settings. We have developed an alternative
methodology using fiducial markers and measured a virtual
object position error of 6cm on a Samsung Galaxy S20 [11]];
however, this technique requires modifications to the real-world
environment. Here we use a method based on placing virtual

objects near a real reference point, that we introduced in [12].

Pose tracking accuracy: Another option is to assess virtual
content positional errors indirectly by measuring the pose

tracking accuracy of an AR system. The standard method for
measuring VI-SLAM performance is to compare pose estimates
with ground truth pose obtained using a motion capture system
such as OptiTrack [13]] or Vicon [14], as in [[15], [16], [17].
In [18], a motion capture system is used to compare device
localization errors on ARCore, ARKit and the HoloLens 1.
However, methods such as this are limited because they do not
allow quantifying virtual object position errors directly, and any
use of a motion capture system is impractical for evaluations
in more than a small number of different environments, due to
the logistics associated with setup and calibration.

III. FACTORS AFFECTING VI-SLAM PERFORMANCE

Virtual object stability on AR platforms such as ARCore [5]]
and ARKit [6] is dependent on the pose tracking accuracy
achieved by the VI-SLAM system employed. While the exact
VI-SLAM algorithms on commercial devices are proprietary,
a number of factors are known to affect performance:

Device hardware: The resolution of the visible-light cam-
eras on modern smartphones is sufficient for current SLAM
algorithms, but other factors such as the rolling shutter effect
and light sensitivity may affect performance [19]. The use
of a stereo camera pair (stereo SLAM) has been shown to
reduce error [20], while headsets can also benefit from an
additional pair of cameras that face outward at a different angle
to increase the feature tracking field of view (not possible
on a smartphone due to form factor). Because an iterative
solver is used in pose estimation, and computation time is
limited due to real time constraints, more powerful devices are
able to complete more iterations and thereby achieve greater
accuracy. Finally, a few smartphones are equipped with time-
of-flight (ToF) depth sensors that measure distances to different
points in the environment by emitting near-infrared light [21]].
The depth measurements from these sensors allow virtual object
placement without device motion. ToF sensors are categorized
into two types: indirect ToF (iToF) sensors are found on a
few Android smartphones and the Microsoft HoloLens 2, and
direct ToF (dToF) sensors (marketed as LiDAR scanners) are
found on high-end Apple devices.

Visual environment and device motion: If the input image
contains few distinguishable elements (due to e.g., dark or
textureless environments, or motion blur [22]]), then a limited
number of feature points can be detected, which affects the
rest of the pose estimation process. Errors may also occur in
instances of repeated textures. The measurement accuracy of
ToF depth sensors is dependent on the reflectance properties
of surfaces in the environment; depth estimates for highly
absorptive (black) or reflective regions, at greater distances
or oblique angles can be inaccurate [23]]. dToF sensors may
measure depth incorrectly when surfaces are too close to
the sensor (e.g., less than 20cm) [21]]. Finally, fast device
acceleration or rotation reduces pose estimation accuracy by
introducing noise into the inertial input data [17], and because
integration errors accumulate over time, longer trajectories also
tend to result in larger errors.



—— Focused move
—— Pause

Place down

Unfacus
= Unfocused move
— Walk away

04
-0.2 " oo &
I"""J 02

(@ (b)
Fig. 2: Representative device trajectories for 6 common actions
that users may perform after virtual object placement: Focused

move, Pause, and Place down (a), Unfocus, Unfocused move,
and Walk away (b).

IV. DEVICE MOVEMENT IN SMARTPHONE AR

We aim to investigate the effect of device movement on
virtual object stability. To this end we define six common
actions users may perform after placing a virtual object:

e Focused move: user moves to a different viewing angle (to
inspect another side of the virtual object), while keeping the
camera focused on the virtual object.

e Unfocus: user lets hand holding device hang at their side
(as if distracted), then raises it to focus on the virtual object.

e Unfocused move: user lets the hand holding the device
hang at their side, moves to a different viewing angle, then
raises the device to focus on the virtual object.

o Walk away: user lets the hand holding the device hang
at their side, walks away (to e.g., perform another action),
returns and raises the device to focus on the virtual object.

e Pause: user pauses the AR app (to e.g., send a text), then
resumes it while focused on the virtual object position.

e Place down: user places device down on a nearby surface
so that the rear camera is covered (to e.g., pick up another
object), then raises the device to focus on the virtual object.

Pause and Place down are challenging for VI-SLAM systems
because they involve an interruption to input sensor data (visual
input data for Place down when the camera is covered, and
both visual and inertial input data for Pause when the app is
paused). Because this results in a temporary loss of tracking,
we examine relocalization time as well as drift in these cases.

For all subsequent experiments, the change in viewing angle
for Focused move and Unfocused move was set to approximately
45° (on a horizontal plane), the distance walked away in
Walk away to 10 steps (approximately 7m), and the Pause
and Place down interruption duration to approximately S5s.
Representative trajectories for each of these actions, captured
in our experiments, are shown in Figure [2]

V. VIRTUAL OBJECT STABILITY EXPERIMENTS

This section presents our virtual object stability experiments,
conducted using the method we introduced in [12], on com-
mercial AR platforms: the Microsoft HoloLens 2 AR headset
(Section and five different smartphones (Section [V-B].
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Fig. 3: Virtual object drift on the HoloLens 2 after performing
different actions. Mean drift was under 2cm for all actions.

A. AR Headset Baseline: Microsoft HoloLens 2

To start, we measure virtual object stability on a state-of-the-
art AR headset, the HoloLens 2, which has four synchronized
30Hz grayscale global-shutter tracking cameras (two configured
as a stereo rig, two facing outward at a wider angle to track
features in a wider field of view), and a 1MP iToF depth sensor.
This should represent the best performance currently available
on headsets, against which smartphones can be compared.

The wearable nature of an AR headset meant that the exact
movements for some of the actions performed (Section on
the HoloLens 2 were slightly altered compared to a smartphone.
However, we kept the motivation for these actions consistent,
and replicated what a real user might do in these scenarios.
For example, in Unfocus we simulated the same scenario with
the user turning their head 90° to face in a different direction.
Similarly for Unfocused move and Walk away, the device did
not drop to the user’s side, and the environment sensors faced
in the same direction the user was moving. Because taking
off and placing down a headset does not involve covering the
environment tracking sensors like on a smartphone, we do not
evaluate Place down in our baseline.

We performed each of the five actions in 20 environments
(in six rooms in two buildings) for a total of 100 trials. Our
choice of environments was designed to cover normal usage
conditions; 16 of the 20 were consistent with AR platform
guidelines [24], [25] for well-lit and textured environments,
and none were extremely challenging (e.g., dark conditions,
or completely blank surfaces). The drift after performing each
action is shown in Figure 3] As expected, the HoloLens 2
achieved a high degree of virtual object stability, with mean
drift less than 2cm for all actions, with all drift values less than
6cm. Lowest mean drift was observed for the two actions with
the shortest trajectories, Pause (0.3cm) and Unfocus (0.5cm).
The most challenging actions for the HoloLens 2 were those
which involved a change in viewing angle between hologram
views, Focused move (1.7cm) and Unfocused move (1.6cm).

B. Cross-Platform Smartphone Experiments

We now move on to comparing virtual object stability on five
smartphones: a Nokia 7.1 and a Samsung Galaxy Note 10+,
both running Android 11 and ARCore 1.23, an iPhone 11
running i0OS 14.4 and ARKit 4, an iPhone 11 running i0OS 15.1
and ARKit 5, and an iPhone 13 Pro Max running iOS 15.0 and
ARKit 5. The Samsung Galaxy Note 10+ has an iToF depth



TABLE I: Hardware and software comparison of the smart-
phones used in our experiments (Section [V-B).

Device Model RAM | World-facing AR Platform
(GB) depth sensor
Nokia 7.1 4 None ARCore 1.23
Samsung Galaxy Note 10+ 12 iToF ARCore 1.23
iPhone 11 4 None ARKit 4
iPhone 11 4 None ARKit 5
iPhone 13 Pro Max 6 dToF (LiDAR) ARKit 5

sensor and the iPhone 13 Pro Max has a dToF depth sensor,
which enables us to evaluate their respective impact on virtual
object stability. Relevant hardware and software specifications
are shown in Table [, and these devices are pictured (along
with the HoloLens 2) in Figure ] Conducting our experiments
on the same iPhone 11 running ARKit 4 and then ARKit 5
allows us to assess the impact of any updates to mapping and
tracking algorithms in ARKit 5, released in June 2021.

To ensure a fair comparison, we performed the six actions
between virtual object views on each of the five smartphones
in the same 20 environments as the HoloLens 2, for a total of
600 trials. We performed actions consecutively from the same
positions, under fixed artificial lighting, and no apps were run
concurrently with our measurement app ARStats [12]]. Below
we analyze our results for virtual object drift and relocalization
time, exploring the factors that impacted performance.

Virtual object drift: Our cross-platform results for virtual
object drift are shown in Figure [5a] As expected, mean drift
was higher for all actions on all smartphones than on the
AR headset, the HoloLens 2 (with the exception of Focused
move on the iPhone 13 Pro Max, 1.6cm compared to 1.7cm
on the HoloLens 2). There was also some consistency across
different smartphones in terms of the level of drift caused by
specific actions. For example Unfocus, involving a relatively
short device trajectory, no change in viewing position and
no interruption to input data, resulted in the lowest mean
drift on the Nokia 7.1 (2.5cm), the Samsung Galaxy Note 10+
(4.0cm) and the ARKit 4 iPhone 11 (1cm), and the second-
lowest mean drift on the ARKit 5 iPhone 11 (2.2cm) and
iPhone 13 Pro Max (1.1cm). In contrast, Unfocused move,
with the addition of a change in viewing position and a
longer trajectory, was consistently the most or second-most
challenging action, resulting in mean drift greater than 8cm on
all devices (Nokia 7.1: 12.6cm, Samsung Galaxy Note 10+:
12.1cm, iPhone 11 ARKit 4: 10.1cm, iPhone 11 ARKit 5:
8.9cm) except the iPhone 13 Pro Max (2.3cm). However, we
also find important differences in virtual object stability
performance across platforms and devices, as we now detail.

One standout result was that the iPhone 13 Pro Max was
able to achieve lower mean drift than any other smartphone
for all six actions, less than 3cm for all actions. The level
of improvement was particularly marked for the challenging
Unfocused move action, with mean drift just 2.3cm on the
iPhone 13 Pro Max compared to 8.9cm on the next best-
performing device, the iPhone 11 running ARKit 5. The
extent to which the iPhone 13 Pro is able to achieve lower
drift than the iPhone 11, running on the same AR platform

HoloLens 2

Samsung
Galaxy

Environment tracking sensors
Fig. 4: The AR devices used in our experiments. On the
HoloLens 2 tracking cameras are spaced farther apart, with
the depth sensor just off-center.

version (ARKit 5), is striking, and illustrates the advantages
of obtaining more accurate environment mapping through the
dToF depth sensor. It should be noted though, that drift of
5-15cm did occur for every action except Focused move, which
would still be frustrating for a user in many AR applications.

Next we compare the two AR platforms, ARCore and ARKit.
All three ARKit devices achieved lower mean drift than the
two ARCore devices for the three actions involving the least
movement, Focused move, Unfocus and Pause. For the three
actions involving greater movement, Unfocused move, Walk
away and Place down, the two lower-spec ARKit smartphones
sometimes performed worse than ARCore. For example, for
Walk away, mean drift was 3.4cm on the Nokia, 6.1cm on
the Samsung, but 25.1cm on the ARKit 4 iPhone 11. Apple
evidently took steps to address this in the next ARKit release,
with mean drift down to 15.5cm on the ARKit 5 iPhone 11.
However, only the iPhone 13 Pro Max achieved comparable
performance with ARCore for this challenging action. Given the
iPhone 11 and iPhone 13 Pro Max have similar camera specs
(12MP resolution with optical image stabilization, apertures
f/1.8 and f/1.5 respectively) and computational resources (4GB
and 6GB RAM respectively), we again posit that the dToF
depth sensor enables this improvement in virtual object stability.

Our results from the two Android smartphones, both running
ARCore 1.23, also demonstrate the impact of different hardware.
The Samsung, released more recently and targeted at a higher
price point, outperformed the Nokia in the majority of cases.
For instance, we observed higher mean drift on the Nokia after
Pause and Place down than on the Samsung, 16.2cm compared
to 7.4cm for Pause and 31.1cm compared to 4.5cm for Place
down. These differences are likely due to a combination of
greater computational resources and a higher-spec camera on
the Samsung. Resolution is not a factor (both devices have
12MP cameras, and the ARCore backend appears to only use
640x480 pixel images), but the primary camera of the Samsung
has two aperture modes (f/1.5 and f/2.4), which allows it to
better adjust to different light levels, and the Nokia camera has
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Fig. 5: Virtual object drift and relocalization times for five AR device and platform configurations after performing different
actions. We observe significant differences between platforms and devices: for example, for Walk away, mean drift ranges from
2.9cm on the iPhone 13 Pro Max and 3.4cm on the Nokia 7.1 to 25.1cm on the iPhone 11 running ARK:it 4.

a fixed aperture (f/1.8). The Samsung camera also has optical
image stabilization, which should result in less blur and hence
better feature detection, especially at low light levels.

While in general the smartphones equipped with a depth
sensor were able to achieve lower drift than those without
one (that ran the same AR platform), this was not always the
case. In fact, these instances illustrate some of the limitations
of different types of depth sensors (Section [[TI). For example,
higher drift was recorded on the Samsung Galaxy Note 10+ than
the Nokia 7.1 for black or reflective surfaces (e.g., a stovetop),
known to pose challenges for the iToF depth sensor [26]. We
also found instances when the iPhone 13 Pro Max recorded
large drift values when surfaces were too close. For Unfocus on
the iPhone 13 Pro Max, we recorded the largest drift (5.6cm)
when, while the phone was by the user’s side, the environment
tracking sensors were facing a surface in close proximity
(< 30cm). Similarly, the largest and most frequent outliers
on the iPhone 13 Pro Max occurred after Place down; we
hypothesize that while the iPhone 13 Pro Max is close to the
surface it is put down on, the dToF sensor produces inaccurate
depth readings, in some cases resulting in these larger errors.

Relocalization time: Relocalization time is presented in
Figure [5b| for Pause and Place down, the two actions which
incurred an interruption to environment tracking sensor data.
The comparative performance of ARCore and ARKit depended
greatly on the type of interruption. Mean relocalization time
after Pause was greater on all ARKit devices (iPhone 11 ARKit
4: 3.2s, iPhone 11 ARK:it 5: 2.0s, iPhone 13 Pro Max: 2.0s),
than either ARCore device (Nokia 7.1: 1.4s, Samsung Galaxy
Note 10+: 1.0s). This indicates ARCore recovers tracking
more quickly after an interruption to both visual and iner-
tial input data. However, for an interruption to visual data
alone (Place down), all ARKit devices regained tracking
faster (iPhone 11 ARKit 4: 1.5s, iPhone 11 ARKit 5: 1.2s,
iPhone 13 Pro Max: 1.9s) than either ARCore device (Nokia
7.1: 7.1s, Samsung Galaxy Note 10+: 4.9s). These results
suggest the VI-SLAM algorithms employed on each platform
take different approaches to handling the recovery of tracking.

Relocalization time was in general comparable for devices
running the same platform version, especially for Pause. This
indicates that it is the relocalization algorithm employed,
rather than device hardware, which has the greatest impact
on relocalization speed. An exception to this was observed
however in our results for Place down; when an AR platform
relocalizes after the smartphone is picked up off a table, an
onboard depth sensor can either speed up or slow down
recovery of tracking, depending on its type. For example,
the Samsung Galaxy Note 10+, equipped with an iToF depth
sensor which should provide accurate results at short distances,
regained tracking much faster (4.9s) than the Nokia 7.1 (7.1s).
In contrast, the iPhone 13 Pro Max, equipped with a dToF
depth sensor which may provide inaccurate results at short
distances, took longer to relocalize (1.9s) than the ARKit 5
iPhone 11 that does not have a depth sensor (1.2s). Similar to
the large drift values that sometimes occurred for Place down
on the iPhone 13 Pro Max, we posit that while the dToF sensor
is close to the surface it is put down on, it produces inaccurate
depth readings, making relocalization more challenging.

VI. DISCUSSION

In our study of markerless smartphone AR, we observed
measurable virtual object drift for all devices and all user
actions we examined, mean drift ranging from 1.0-4.0cm for
the ‘easy’ Unfocus action to as high as 25.1cm and 31.1cm
for more ‘challenging’ actions (Walk away on an ARKit 4
iPhone 11, Place down on the Nokia 7.1). While there were
noticeable improvements in a recent AR platform release
(ARK:it 5), and mean drift was much lower on one high-end
device (the iPhone 13 Pro Max), robustness remains a key
unsolved problem, with multiple instances of drift greater than
10cm, even on the best-performing smartphones. It is clear that
in these cases virtual objects are not yet ‘here to stay’, and high-
precision applications (e.g., medical or industrial scenarios)
are not yet supported in markerless AR on smartphones.

We observed greater virtual object stability on the
HoloLens 2, with mean drift of less than 2cm for all actions



and no drift exceeding 6cm. This is partly due to its specialized
tracking cameras, and their wider field of view on a headset
compared to a smartphone. However, the camera views on
a handheld device are also inherently more challenging, and
more frequently obstructed, because these devices are often
held by a user’s side when they move, potentially in close
proximity to walls or low light areas. Further enhancements
to SLAM algorithms, specific to the challenges of handheld
devices, are needed to address this problem on smartphones.

Our experiments also revealed considerable differences in
both drift and relocalization time between the five smartphones
we tested. A variety of reasons exist for this, including different
VI-SLAM algorithms employed, as well as differences in
cameras, inertial sensors, depth sensors, and computational
capabilities across different models. This implies that while
tools such as Unity’s AR Foundation [27)] facilitate cross-
platform app development, virtual content stability testing needs
to be conducted separately on different platforms. Our results
also demonstrate that there are instances in which a high-end
smartphone (e.g., the Samsung Galaxy Note 10+) does not
out-perform a mid-range one (e.g., the Nokia 7.1), due to
the inherent limitations of different types of depth sensors in
certain environments, or at certain distances. This indicates that
developers cannot rely on testing a lower-end device to establish
a minimum level of virtual object stability performance.

VII. CONCLUSIONS AND FUTURE WORK

In this work we assessed the current suitability of markerless
AR as an interface between humans and cyber-physical systems,
through a direct quantitative comparison of virtual object
stability on five smartphones, on two different AR platforms, as
well as the Microsoft HoloLens 2. In systematic experiments,
we show that while the specialized cameras and form factor of
headsets facilitate a high degree of spatial stability, robustness
remains a key unsolved issue on smartphones.

Beyond the effects of device hardware and motion, in future
we will examine how environment characteristics impact virtual
object stability, and VI-SLAM performance in general, by
studying more environments, and introducing characterization
metrics, which we explored in preliminary work [28]. We
will also investigate further performance metrics for virtual
object stability, by analyzing the distributions of drift and
relocalization time. Alongside experiments on real devices, we
will develop simulation-based evaluation methods, using open-
source VI-SLAM algorithms in virtual environments, to support
systematic environment alterations. We will demonstrate how
knowledge of the relationship between environment charac-
teristics and virtual object stability can be used to improve
AR experiences in practice, such as by enhancing the visual
environment using Internet of Things lights and displays.
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